RSC Advances

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

Photocatalyzed one-pot synthesis of imine from benzyl alcohol and nitrobenbzene on the CdS-TiO $_2$ under visible-light irradiation

Graphical abstract

Cite this: DOI: 10.1039/c0xx00000x

ARTICLE TYPE

One-pot synthesis of imine from benzyl alcohol and nitrobenzene on visible-light responsive CdS-TiO₂ photocatalysts

Shinya Higashimoto,* ^a Yuta Nakai,^a Masashi Azuma^a, Masanari Takahashi^b and Yoshihisa Sakata^c

Received (in XXX, XXX) Xth XXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX

5 DOI: 10.1039/b00000x

The one-pot synthesis of imine (N-benzylideneaniline) from benzyl alcohol and nitrobenzene was studied on the CdS-TiO₂ photocatalyst under visible-light irradiation ($\lambda > 420$ nm) at 298 K. The photocatalytic activity strongly depends on the loadings of CdS on the TiO₂, and the preferable amount of CdS was 15 wt%. Photo-electrochemical investigations were also incorporated to demonstrate the reaction mechanism: the CdS is photosensitized by visible-light irradiation, and an effective hole-electron separation is generated in the hetero-

¹⁰ junction between CdS and TiO₂. It was also confirmed that the photocatalytic oxidation of benzyl alcohol proceeds over the CdS surface, while the hydrogenative reduction of nitrobenzene into aminobenzene proceeds over the TiO_2 surface. Moreover, the production of imine proceeded efficiently by the successive condensation of benzaldehyde and aminobenzene on the catalyst surface under dark conditions.

Introduction

- ¹⁵ The design and development of an effective photocatalyst to address such energy and environmental needs¹⁻⁶ as H₂ production by water splitting, the degradation of volatile organic compounds (VOC), and organic syntheses is strongly desired. In particular, the development of visible-light sensitive photocatalyst has been
- ²⁰ the focus of much attention since solar irradiation is unlimited and ca. 50 % which reaches the earth's surface is visible light. These reactions are induced by photo-excitation of the catalyst to produce charge carriers (holes and electrons) which participate in the oxidation and reduction of the substrates, respectively.
- ²⁵ The chemo-selective oxidation of organic compounds such as alcohols and amines into the corresponding carbonyl compounds and imines, respectively, is a fundamental but significant procedure with great potential in commercial applications^{7, 8}. In particular, imines are important intermediates for the synthesis of
- ³⁰ pharmaceutical and agricultural chemicals⁹, and they are utilized for the synthesis of secondary amines by hydrogenation¹⁰, in cycloaddition reactions¹¹ and biologically active substances such as antibiotics¹².

The selective photocatalytic formation of imines by the aerobic ³⁵ coupling of amines¹³⁻¹⁸ has been extensively studied not only on

- TiO₂^{13, 14} and Au/TiO₂¹⁵, but also on other semiconductive photocatalysts such as Nb₂O₅^{16, 17} and C₃N₄¹⁸ under UV and/or visible-light irradiation. These photocatalytic systems mainly have proceeded to form products at the oxidative sites, while H₂O
- $_{40}$ and/or $\rm H_2O_2$ are simultaneously formed as the $\rm O_2$ reductive products. However, the oxidation of amines by $\rm O_2$ sometimes causes over-oxidation of the products and/or side-products which could lead to catalyst deactivation.

Contrary to oxidation reactions, the hydrogenation of nitro-⁴⁵ compounds is also an important procedure in the formation of amines. Recently, the photocatalytic reduction of nitrobenzene ⁵⁵ using TiO₂^{19, 20} or Au/TiO₂²¹ photocatalysts in the presence of such sacrificial reagents as 2-propanol and oxalic acid has been reported. It was confirmed that nitrobenzene is reduced into aminobenzene with 6 electrons at the reductive sites, while 2propanol and oxalic acid are oxidized into acetone and CO₂, ⁶⁰ respectively, at the oxidative sites.

One-pot synthesis has been an efficient strategy in order to improve successive chemical reactions in just one reactor. This system can avoid the relatively long separation and purification processes of the intermediates. Several one-pot photocatalytic

65 syntheses of amines, imines, benzimidazoles, indazoles and azobenzenes in alcoholic suspensions of TiO₂ or CdS under UVlight irradiation have also been previously reported²²⁻²⁴.

Along these lines, we have developed an efficient photocatalytic system for the one-pot synthesis of imines from alcohols and 70 nitro-compounds under visible light irradiation. This catalytic system consists of three steps: 1) the oxidation of alcohol into aldehyde; 2) reduction of nitro-compounds into amine; and 3) successive condensation of aldehyde and amine to form imine. It is, thus, desirable that both photo-induced oxidative and reductive 75 products participate in further reactions to form more useful products.

Recently, the Pd-deposited CdS-TiO₂ photocatalyst was found to exhibit the selective dehydrogenation of aromatic alcohols into corresponding carbonyl compounds together with H₂ under ⁸⁰ visible-light irradiation ($\lambda > 420$ nm) at 298 K²⁵. It was clearly demonstrated that the charge carriers (holes and electrons) induced on the CdS-TiO₂ led to effective photocatalytic reactions under visible-light irradiation. This photocatalytic system has the advantage of preventing photo-dissociation of the CdS ⁸⁵ photocatalyst in the absence of O₂.

In this study, we have investigated the one-pot synthesis of imine from benzyl alcohol and nitrobenzene in an acetonitrile suspension with the CdS-TiO₂ photocatalyst and without the use of a precious metal co-catalyst under visible light irradiation ($\lambda >$ 90 420 nm) at 298 K. Here, we have studied the reaction mechanism

^a College of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan Fax: 81 6-6957 2135 Tel: 81 6 6954 4283; E-mail: <u>higashimoto@chem.oit.ac.jp</u>

^{50&}lt;sup>b</sup> Osaka Municipal Technical Research Institute, 1-6-50 Morinomiya, Joto-ku, Osaka 536-0025, Japan

^c Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai Ube 755-8611, Japan

through a combination of photo-electrochemical measurements.

This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry [year]

75

Experimental

Preparation of the photocatalysts

- Commercially available bulk TiO₂ (320 m² g⁻¹, ST-01, Ishihara Co., Ltd.) and CdS (Sigma Aldrich Japan), benzyl alcohol, ⁵ nitrobenzene, aminobenzene and N-benzylideneaniline, Cd(NO₃)₂ and Na₂S (Wako Pure Chemical Industries, Ltd.) were used as
- received. The CdS-supported TiO₂ (CdS-TiO₂) was prepared by
- impregnation of TiO₂ with aq. $Cd(NO_3)_2$ at the desired ¹⁰ concentrations. The precursors were dipped in aq. Na₂S involving the same amounts of S²⁻ ions with Cd²⁺ ions at 298 K for 48 h, followed by washing with water/acetonitrile several times and dried under vacuum for 24 h. The obtained sample was referred to as CdS (x wt%)-TiO₂, x: wt% as CdS.

15 Photocatalytic reactions

An acetonitrile solution (5.0 mL) of benzyl alcohol (150 μ mol) and nitrobenzene (50 μ mol) suspended with the photocatalyst (10 mg) was introduced in a pyrex cell under purging with N₂. It was then irradiated by blue LED lamps adjusted to 25000 Lux (λ_{max} =

20 460 nm, ca. 10 mW/cm²). After the reactions, the catalysts were immediately separated from the suspension by filtration through a 0.20-μm membrane filter (Dismic-25, Advantec). The solution was then analyzed by gas chromatography: GC-FID (Shimadzu GC-14A, capillary column: INERTCAP 1701).

25 Measurements of apparent quantum yields (AQY)

The AQY was measured in a quartz cell involving an acetonitrile solution (2 mL) of benzyl alcohol (150 μ mol) and nitrobenzene (50 μ mol) suspended with CdS(15 wt%)-TiO₂ (10 mg) using a 100 W Xenon lamp (Lax Cute II, Asahi Spectra Co., Ltd.)

 $_{30}$ through appropriate band path filters with a FWHM of 10 ± 2 nm. The AQY at each centered wavelength of light was calculated using the following equation (1), where the products represent the total amounts of benzaldehyde and N-benzylideneaniline:

AQY [%] =
$$\frac{(\text{amounts of product formed})}{(\text{amounts of photons irradiated})} \times 100$$

(eq. 1)

It was assumed that benzyl alcohol is converted into benzaldehyde through two electron-transfers by one photon due to the current doubling effect²⁶. The flux of incident photons was adjusted within a range of $7.61 \times 10^{18} \sim 1.10 \times 10^{19}$ photons h⁻¹, 40 measured using a power-meter (Ophir, ORION/PD).

Characterizations

35

UV-Vis spectroscopic measurements of the samples were carried out in diffused reflectance mode using a UV-Vis spectrophotometer (UV-3100PC, Shimadzu). Powder X-ray 45 diffraction (XRD) patterns were obtained with a RIGAKU RINT2000 diffractometer using Cu K_{α} radiation (λ =1.5417 Å). The amounts of Cd leached in the solution were analyzed by a multi-type ICP emission spectrometer (ICPE-9000, Shimadzu). The elemental composition of the photocatalysts was 50 characterized by scanning electron microscope (SEM) with energy dispersive X-ray (EDX) spectroscopy (JSM-6610, JEOL).

Photo-electrochemical measurements

The electrolysis cells separated by Nafion[®] (Aldrich) were filled ⁵⁵ with two types of electrolytes. The acetonitrile solutions involve 0.1 M LiClO₄ with 30 mM benzyl alcohol (A) and 10 mM nitrobenzene (B), as shown in Fig. 1. Two electrodes were connected to a Potentiostat/Galvanostat (HABF5001, HOKUTO DENKO). The TiO₂ film was prepared as follows: TiO₂ powder ⁶⁰ (2.85 g of Degussa P-25 and 0.15 g of ST-01) was well-dispersed ⁶¹ in 5 mL of aq. HNO₃ (pH 3) involving 0.3 g of polyethyleneglycol ($H_w = 20000$) and 0.3 mL of Toriton X-405, and the paste was then spread onto an ITO-glass electrode (10 $\Omega \cdot \text{cm}^{-2}$) by spin coating, followed by heat-treatment at 673 K for ⁶⁵ 1h in air. This process was repeated twice.

A Cd(OH)₂ film was electrochemically deposited onto the ITO at -1.0 V vs. Ag/AgCl with an electro-charge of 0.2 C·cm², followed by the reaction with 0.1 M Na₂S for 1 h at 298 K to form CdS. Details on the characterization of the CdS films have ⁷⁰ been previously reported²⁷.

⁸⁰ **Figure 1** Schematic illustration of the separated cells; the X electrode is illuminated by visible-light, while Y is placed under dark conditions.

Results and discussions

- ⁸⁵ The photocatalytic reaction of benzyl alcohol and nitrobenzene was performed on CdS-TiO₂ under visible light irradiation. It was confirmed that the reaction does not take place under visible light without the photocatalyst nor with the photocatalyst but without irradiation.
- ⁹⁰ Figure 2 shows the time profile for the synthesis of imine from benzyl alcohol and nitrobenzene on the CdS(15 wt%)-TiO₂ photocatalyst under visible light irradiation ($\lambda > 420$ nm). A decrease in the amount of benzyl alcohol and nitrobenzene was observed with an increase in the irradiation time, while an ⁹⁵ increase in the amount of benzaldehyde and aminobenzene was observed for up to 6 h. A decrease in the amount of benzaldehyde and aminobenzene was then observed, while the successive condensation of benzaldehyde and aminobenzene led to the

95

100

formation of N-benzylideneaniline. The carbon and nitrogen mass-balance were almost stoichiometric within 5% for each reaction time. This reaction exhibited a turnover number (TON), *i.e.*, the total number of photo-formed benzaldehyde and N-s benzylideneaniline per Cd atom for 24 h was determined to be ca.

14, indicating that this reaction system takes place photocatalytically. It should be noted that the concentration of Cd in the solution after the reaction was below the detection limit for ICP analysis (< 0.01 ppm), suggesting that the anodic phototo corrosion of CdS was successfully suppressed.

The dependence of the amount of CdS loaded on TiO_2 upon photocatalytic activity is shown in Fig. 3. Only traceable Nbenzylideneaniline was formed when both TiO_2 and CdS by themselves were applied as the photocatalyst. However, it was

¹⁵ observed that the photocatalytic activity increases with an increase in the amount of CdS up to 15 wt% and then decreases. These results indicate that the synergetic effects between TiO_2 and CdS play significant roles in the enhancement of the activity.

³⁵ **Figure 3** Effect of the amount of CdS (x wt%) on the photoformed N-benzylideneaniline. Reaction conditions: photocatalyst (10 mg), nitrobenzene (50 µmol), benzyl alcohol (150 µmol), blue LED ($\lambda_{max} = 460$ nm, 25000 lux), reaction time (24 h).

- ⁴⁰ In order to understand the role of the components of the photocatalyst, various examinations were carried out under visible light irradiation and the results are listed in Table 1. It was observed that the TiO_2 exhibited the formation of small amounts of benzaldehyde and aminobenzene, but only trace amounts of
- ⁴⁵ imine (Run 1), suggesting that the TiO₂ by itself does not exhibit significant photocatalytic reaction. On the other hand, CdS by itself showed photocatalytic activity for the formation of benzaldehyde and aminobenzene, while little formation of N-

50 Table 1. Reaction of benzyl alcohol and nitrobenzne on various photocatalysts under visible light irradiation.

		Time	Amounts / µmol		
Run	Photocatalyst ^[a]	/ h	Ph-	Ph-	Ph-C=N-
		/ 11	CHO	NH_2	Ph
1	TiO ₂	24	5.7	0.8	trace
2	CdS	12	51.3	10.0	trace
3	CdS	24	64.3	16.7	0.7
4	CdS(15 wt%)- TiO ₂	12	121.2	19.2	22.1
5	CdS(15 wt%)- $SiO_2^{[b]}$	12	16.8	1.8	trace

^[a] Reaction conditions: catalyst (10 mg); benzyl alcohol (150 μ mol), nitrobenzene (50 μ mol) in acetonitrile (5 mL). ^[b] SiO₂ (390 m²·g⁻¹, S5130-500G, Aldrich)

benzylideneaniline was observed (Runs 2, 3). Moreover, CdS (15 st wt%)-TiO₂ was found to improve the activity, accompanied by the formation of N-benzylideneaniline (Run 4). It was also observed that the activity of the CdS(15 wt%)-supported SiO₂ was much lower than that of the CdS (15 wt%)-TiO₂ (Run 5). These results indicate that CdS works as the photo-sensitizer, and 60 the TiO₂ surface plays a significant role in the enhancement of

the activity for the production of N-benzylideneaniline. Table 2 shows the results of the condensation of benzaldehyde and aminobenzene under dark conditions. This reaction proceeds even in the absence of catalysts under dark conditions. The activity remarkably increases in the presence of the active surfaces of CdS, TiO₂ and CdS(15 wt%)-TiO₂. Therefore, the production of N-benzylideneaniline was confirmed to proceed efficiently by the successive condensation of the photo-produced benzaldehyde and aminobenzene on the catalyst surface under dark conditions. It should be noted that the photocatalytic activity for the synthesis of imine on the CdS surface is quite low, as shown in Table 1 (Runs 2, 3) in spite of the high activity for condensation on the CdS surface. This is probably due to the blocking effect of the active sites for condensation reactions by 75 the reactants and/or intermediates during the reaction.

 Table 2.
 Reactions of benzaldehyde and aminobenzene on various catalysts under dark conditions.

Run	Catalyst ^[a]		Amounts / µmol	
		Time / h -	N-benzylideneaniline	
1	-	24	25.8	
2	CdS	24	42.5	
3	TiO ₂	24	42.8	
4	CdS(15 wt%)-TiO2	24	43.4	

[a] Reaction conditions: catalyst (10 mg); benzaldehyde (150 μmol), aminobenzene
 80 (50 μmol) in acetonitrile (5 mL).

The characterization of the CdS(15 wt%)-TiO₂ photocatalyst was performed by XRD, SEM-EDX and UV-Vis spectroscopies. The XRD patterns of TiO₂, CdS(15 wt%)-TiO₂ and CdS are ss hown in Fig. 4. CdS(15 wt%)-TiO₂ is observed to involve CdS with a cubic structure and TiO₂ with an anatase structure. By the Scherer equation, the crystal size of TiO₂ and CdS were estimated to be ca. 7.5 and 3.6 nm, respectively.

Figure 4 XRD patterns of (a) TiO_2 , (b) CdS(15 wt%)- TiO_2 and ¹⁰⁵ (c) CdS.

Figure 5 [I] and [II] show the SEM photograph and distributions of Ti, O, Cd, and S elements obtained by EDX analysis, respectively, on CdS(15 wt%)-TiO₂. The red and white ¹¹⁰ colors represent the high concentration of the corresponding elements in Fig. 5 [II]. It was observed that the elements of Cd and S are randomly dispersed at locations of low Ti and O

45

concentrations, and the ratio of S/Cd was ca 1.0. These results indicate that stoichiometric but partially aggregated CdS species with an island structure is formed on the TiO_2 surface. Therefore, such reactants as benzyl alcohol and nitrobenzene can interact not s only with the TiO_2 but also CdS surface on the CdS(15 wt%)-

TiO₂ photocatalyst. Figure 6 shows the UV-Vis spectra of CdS(15 wt%)-TiO₂ (a) together with the pure TiO₂ (b) and CdS (c). It was observed that the TiO₂ exhibits a direct band-gap excitation under UV-light irrediction. However, the CdS (15 wt%) TiO₂ relates that

- ¹⁰ irradiation. However, the CdS (15 wt%)-TiO₂ photocatalyst exhibits visible-light absorption above 400 nm almost identical to absorption of the pure CdS. It was observed that the absorption edges of all CdS-TiO₂ photocatalysts are identical. These results indicate that polycrystalline CdS is formed on the TiO₂. The ¹⁵ relationship between the photocatalytic activity as apparent
- quantum yields (AQY) and the wavelength of the irradiated light was then examined in order to identify the photo-responsible center. The AQY at various wavelengths of irradiated light on

Figure 5 SEM image [I], and elemental mappings [II] (a) Ti, (b) O, (c) Cd and (d) S of the CdS (15 wt%)-TiO₂.

⁶⁰ Figure 6 UV-Vis spectra of: (a) CdS(15 wt%)-TiO₂, (b) TiO₂,
 (c) CdS and (d) AQY plots for the formation of benzaldehyde and N-benzylideneaniline in total.

CdS(15 wt%)-TiO₂ is also shown in Fig. 6. The AQY were determined as follows: 17.3% at 480 nm, 8.7% at 540 nm, and ca. 65 1.5% at 600 nm. The AQY plots form the action spectrum for the photocatalytic reaction on CdS(15 wt%)-TiO₂. These results show that the action spectrum is in good agreement with the photo-absorption of CdS(15 wt%)-TiO₂. It could, thus, be concluded that the CdS on the TiO₂ works as the photo-70 responsible center for the visible-light induced photocatalytic dehydrogenation of benzyl alcohol.

The photocatalytic activity for the reaction of (a) normal benzyl alcohol and (b) α , α -d₂ benzyl alcohol with nitrobenzene is shown in Fig. 7 [I]. It was observed that the photocatalytic 75 activity of normal benzyl alcohol with nitrobenzene was much higher than that of α , α -d₂ benzyl alcohol. The reaction rate constants of $k_{\rm H}$ and $k_{\rm D}$ for (a) and (b), respectively, in Fig. 7 [I] have been evaluated from the first-order rate law in equation (2).

$$k t = \ln\left[\frac{a}{(a-x)}\right]$$
 (eq. 2)

⁸⁰ Equation (2) shows that when ln [*a* / (*a* - *x*)] is plotted against *t*, the first-order reaction gives a straight line for slope *k*. Here, the amount of added benzyl alcohol and photo-formed products (benzaldehyde and N-benzylideneaniline in total) are defined as *a* and *x*, respectively. The reaction rate constants for normal benzyl ⁸⁵ alcohol and α, α-d₂ benzyl alcohol were roughly estimated to be $8.94 \times 10^{-5} \text{ s}^{-1}$ and $3.43 \times 10^{-5} \text{ s}^{-1}$ for (c) and (d), respectively (cf. Fig. 7 [II]). The ratio of the reaction rates (*k*_H/*k*_D) was, therefore, estimated to be ca. 2.6. The first order isotope effect shows that the C-D bond is cleaved more slowly than the C-H bond. It ⁹⁰ should be noted that the value of *k*_{C-H}/*k*_{C-D} is theoretically ≈ 8 when the C-H bond is completely cleaved at the transitional state. Here, from the value of *k*_{C-H}/*k*_{C-D} at ≈ 2.6, the kinetic isotope effect shows that an abstraction of the α-hydrogen atom from the

Figure 7 Time profile for the photocatalytic reaction of (a) ¹²⁰ normal benzyl alcohol and (b) α , α -d₂ benzyl alcohol with nitrobenzene on CdS(15 wt%)-TiO₂ under visible-light irradiation [I], and the plots for ln [a/(a-x)] against the time [II] for (c) normal benzyl alcohol and (d) α , α -d₂ benzyl alcohol.

-CH₂OH group is a rate-determining step while the C-H bond is partially left in the transitional state.

- In order to understand the reaction mechanism for the photocatalytic reaction, a photo-electrochemical technique was 5 incorporated. We fabricated the photo-electrochemical cell, *i.e.*, the electrodes X and Y participate in the oxidation of benzyl alcohol under visible-light irradiation, and the reduction of nitrobenzene under dark conditions, respectively, as shown in Fig. 1. It should be noted that the influence of the chemical bias can
- ¹⁰ be ignored since the pH of the electrolytes A and B are 5.8 and 6.0, respectively. Several types of controlled experiments were carried out under no bias and the results are shown in Fig. 8. First, when the TiO_2 electrode for X, and TiO_2 or CdS for Y were used, they exhibited little photocurrent. These results indicate that TiO_2
- ¹⁵ in itself is not sensitized by visible-light irradiation. When the CdS electrodes for X and Y were used, respectively, it exhibited stable photocurrent (i). That is, CdS induces the photo-oxidation of benzyl alcohol at the X, while the photo-formed electrons reduce nitrobenzene at the Y. Moreover, when Y involved the
- ²⁰ TiO₂ film instead of CdS, the photocurrent (ii) was significantly enhanced five times higher than (i). This is because the conduction band of CdS is more cathodic than that of TiO_2^{28} , and the photo-induced electrons on the CdS electrode effectively transfer into the TiO₂.
- ²⁵ When the uptakes in a mixture of benzyl alcohol and benzaldehyde (150 μ mol for each) on CdS (15 wt%)-TiO₂ (10 mg) were investigated, the amount of benzaldehyde adsorbed on the photocatalyst was negligible compared to that of benzyl alcohol (ca. 30 μ mol). These results indicate that the interaction
- $_{30}$ between benzaldehyde and TiO₂ is fairly weak. Therefore, once benzaldehyde is produced by the oxidation of benzyl alcohol, it is immediately released into the bulk solution. This may be one of the reasons benzaldehyde is selectively formed and not oxidized further to benzoic acid or CO₂. Moreover, it was confirmed that
- ³⁵ photo-formed aminobenzene is rarely oxidized on the CdS(15 wt%)-TiO₂ surface in the absence of O₂ under visible-light irradiation. From these results, a possible mechanism for imine synthesis on the CdS-TiO₂ is shown in Fig. 9. The CdS is photosensitized under visible-light irradiation, and an effective
- $_{40}$ hole-electron separation is generated in the hetero-junction between CdS and TiO₂. The photo-induced holes participate in the oxidation of three benzyl alcohol molecules into three benzaldehyde molecules. On the other hand, the reaction of 6 electrons left in the TiO₂ together with 6 protons with one
- ⁴⁵ nitrobenzene molecule will afford one aniline molecule on the TiO_2 surface since the reductive potential of nitrobenzene (+0.16 V vs. SHE) is more anodic than that of the conduction band (CB) of TiO_2 (-0.18 V vs. SHE)^{28, 29}. These reactions consecutively

Figure 8 Photocurrent under zero bias on two types of configurated electrodes: (i) X: CdS, Y:CdS and (ii) X: CdS, Y: ⁶⁵ TiO₂, respectively

proceed by way of the formation of a as a minor species only at the initial reaction time. Furthermore, N-benzylideneaniline is readily formed by the successive reaction of aminobenzene and benzaldehyde on the catalyst surface under dark conditions.

Figure 9 Schematics for the one-pot synthesis of imine from benzyl alcohol and nitrobenzene on the CdS-TiO₂ photocatalyst.

Conclusions

85 The photocatalytic synthesis of imine (N-benzylideneaniline) from benzyl alcohol and nitrobenzene was successfully demonstrated on the CdS-TiO₂ photocatalyst by a one-pot method at 298 K under visible-light irradiation. The photocatalytic activity strongly depends on the loadings of CdS on the TiO₂, and 90 the amount of CdS was optimized to be 15 wt%. CdS particles with an island structure were found to form on the TiO₂. Photoelectrochemical investigations were also incorporated to demonstrate the reaction mechanism, i.e., that the photooxidation of benzyl alcohol into benzaldehyde on the CdS and 95 reduction of nitrobenzene into aminobenzene on the TiO₂ surface takes place efficiently. The process for abstraction of α -hydrogen of the benzyl alcohol was found to be the rate-determining step. Moreover, the successive condensation of the photo-produced benzaldehyde and aminobenzene into N-benzylideneaniline was 100 found to take place on the catalyst surface under dark conditions. This work is the first to achieve the one-pot synthesis of imine from benzyl alcohol and nitrobenzene on the visible-light sensitive CdS-TiO₂ photocatalyst without the use of any precious metals as a co-catalyst at 298 K. Both oxidative and reductive 105 products formed in the photocatalytic reaction here participated in the formation of useful products, leading to a new strategy for

Notes and references

- 1 A. Fujishima, T. N. Rao, D. A. Tryk, J. Photochem. Photobiol. C: Photochem. Rev. 2000, 1, 1.
 - 2 S. Sato, J. M. White, J. Catal. 1981, 69, 128.

photocatalysis-based one-pot organic synthesis.

- 3 M. Grätzel, J. Photochem. Photobiol. C: Photochem. Rev. 2003, 4, 145.
- 4 M. A. Fox, M. T. Dulay, Chem. Rev. 1993, 93, 341.
- 115 5 Y. Shiraishi, T. Hirai, J. Photochem. Photobiol., C: Photochem. Rev. 2008, 9, 157.

- 6 G. Palmisano, E. García-López, G. Marcì, V. Loddo, S. Yurdakal, V. Augugliaro, L. Palmisano, *Chem. Commun.* 2010, 46, 7074.
- 7 G.J. Brink, I.W.C.E. Arends, R.A. Sheldon, Science 2000, 287, 1636.
- 8 T. Mallat, A. Baiker, Chem. Rev. 2004, **104**, 3037.
- 5 9 S. F. Martin, Pure Appl. Chem., 2009, 81, 195; W. Tang, X. Zhang, Chem. Rev., 2003, 103, 3029.
- 10 Y. Q. Cao, Z. Dai, B. H. Chen, R. Liu, J. Chem. Technol. Biotechnol., 2005, 80, 834.
- 11 M. M. A. R. Moustafa, B. L. Pagenkopf, Org. Lett., 2010, **12**, 4732.
- ¹⁰ 12 M. M. Hania, E. J. Chem., 2009, **6**, 629.
 - 13 X. Lang, W. Ma, Y. Zhao, C. Chen, H. Ji, J. Zhao, *Chem. Eur. J.* 2012, **18**, 2624.
 - 14 S. Higashimoto, Y. Hatada, R. Ishikawa, M. Azuma, Y. Sakata, H. Kobayashi, Curr. Org. Chem. 2013, 17, 2374.
- 15 15 S. Naya, K. Kimura, H. Tada, ACS Catal. 2013, 3, 10.
 - 16 S. Furukawa.; Y. Ohno; T. Shishido; K. Teramura.; T. Tanaka, ACS Catal. 2011, 1, 1150.
 - 17 S. Furukawa.; Y. Ohno; T. Shishido; K. Teramura.; T. Tanaka, J. Phys. Chem. C 2013, 117, 442.
- 20 18 F. Su, S. C. Mathew, L. Möhlmann, M. Antonietti, X. Wang, S. Blechert, Angew. Chem. Int. Ed. 2011, 50, 657.
 - H. Kominami, S. Iwasaki, T. Maeda, K. Imamura, K. Hashimoto, Y. Kera, B. Ohtani, *Chem. Lett.* 2009, 38, 410.
- 20 Y. Shiraishi, Y. Togawa, D. Tsukamoto, S. Tanaka, T. Hirai, ACS 25 Catal. 2012, **2**, 2475.
- 21 A. Tanaka, Y. Nishino, S. Sakaguchi, T. Yoshikawa, K. Imamura, K. Hashimoto, H. Kominami, *Chem. Commun.* 2013, **49**, 2551.
- 22 B. Ohtani, Catal. Surv. Asia 2003, 7, 165.
- 23 Y. Shiraishi, M. Ikeda, D. Tsukamoto, S. Tanaka, T. Hirai, *Chem. Commun.* 2011, **47**, 4811.
- 24 Y. Shiraishi, Y. Sugano, S. Tsukamoto, T. Hirai, Angew. Chem. Int. Ed. 2010, 49, 1656.
- 25 S. Higashimoto, Y. Tanaka, R. Ishikawa, S. Hasegawa, M. Azuma, H. Ohue, Y. Sakata, *Catal. Sci. Technol.* 2013, 3, 400.
- ³⁵ 26 Y. Ohko, D. A. Tryk, K. Hashimoto, A. Fujishima, *J. Phys. Chem. B* 1998, **102**, 2699; A. Sclafani, L. Palmisano, M. Schiavello, *J. Phys. Chem.* 1990, **94**, 829; M. R. Hoffmann, S. T. Martin, W. Choi, W. Bahnemann, *Chem. Rev.* 1995, **95**, 69.
- S. Higashimoto, K. Kawamoto, H. Hirai, M. Azuma, A. Ebrahimi, M.
 Matsuoka, M. Takahashi, *Electrochem. Commun.* 2012, 20, 36.
- 28 L. -J. Fan, C. Wang, S. Chang, Y. Yang, J. Electroanal. Chem. 1999, 477, 111.
- 29 S. Higashimoto, M. Azuma, Appl. Cataly. B, Env. 2009, 89, 557.