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Abstract  23 

The purpose of this study was an attempt to adapt the audible acoustic emission (AAE) 24 

sound measurement method for the on-line monitoring of the fluid-bed drying progress of 25 

pharmaceutical granules. The granules were prepared by extrusion-granulation based on a 26 

formulation of 6.7:2:1 lactose/starch/crystalline cellulose. After the granulation process, the 27 

drying process was performed in a fluid-bed dryer at 27 or 42ºC, and AAE sound was 28 

measured using a digital voice recorder. The recorded signals were transformed into 29 

frequency spectra by using fast Fourier-transformation function. Samples were collected 30 

every 60 seconds to determine the moisture content of the granules. The calibration models 31 

to predict the moisture content of the granules were constructed based on AAE frequency 32 

spectra by using the partial least squares regression method after area normalized function. In 33 

order to test the robustness of the calibration model obtained under different dry operating 34 

conditions (air temperature) with various acoustic environments (noise), the moisture content 35 

of the granules was predicted based on AAE frequency spectra containing noise. The 36 

external validation results suggested that the calibration model could be applied to any data 37 

set. The regression vector indicated that the sound in the low-frequency range might have 38 

been caused by the contact of the granules upon over-hydration at the initial stage of the 39 

drying process. In contrast, the sound at high frequencies might have been caused by friction 40 

of the dried granules later in the drying process.  41 

 42 
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Introduction  48 

Since granules have several advantages as a pharmaceutical dosage form compared with 49 

powder, such as, better flowability, wettability, mixing uniformity, easy control of their dust, 50 

and good compressibility, granules are prepared to agglomerate powdered materials into 51 

larger sizes by using various kinds of granulator. The properties of the final granular 52 

products are affected by operating conditions during the drying process and the kind of 53 

granulator. The drying process of agglomerates of powdered materials is, therefore, a crucial 54 

operation to make high-quality granular dosage forms in the pharmaceutical industry. These 55 

are important properties in order to achieve fast, gentle and uniform particle drying. Owing 56 

to the high drying rate, associated high quality, and economic benefits, fluid-bed drying has 57 

been proposed as the method of choice over to other drying techniques.  58 

In recent years, in order to improve the quality of pharmaceutical products, regulatory 59 

authorities such as the US Food and Drug Administration and the International Conference 60 

on Harmonization have proposed Process Analytical Technology (PAT) initiative forms 61 

based on the pharmaceutical Good Manufacturing Practice rules for the 21st century.1, 2 They 62 

requested real-time control of drug product quality and the application of Quality by Design 63 

principles to monitor and control manufacturing processes using PAT tools.3-5  64 

To control the drying process, conventional chemical (Karl Fischer titration) and physical 65 

(heat balance) methods are used routinely for the determination of water content in 66 

pharmaceutical products. However, they are hard to perform as real-time monitoring of the 67 

drying because both methods are time-consuming and costly. Recently, near-infrared (NIR) 68 

spectroscopy has been introduced in the pharmaceutical industry because it is 69 
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non-destructive and requires no or minimal sample preparation and provides immediate 70 

delivery of results.  In particular, in combination with chemometrics, NIR spectroscopy 71 

provides an ideal method of extracting quantitative information from multi-component 72 

chemical samples in the pharmaceutical field. The most widely used chemometric methods 73 

include multiple linear regression, principal component analysis/principal component 74 

regression, and partial least squares (PLS) regression.6 For example, chemometric NIR 75 

spectroscopy has been used to determine active pharmaceutical ingredients off-line and 76 

on-line, tablet excipient content,7-10 drug stability,11 particle size of powders,12 tablet 77 

mechanical strength,13, 14 and dissolution rate.14-17  However, it is costly to establish many 78 

NIR spectroscopy instruments on production lines in factories.  79 

On the other hand, mechanical sound during chemical and/or pharmaceutical processes is 80 

useful information for evaluating the degree of product completion for veteran technicians in 81 

industry. On the basis of veteran technical experts’ knowledge and skill for controlling 82 

manufacturing processes, acoustic emission (AE) technology was developed for process 83 

monitoring. AE monitoring has the advantage of being a real-time, noninvasive technique, 84 

the same as NIR spectroscopy. AE and NIR methods capture the mechanical and optical 85 

signatures of events taking place during processing, respectively.3 However, the NIR method 86 

requires installation of a micro-fiber probe and a line into the sample powder for measuring, 87 

but the AE method does not need a direct line-of-sight to the material of interest and 88 

therefore requires no alteration of manufacturing equipment.  89 

To take advantage of the ease of installation of measurement devices and good 90 

measurement accuracy, the AE analysis method was developed in chemical and 91 
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pharmaceutical fields as a PAT pilot study, and there are several reports on AE 92 

application studies.
19-29 The research can be divided into two types; with ultrasonic (greater 93 

than 20,000 Hz) and audible (approximately 20–20,000 Hz) AE sensors.  94 

Ultrasonic AE sensors can be easily attached to the container wall of pharmaceutical 95 

machines to detect sounds. For example, the effects of operation conditions on the acoustic 96 

signal during tablet compression,18 the roller compaction19, 20 and table coating processes,21 97 

mixing process,22 particle measurement,23, 24 and agitating granulation25 have been studied. 98 

In contrast, audible AEs differ from ultrasonic AEs in terms of the setting of measurement 99 

devices, because they propagate through air with minimal attenuation26-29 and therefore 100 

equipment contact is not required for detection. Microphones suspended at the top of 101 

granulator air exhausts were also shown to be sensitive to granulation-based pharmaceutical 102 

formulation for identifying the granulation end-point.26, 28  103 

On the other hand, one of the emerging on-line non-invasive PAT approaches for process 104 

characterization is acoustic chemometrics, since interpretations of these complex AE data are 105 

most effectively performed through the use of modern chemometric methods.30, 31 On-line 106 

process monitoring of the fluid-bed drying process was investigated by using acoustic 107 

chemometrics.32, 33  Ihunegbo et al.34 investigated the feasibility of quantitative on-line 108 

monitoring of the drying progress and end-point determination of pharmaceuticals dried in a 109 

heated fluid-bed based on audible and ultrasonic AEs by chemometrics. They concluded that 110 

the final prediction results were satisfactory for monitoring of the drying progress and 111 

end-point determination by the PLS method. However, they did not report scientific evidence 112 

Page 6 of 36RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



 

7 

of the calibration models to predict individual pharmaceutical properties of the final 113 

products.  114 

The present study is an attempt to adapt the audible acoustic emission sound measurement 115 

method for the on-line monitoring of the fluid-bed drying progress of pharmaceutical 116 

granules, and to clarify the scientific background of the calibration model to predict moisture 117 

content in granules by audible acoustic emission (AAE) frequency spectrum/chemometric 118 

analysis.  119 

 120 

Materials and methods  121 

Materials  122 

Lactose monohydrate (Pharmatose® 200M) from DMV (Veghel, The Netherlands), potato 123 

starch from Kosakai Pharmaceutical Co., Ltd. (Japan), microcrystalline cellulose 124 

(CEOLUS® PH-102) from Asahi Kasei Co., Ltd. (Tokyo, Japan), and hydroxypropyl 125 

cellulose (HPC-L®) from Nippon Soda Co., Ltd. (Tokyo, Japan) were used. The lactose 126 

served as a filler, potato starch as a disintegrating agent, microcrystalline cellulose as a 127 

segregation preventive agent, and HPC-L as a binding agent. Granules comprising mainly 128 

lactose, potato starch, microcrystalline cellulose, and HPC-L were prepared. This 129 

formulation was based on a standard 6.7:2:1 lactose/starch/microcrystalline cellulose 130 

mixture.  131 

 132 

Preparation of granules  133 
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A total of 200.0 g of lactose, 60.0 g of potato starch, 30.0 g of microcrystalline 134 

cellulose, and 10.0 g of HPC-L, were mixed in a polyethylene bag for 3 minutes by 135 

hand. Purified water was added and the mixed was then kneaded in a mortar and pestle. 136 

Granules, 1 mm in diameter, were prepared by extrusion granulation (KAR-130, Tsutsui 137 

Scientific Instruments Co., Ltd., Tokyo, Japan). After the granulation process, drying was 138 

performed in a fluid-bed dryer with a chamber made of glass (SP-15, 160 mm in diameter 139 

and 6.0 L in volume, Okada Seiko Co., Ltd., Tokyo, Japan), as shown in Figure 1. A 140 

sampling port was located 3 cm from the bottom of a chamber of the dryer, and granular 141 

samples was withdrawn using a plastic sampling bar with a diameter of 15 mm. Fluid-bed 142 

dryer operation conditions were fixed during all processes as follows: warming up time was 143 

15 min at 42°C and rotor speed was 180 rpm. The granulation experiments were repeated 144 

three times in each group. Outlet air temperature was measured using a temperature sensor, 145 

and the temperature of outlet air was set at 42ºC for the groups 1, 2 and 8, and at 27ºC for 146 

group 3. Group 2 involved drying under conditions (outlet air was set at 42ºC) with noise 147 

(Japanese pop music, a vacuum cleaner, or a tableting machine) to test the robustness for 148 

the audible acoustic emission calibration model. A portable stereo radio CD player, a 149 

vacuum cleaner, and a tableting machine were placed at a distance of 30 cm from the dryer 150 

as sources of noise, respectively.  151 

 152 

Figure 1  153 

 154 

Measurement of moisture content  155 
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The samples of approximately 3g were collected every 60 seconds 16 times using the 156 

sampling bar during the drying process, and then the collected samples were weighed 157 

accurately by an electronic analytical balance. To determine the moisture content of the 158 

granules, drying loss at 70ºC for 24 hours was estimated. To evaluate the variability among 159 

batches, the procedures were repeated multiple times and the moisture contents of the 160 

granular samples were recorded. All batches were evaluated for the time required to reach a 161 

point when there was no change in mass of the samples over time as the drying had finished.  162 

 163 

Acoustic signal measurements  164 

The acoustic sensor used was a digital voice recorder (RR-XS350, Panasonic Co., Ltd., 165 

Tokyo, Japan). The recorder was placed at a distance of 0.5 cm from the wall of the lowest 166 

portion of the chamber of the fluid-bed dryer. Audible acoustic emission signals were 167 

recorded as a waveform at a sampling rate of 44.1 kHz during the drying process. The 168 

recorded AAE signals were transformed into frequency spectra every 60 seconds by using 169 

the fast Fourier transformation function of Audacity® (Audacity 2.0.5, 170 

http://audacity.sourceforge.net) as the calibration data. The AAE frequency spectra for the 171 

semi-external validation data were transformed from raw signals of the groups 1, 2 and 3 at 172 

every 61 seconds, respectively. In contrast, the spectra for the external validation data were 173 

transformed from raw signals of the group 8 at every 60 seconds.  174 

 175 

The FT-AAE frequency spectra were calculated at intervals of 1 second and window size 176 

of 4096 by using Blackman-Harris window transformation in the frequency range between 177 
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0.01 and 22 kHz. The frequency spectra were converted from amplitude into sound pressure 178 

level LP according to the following expression.35  179 

                                        (1) 180 

where P is the actual sound pressure and P0 is the reference sound pressure which is 20 µPa 181 

in air. The actual sound pressure has a relationship with the electromotive force E described 182 

in the following equation,  183 

                                        (2) 184 

                                                (3) 185 

where S is sensitivity of the microphone. Substituting Eq. (3) to Eq. (1), the following 186 

equation can be derived,  187 

                                            (4) 188 

 189 

 190 

Partial least squares regression  191 

A chemometric analysis was performed using the partial least squares (PLS) regression 192 

method associated with the Pirouette software ver. 4.5 (Infometrix Corporation, Woodinville, 193 

U.S.A.). The moisture contents (the dependent variable) of the granules were estimated 194 

based on a total of 144 spectra (independent variables) involving groups 1, 2, and 3 by PLS. 195 

The PLS calibration models were constructed by cross-validation using the leave-one-out 196 

(LOOCV) method. The optimum number of factors was taken to be that leading to a 197 
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minimum value in the prediction residual error sum of squares (PRESS) versus PLS 198 

component graph, the former being defined as:  199 

                                   (5) 200 

where ŷi and yi correspond to the moisture level of each granular sample predicted by the AE 201 

method and the reference method, respectively. The goodness of calibration and prediction 202 

was assessed in terms of the root mean square error (RMSE):  203 

                              (6)  204 

which was termed RESEC for calibration and RMSEP for prediction.  205 

 206 

 207 

Results and discussion  208 

Frequency spectra of granules during the drying process  209 

Figure 2 shows a typical example of an AAE waveform of audible acoustic sound during 210 

the drying process of extruded granules in the fluid-bed dryer. The AAE waveforms were 211 

transformed into AAE frequency spectra using the Fourier-transformation function.  212 

Figure 3 (a) shows change of raw frequency spectra of AAE sound during the drying 213 

process of extruded granules in the fluid-bed dryer. The sound pressure level below 0.1 kHz 214 

significantly decreased with increasing of the time, but that above 1 kHz increased with a lot 215 

of noise. It was considered that there were a number of noises in the high-frequency range, 216 

which made it difficult to analyze the frequency spectrum.  217 
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To clarify time-dependent changes in the frequency spectra of granular samples during the 218 

drying process, the raw spectra were converted to area normalized frequency spectra. Figure 219 

3 (b) shows change of the area normalized frequency spectra of AAE sound during the 220 

drying process of extruded granules in the fluid-bed dryer. In the area normalized frequency 221 

spectra, sound pressure level at lower than 1 kHz significantly decreased with increasing 222 

time, but that above 1 kHz was almost constant.  223 

 224 

Figures 2 and 3  225 

 226 

Construction of partial least squares model  227 

To predict the moisture content of granules, the calibration models were constructed based 228 

on frequency spectra by using the PLS method after area normalized function. Figure 4 (a) 229 

shows the correlation between the actual and predicted moisture contents of group 1 230 

(standard drying conditions) obtained by the PLS method, and their chemometric parameters 231 

are summarized in Table 1. The relationship between the actual and predicted moisture 232 

contents shows a straight line with a slope of 0.992, y-intercept of 0.0595, and correlation 233 

coefficient of 0.992. The PRESS and the RMSECV were evaluated to be 31.5 and 2.18 by 234 

the leave-one-out method in the PLS method, and the other parameters also supported the 235 

assertion that the obtained calibration model involving the first 4 latent variables (LV) could 236 

predict the moisture content in the granular samples with sufficient accuracy.  237 

 238 

Figure 4 (a) and Table 1  239 
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 240 

Effects of acoustic environment and drying operation conditions on the robustness of the 241 

calibration model  242 

In order to test the robustness of the calibration model obtained under dry operating 243 

conditions of the various acoustic environments, the moisture contents of the granules were 244 

predicted based on acoustic frequency spectra containing noise. Group 2 was dried under 245 

experimental conditions involving the following type of noise. The drying experiments for 246 

the granules were performed with Japanese pop song were played on a portable radio CD 247 

player, a vacuum cleaner, and a tableting machine. As shown in Table 1, the chemometric 248 

parameters for group 2 supported the assertion that the calibration model involving the first 4 249 

LVs could be predicted sufficient accurate the moisture content in the granular samples with 250 

sufficient accuracy. Those for group 4, involving both group 1 and group 2, also indicated 251 

that the model involving the first 5 LVs could provide accurate predictions. The results 252 

suggested that the calibration model was not affected by the typical noise in the measurement 253 

environment, and the moisture content of the granules could be predicted based on AAE 254 

frequency spectra containing noise.  255 

It is well known that the drying process is dependent on change of the outer air 256 

temperature, so the effect of outlet air temperature on the drying process was investigated. 257 

Group 3 was dried under lower-temperature conditions at 27ºC, and the chemometric 258 

parameters indicated that the calibration model involving the first 4 LVs could predict the 259 

moisture content with sufficient accuracy, as shown in Table 1. Those for group 5, involving 260 
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temperature variations (27 and 42ºC), also indicated that the model involving the first 5 LVs 261 

could provide accurate predictions.  262 

Finally, the drying process in a fluid-bed dryer is affected by various process operating 263 

conditions, such as outer air temperature, humidity, and noise. Therefore, the combined 264 

effects of drying temperature variations and environmental noise on the robustness of the 265 

calibration model were investigated. Groups 6 and 7 underwent drying conditions involving 266 

both temperature variations and environmental noise. Figure 4 (b) shows the relationship 267 

between the predicted and actual moisture contents for group 7, with a straight line with a 268 

slope of 0.984, y-intercept of 0.168, and correlation coefficient constant of 0.984. The 269 

calibration model for group 7 consisted of the first 5 LVs involving 72.6% cumulative 270 

variance, and the parameters indicated that the model could predict the moisture content with 271 

sufficient accuracy, as shown in Table 1.  272 

 273 

Figure 4 (b)  274 

 275 

Validation of the fitted calibration models based on external validation data  276 

For validation of the PLS calibration models to predict the moisture content of the 277 

granules, the other frequency spectra as an external validation data set were applied to the 278 

obtained calibration models. Figure 4 (c) and Table 2 show the suitability of each 279 

calibration model of the semi-external validation data for groups 1-3 and external validation 280 

data for group 8. The semi-external validation data of G1, G2, and G3 were evaluated using 281 

all calibration models, and then the best R2s were obtained by using the calibration models 282 

Page 14 of 36RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



 

15 

that were created using the individual data sampling time at every 61 seconds. However, 283 

there was no model that could be applied to the other data sets, except for the model based 284 

on group 7. The R2 for groups 1, 2, and 3 were 0.985, 0.994, and 0.928 by using the 285 

calibration model for group 7, respectively. These results suggest that the calibration model 286 

based on group 7 could be applied to any group data set.  287 

 288 

Figure 4 (c) and Table 2  289 

 290 

Scientific background of the PLS calibration model to predict the moisture content in the 291 

granules based on the AAE frequency spectrum  292 

PLS regression is effective in the extraction of features and regularity, and modeling of 293 

unstable, large, and complex numerical data. However, the disadvantages of PLS regression 294 

are the difficulty of interpretation of the factors, and it is also necessary to determine the 295 

number of factors to be used. Therefore, in order to provide the scientific evidence of the 296 

ability of the PLS models based on AAE frequency spectra to predict the moisture content of 297 

the granules, relationships between the loading or regression vector and information on the 298 

formulation powder during drying were examined.  299 

Figure 5 shows the loading vectors for first and second LVs of the calibration model to 300 

predict moisture content in the granules. The loading vectors for the first and second LV 301 

contained 58.6% and 7.5% of the total variance, respectively. The loading vector for the 302 

first LV had the positive broad peaks at 10-100 Hz and positive specific peaks at 484 and 303 

1216 Hz. It had negative peaks at 656, 1442, and 15,000-22,000 Hz. The vector for the 304 
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second LV had positive broad peaks at 86, 204, and 355 Hz and negative peaks at 667, 305 

947-1141, and 2000-3500 Hz. The result of the first loading vector indicates that the sound 306 

with lower frequency than 100 Hz was converted into sound higher than 15,000 Hz. The 307 

vector for the second LV was due to mid-frequency range sound transformation, which 308 

means that sound of 60-200 Hz was converted into sound of 1000-4000 Hz.  309 

Figure 6 shows the relationship between the scores of first LV and second LV for the 310 

calibration model based on group 7 to predict the moisture content in the granules. In the 311 

first half of the drying process, the first LV decreased, in the second half, it gradually 312 

reached a constant value of -2. In contrast, the second LV increased in the first half and 313 

decreased in the second half.  314 

Figure 7 shows the regression vector plot as a weighting function of the calibration model 315 

for group 7, involving temperature variations and environmental noise. In the regression 316 

vector, positive peaks were observed at a relatively low-frequency range at 100 Hz, 200 Hz, 317 

340 Hz, 840 Hz, and 1570 Hz. In contrast, the negative peaks were observed at a higher 318 

range at around 2030 Hz and 3440 Hz. These results indicated that the peaks at lower 319 

frequency decreased during the drying process, but the peaks at higher frequency increased. 320 

The sound in the low frequency range might have been caused by the contact of the granules 321 

upon over-hydration at the initial stage of the drying process. In contrast, the sound at high 322 

frequencies might have been caused by friction of the dried granules later in the drying 323 

process.  324 

 325 

Figures 5, 6, and 7  326 
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 327 

Kinetic evaluation of fluid-bed drying process of the extruded granules.  328 

Figure 8 shows the changes of the moisture contents in the granules for groups 1, 2, and 3 329 

predicted by using the best-fitted PLS model. Predicted moisture content profiles were 330 

generally consistent with measured values. It is well known that there are three phases (i.e. 331 

pre-heating period, constant drying rate period, and falling drying rate period) during the 332 

drying process, as reported previously.36 The pre-heating period is the time required to reach 333 

a certain dynamic equilibrium temperature determined by the drying conditions of the initial 334 

temperature. The constant drying rate period is a period during which the cooling rate due to 335 

evaporation of free water is equal to heating by hot air, and the drying rate is constant. In 336 

other words, as long as free water is present on the granule surface, the constant rate drying 337 

period continues. The falling drying rate period is the time required to dry the water present 338 

inside the granules. As shown by the results for various drying conditions, the drying process 339 

of the granules could be separated into pre-heating period, constant drying rate period, and 340 

falling drying rate period by the AAE chemometrics. The drying process of the granules 341 

could also be divided into two processes; the former process might be due to the sound 342 

caused by the collision of wetted granules, and the latter process might be the sound caused 343 

by friction of dried granules.  344 

 345 

Figure 8  346 

 347 

Conclusion  348 
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The present study demonstrated the usefulness of real-time monitoring using AAE 349 

analysis to predict the moisture content of granules and product quality parameters during the 350 

fluid-bed drying process in real time. To determine the parameters, a PLS model based on 351 

AAE frequency spectra and loss on drying measurements was constructed under different 352 

dry operating conditions with various acoustic environments. This technique facilitated the 353 

construction of a robust model with no variability from batch to batch. This technique 354 

provides for better understanding and control of the drying process in a less expensive 355 

manner.  356 
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 468 
Figure Captions  469 

Figure 1.  Fluid-bed drying equipment for audible acoustic emission analysis.  470 

 471 

Figure 2.  Waveform of audible acoustic sound during the drying process of extruded 472 

granules in the fluid-bed dryer.  473 

 474 

Figure 3.  Change of (a) raw spectra, and (b) normalized spectra of AAE frequency 475 

spectra during the drying process of extruded granules in the fluid-bed dryer.  476 

 477 

Figure 4.  Relationship between predicted and measured moisture contents of granules 478 

based on (a) group 1, (b) group 7 of the PLS model, and (c) external validation result of 479 

semi-external group 1-3 and external group 8 data using group 7, PLS model.  480 

External frequency spectral data under G1, G2, and G3 conditions were evaluated 481 

using G1 and G7, PLS models.  482 

◇◇◇◇: G1 semi-external data, △△△△: G2 semi-external data, and ▽▽▽▽: G3 data, ○○○○: G8 483 

external data.  484 

 485 

Figure 5.  Loading vectors for group 7 of the PLS model based on normalized frequency 486 

spectra of audible acoustic sound during the drying process of extruded granules in the 487 

fluid-bed dryer.  488 

 489 
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Figure 6.  Score plot of group 7, PLS model, based on normalized frequency spectra of 490 

audible acoustic sound during the drying process of extruded granules in the fluid-bed dryer.  491 

 492 

Figure 7.  Regression vector for group 7, PLS model, based on normalized frequency 493 

spectra of audible acoustic sound during the drying process of extruded granules in the 494 

fluid-bed dryer.  495 

Solid line is regression vector and gray line is frequency spectra of group 7.  496 

 497 

Figure 8.  External validation result of semi-external group 1-3, and external group 8 data 498 

using groups 1 and 7, PLS model.  499 

Closed circle is measured moisture under G1, G2, and G3 conditions, dashed line is 500 

predicted by individual best-fitted PLS model, and solid line is predicted based on G7 PLS 501 

model.  502 

 503 

Table 1.  Chemometric parameters for PLS calibration models based on audible acoustic 504 

sound during the drying process to predict moisture content.  505 

N, number of experiments; LV, latent variables; R2, coefficient of determination; PRESS, 506 

predicted residual error sum of squares; RMSEC, root mean square error for calibration; 507 

RMSEP, root mean square error for prediction; RMSECV, root mean square error for 508 

cross-validation; group 1: standard conditions (42˚C), group 2: including noise (vacuum 509 

cleaner, Japanese pop music), group 3: low-thermal air (27˚C), group 4: groups 1 + 2, 510 

group 5: groups 1 + 3, group 6: groups 2 + 3, groups 7: groups 1 + 2 + 3.  511 
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 512 

Table 2.  Validation result of semi-external group 1-3 and external group 8 data using G1 513 

or G7 PLS models.  514 

**, best-fitted, *, second best-fitted, and frequency spectra of the external granular samples 515 

obtained under G1, G2, and G3 conditions were evaluated using G1, G2, G3, and G7, PLS 516 

models.  517 

 518 

 519 

 520 
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