

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

1	Nanosheet-based 3D hierarchical ZnO structure decorated
2	with Au nanoparticle for enhanced electrochemical detection
3	of dopamine
4	Linxia Fang ^{a,b} , Kejing Huang ^b , Baoling Zhang ^a , Bing Liu ^b , Yujie Liu ^b , Qiuyu Zhang ^{a,*}
5	^a Department of Applied Chemistry, School of Science, Northwestern Polytechnical University,
6	710072 Xi'an, China
7	^b College of Chemistry and Chemical Engineering, Xinyang Normal University, 464000
8	Xinyang ,China
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	

^{*} Corresponding author. Tel: +86 13152160629 E-mail address: qyzhang@nwpu.edu.cn

RSC Advances Accepted Manuscript

21 Abstract: The biocompatible Au-ZnO nanocomposite was used to fabricate a 22 sensitive sensor for the detection of dopamine (DA). High-density Au nanoparticles (AuNPs) were homogeneously loaded onto nanosheet-based three-dimensionally (3D) 23 24 hierarchical ZnO matrix. High special surface area of nanosheet-based three-dimensionally (3D) hierarchical ZnO favored the high density load of AuNPs. 25 26 which helped efficiently catalyze the oxidation of DA. The Au-ZnO nanocomposite 27 was characterized by scanning electron microscopy (SEM), energy dispersive 28 spectrometer (EDS), transmission electron microscopy (TEM), X-ray powder 29 diffraction (XRD) and electrochemical impedance spectroscopy (EIS). The electrocatalytic activity toward the oxidation of dopamine was investigated by cyclic 30 31 voltammetry (CV) and differential pulse voltammetry (DPV). The sensors exhibited 32 sensitive responses to DA with a linear range of 0.1-300 μ M and a detection limit of 33 0.02μ M based on S/N = 3. The good analytical performance and long-term stability of the proposed sensor can be attributed to the synergistic effect of the 34 nanosheet-based ZnO structure and gold nanoparticles on the electrochemical 35 oxidation of dopamine. 36 Keywords: nanosheet-based; 3D hierarchical ZnO; sensor; dopamine 37 1. Introduction 38

Dopamine (DA) is an important neurotransmitter that belongs to the catecholamines group and has a great influence on the central nervous, renal, hormonal and cardiovascular systems [1, 2]. Abnormal levels of dopamine may result in a variety of diseases, such as Schizophrenia, Huntington's disease, Parkinson's disease, and dementia among many others [3]. As a result, detecting and monitoring

44	the concentration of DA play an important role in disease diagnosis. Many analytical
45	methods based on different principles, including gas chromatography coupled to mass
46	spectrometry (GC-MS)[4], ultra-high performance liquid chromatography coupled to
47	mass spectrometry (UHPLC-MS/MS)[5] and spectrophotometry[6] have been
48	developed for detection of DA and showed a low detection limit, high sensitivity and
49	selectivity. However, they are probably unsuitable for routine analysis because of
50	large-scale expensive instrument, troublesome and time-consuming pretreatment, the
51	use of large quantity of solvent.

The fact that DA is electrochemically active (oxidizable) allows electrochemical 52 techniques to be employed for the detection of DA levels. Electrochemical analytical 53 technique for DA determination is a good alternative due to low cost, easy operation, 54 55 fast response, high sensitivity and environmental friendliness [7-10]. However, uric acid (UA) and ascorbic acid (AA) are coexisted with dopamine in the extracellular 56 fluids of the central nervous system in mammals. These electroactive biomolecules 57 will interfere with normal signals of DA unavoidably because they can be oxidized at 58 potentials close to that of dopamine at the most commonly used solid electrodes [11]. 59 Obviously, it is necessary to develop selective and sensitive techniques to resolve 60 61 these problems. Although, various modified electrodes have been employed to enhance the voltammetric selectivity and sensitivity towards dopamine determination 62 [12-16], it is still attractive to develop novel materials for sensitive determination of 63 DA in the electrochemical field. 64

RSC Advances Accepted Manuscript

ZnO is a versatile n-type metal oxide semiconductor material with a direct wide

RSC Advances Accepted Manuscript

66 band gap (3.37 eV) and large exciton binding energy (60 meV) at room temperature. It has been extensively used in the fabrication of electrical, optical and photovoltaic 67 devices, heterogeneous catalysis, storage media, gas sensing and field-emission (FE) 68 emitters [17-22]. Furthermore, due to its good biocompatibility, notoxity and 69 inexpensiveness. ZnO has been widely used in the fabrication of electrochemical 70 71 biosensors [23-28]. In these biosensors, ZnO was employed as support matrix on the 72 modified electrodes for electrocatalysis of various bimolecular, which can facilitate 73 the direct electron transfer and enhance the catalytic activity. 74 Considering its wide applications, various ZnO nanostructures including wires, rods, tubes, hollow nanospheres, etc. have been prepared during the past few years 75 [29]. Among various shapes of nanomaterials, nanosheet has attracted intensive 76 77 interests as sheet-like materials with predominantly exposed crystal facets may exhibit

improved catalytic performance over their wire-like or spherical structures due to
their high surface-to-volume ratio [30, 31]. 3D hierarchical ZnO structure is a very
promising sensing material because of its advantageous features including low density,
high surface area, nanosheet structure and good permeability.

Moreover, in order to increase the current response of the modified sensor, composite metallic nanoparticles with substrates have attracted much interest in the construction of electrochemical sensors. Among the metallic nanoparticles, gold nanoparticles are widely used in electrochemistry because of their biocompatibility, large specific surface area, high surface free energy and suitability for constructing electrochemical biosensors [32, 33]. Biosensors constructed with AuNPs have been

applied to determine various electroactive molecules, such as dopamine (DA) [34, 35],
uric acid (2, 6, 8-trihydroxypurine, UA) [36], ascorbic acid (AA) [37, 38], guanine (G)
and adenine (A) [39]. Unfortunately, most of the AuNPs immobilization matrices
obtained thus far showed limited responses to the target molecules [40, 41].
Furthermore, AuNPs are fixed on the matrix surface or deposited into it in a 2D
distribution, which produce poor responses to target molecules due to lower AuNPs
surface areas.

95 In this work, 3D hierarchical ZnO crystals were prepared by a simple hydrolysis method, and then Au-ZnO nanocomposite was synthesized by employing ZnO as a 96 matrix upon which AuNPs were formed via in situ reduction of HAuCl₄. A novel 97 electrochemical sensing platform for sensitive detection of DA was constructed by 98 99 casting Au-ZnO composites on glassy carbon electrode (GCE). Taking advantages of 100 high surface area of nanosheet-based hierarchical ZnO crystals and the high-density 101 conducting AuNPs, this electrochemical sensor showed a low detection limit and wide 102 linear range, and it had been applied for assay of DA in human urine samples with 103 satisfactory results.

104 2. Experimental

105 2.1. Reagents and materials

106 Chloroauric acid tetrahydrate (HAuCl₄ • 4H₂O), trisodium citrate, ascorbic acid
107 (AA) and uric acid (UA) were purchased from Shanghai Chemical Reagent Co., Ltd.
108 (Shanghai, China). Dopamine (DA) was purchased from Sigma-Aldrich (USA).
109 Human urine sample was provided by volunteer. Other chemicals used were of

RSC Advances Accepted Manuscript

110 analytical grade and purchased from China National Pharmaceutical Industry Corporation Ltd. Phosphate buffer solution (PBS, 0.1 M, pH 7.0) was prepared from 111 112 NaH₂PO₄ and Na₂HPO₄. All aqueous solutions were prepared with pure water 113 obtained from a Milli-Q Plus system (Millipore). 2.2. Preparation of nanosheet-based ZnO porous microspheres 114 115 The preparation and the growth mechanism of nanosheet-based

116 three-dimensionally (3D) hierarchical ZnO have been demonstrated in our previous 117 work [42]. In a typical synthesis, an equimolar ratio of zinc acetate dihydrate (25 mM) 118 and hexamine (HMTA) (25 mM) was dissolved into 50 mL of deionized water with subsequent addition of trisodium citrate (5 mM), followed by stirring at room 119 temperature for 20 min. The final mixture was transferred to a 100 mL 120 Teflon-stainless beaker for hydrolysis reaction at 90 $^{\circ}$ C in an oven for 6 h. After 121 122 completion of the reaction, cooling to room temperature naturally, the resulting white 123 precipitate was collected by centrifugation and purified by washing with deionized 124 water and absolute ethanol several times and dried at 60 $\,^{\circ}C$ for 24 h.

125 2.3. Preparation of Au-ZnO nanocomposite

The prepared three-dimensionally (3D) hierarchical ZnO was dispersed into 10 mL water by ultrasonication. Then, 140 μ L freshly prepared HAuCl₄·4H₂O aqueous solution (30 mM) was added into the dispersion by stirring. Subsequently, 0.25 mL of sodium borohydride (NaBH₄) aqueous solution (0.2 M) was added drop by drop into the mixture solution with vigorous stirring at room temperature for 30 min. Finally, the products were collected by centrifugation and were washed with water and

132	absolute ethanol several times to produce Au dotted nanosheet-based hierarchical ZnO
133	(Au-ZnO nanocomposite). The precipitate was redispersed by 1 mL water and stored
134	at 4 °C in a refrigerator when not in use.

135 2.4. Preparation of modified electrode

Prior to electrode modification the GCE was polished with 0.05 µm alumina slurry and Buehler polishing cloth. It was then washed with water and ultrasonicated for 3 min each in water and ethanol to remove any adsorbed alumina particles or dirt from the electrode surface and finally dried in nitrogen airflow. 5 µL of Au-ZnO water dispersion was drop casted onto the pre-cleaned GCE and dried at room temperature. For comparison, ZnO/GCE was prepared by adopting the similar procedures and used for further investigation.

143 2.5. Instruments and measurements

High-resolution transmission electron microscopy (HRTEM) and scanning 144 electron microscopy (SEM) images were obtained by employing a JEOL 2100F 145 microscope, and a Hitachi S4800 scanning electron microscope (SEM). X-ray powder 146 147 diffraction (XRD) pattern was operated on a Japan RigakuD/Maxr-A X-ray diffractometer equipped with graphite monochromatized high-intensity Cu Ka 148 149 radiation ($\lambda = 1.54178$ Å). The pH measurements were made with a pH meter Leici 150 Devices Factory of Shanghai, China. All electrochemical experiments were carried out on a CHI 660D Electrochemical Workstation (Shanghai, CH Instruments, China) 151 152 with a conventional three-electrode system composed of a platinum wire electrode as the auxiliary electrode, a saturated calomel electrode (SCE) as the reference electrode 153

154	and a modified GCE (3.0 mm in diameter) as the working electrode. All of the
155	potentials in this article were with respect to SCE. Cyclic voltammetry (CV) method
156	was performed in the potential range from -0.2 to +0.8 V at a scan rate of 100 mV s ⁻¹ .
157	Differential pulse voltammetry (DPV) measurement was performed in the scan range
158	from -0.2 to +0.6 V, with the pulse amplitude of 50 mV, pulse width of 50 ms and
159	pulse period of 0.2 s. Electrochemical impedance spectroscopy (EIS) experiment was
160	carried out in a 10.0 mL aqueous solution containing 5 mM of $[Fe(CN)_6]^{3-/4-}$ and 0.1
161	M of KCl at a potential of 0.2 V over the frequency range from 0.1 Hz to 100 kHz,
162	using an amplitude of 5 mV. Every experiment was parallel performed three times
163	(<i>n</i> =3).

164 **3. Results and discussions**

165 **3.1. Characterization of Au-ZnO nanocomposite**

The surface morphologies of the ZnO and Au-ZnO nanocomposite were examined
by SEM, as shown in Fig. 1. The low magnification SEM image of the prepared ZnO,
as shown in Fig. 1a, featured nanosheet-based microsphere structure and a good
dispersion with an average diameter of about 2-3 μm. From the high magnification

170

Fig. 1

SEM image, the microsphere is built up of nanosheet with the thickness of several nanometers as depicted in Fig. 1b. Fig. 1c shows a typical SEM image of Au-ZnO nanocomposite. It is can be seen that a high coverage of AuNPs deposited on the surface of ZnO nanosheet which leaded to the porosity degrade and the surface illegible. The Energy Dispersive Spectrometer (EDS) of the Au-ZnO nanohybride is

shown in Fig. 1 d. The data supports the in situ formation of AuNPs on the surfaces ofZnO nanosheet.

TEM and HRTEM were performed to further reveal the morphology of Au-ZnO 178 179 nanocomposite. Fig.1e shows HRTEM image of Au-ZnO nanocomposite, revealing 180 the distinct crystal lattic of AuNPs. It could also be seen from TEM image of Au-ZnO 181 nanocomposite shown in the inset of Fig.1e that the individual torispherical AuNPs 182 with diameters of 5-10 nm are dispersed on the surface of ZnO nanosheet. Large 183 specific surface areas of the 3D nanosheet-based porous ZnO hierarchical structure, 184 combining with specific electronic and catalytic properties of AuNPs, could be a good candidate for electrochemical sensor construction. 185

Fig. 1f shows the XRD patterns of ZnO (curve a) and Au-ZnO nanocomposite (curve b). The major diffraction peaks shown in curve a can be indexed to a phase from crystalline ZnO based on the data from the JCPDS file (21-1486). The three additional peaks locating at 38.16°, 44.51° and 64.54° in curve b are assigned to (111), (200) and (220) planes reflection of AuNPs (JCPDS Card No. 65-2870), which proves the formation of crystalline AuNPs on the ZnO microspheres. These results are in good agreement with the data from the EDS.

EIS was employed to study the interfacial electron-transfer resistance (R*ct*) at the modified electrodes. The Nyquist plots of the bare GCE, ZnO/GCE and Au-ZnO/GCE in the presence of redox probe $[Fe(CN)_6]^{4-/3-}$ are shown in Fig. 2. The Nyquist plot of EIS includes a semicircle portion at high frequencies corresponding to the electron-transfer-limited process and a linear part at low frequency range

RSC Advances Accepted Manuscript

198

Fig. 2

199 representing the diffusion-limited process. The diameter of semicircle portion is equal 200 to the electron transfer resistance (Rct). The impedance of the sensing system can be 201 roughly modeld by the Randles equivalent circuit, as shown in Fig. 2 (inset A). As 202 shown, there is a very small semicircle domain in the Nyquist plot of EIS on the bare 203 GCE (curve a), implying a very low electron transfer resistance to the redox-probe 204 dissolved in the electrolyte solution. EIS of ZnO (curve c) exhibits an enlarged 205 semicircle representing a bigger Rct. This result suggests that a layer of ZnO film has 206 formed on the surface of GCE, and hinder the charge transfer from the redox probe of $[Fe(CN)_6]^{3-/4-}$ to the GCE surface due to the poor conductivity of ZnO. However, in 207 the case of Au-ZnO/GCE (curve b), the diameter of the semicircle was observed to 208 209 decrease obviously in comparison with ZnO/GCE. This phenomenon implies that 210 AuNPs were successfully introduced onto the surface of ZnO, and the existence of 211 AuNPs could improve electrical conductivity and accelerate the electron transfer rate.

3.2. Electrochemical behavior of DA at the modified electrodes

In order to verify the electrocatalytic activity of the Au-ZnO/GCE toward the oxidation of DA, CV scan was carried in the absence or presence of DA. Fig. 3 shows CVs of Au-ZnO/GCE whiout DA (a) and ZnO/GCE (b), GCE (c), Au-ZnO/GCE (d) for 50 μ M DA in 0.1 M phosphate buffer solution (PBS, pH 7.0). It is clear that in the absence of DA, no oxidation response can be seen on the Au-ZnO/GCE. Upon adding 50 μ M DA, the bare GCE shows a couple of redox peak with a peak-to-peak (Δ Ep) of 205 mV. By comparison, the ZnO/GCE gave a

relatively small redox current and a big peak potentials separation ($\triangle Ep=302mV$)

- 221 Fig. 3
- 222 than those recorded at the bare GCE. However, at the Au-ZnO/GCE, the redox currents was greatly enhanced and peak potentials separation ($\Delta Ep=152 \text{ mV}$) was 223 greatly reduced with a well-defined and stable redox wave, indicating its high 224 225 electrocatalytic activity. These results were consistent with that of EIS, which proved 226 this well-defined Au-ZnO film possessed the requisite surface structure and electronic 227 properties to support rapid electron transfer for this sensing system. The 228 nanocomposite could offer effective sensing platform for the sensitive electrochemical determination of DA. 229
- 230 **3.3. Effect of pH**

231 To optimize the determination conditions of DA, the effects of pH value on the 232 electrochemical response of DA at the Au-ZnO/GCE was studied by cyclic 233 voltammetry in 0.1 M PBS with the pH range of 5.0-9.0. As shown in Fig. 4A, the 234 CVs of DA at the HAu-G/GCE show a strong dependence on the pH values of 235 solutions. It is observed that the anodic peak current increased with increasing pH 236 value until it reached 7.0; however, the anodic peak current decreased remarkably 237 when the pH was greater than 7.0 (Fig. 4B). Therefore, the PBS of pH 7.0 was 238 selected as the electrolyte in the following experiments.

239

Fig. 4

In addition, Fig. 4A also shows the relationship between the peak potentials of DAand the pH values. It can be found that peak potential shifted toward negative values

242	when the pH values increased from 5.0 to 9.0, indicating that protons participate in
243	the electrode reaction. The formal potential (E^{θ}) , defined as $(E_{pa} + E_{pc})/2$, is
244	proportional to the pH (Fig. 4B). The linear regression equation is $E^{\theta}\left(V\right)$ = 0.42 -
245	0.04 pH with a correlation coefficient of $R^2 = 0.997$.
246	3.4. Effect of scan rate
247	The effect of scan rate on the anodic peak current (Ipa) of DA was studied by cyclic
248	voltammetry (CV). Fig. 5 shows the CVs of the Au-ZnO/GCE in 0.1 M PBS solutions
249	containing 50 μM DA at different scan rates. With the scan rate increasing, the anodic
250	peak current (I _{pa}) of Au-ZnO/GCE in the DA solution increased. Good linearity
251	Fig. 5
252	between the scan rate and the peak current is obtained within the range from 10 to 700
253	mVs ⁻¹ (inset of Fig. 5), suggesting an adsorption-controlled reaction process of DA on
254	the modified electrode surface. In addition, the oxidation peak potential (Ep, V) shifts
255	positively with increasing v, revealing an irreversible oxidation process of DA.
256	3.5. Electrochemical detection of DA
257	Fig. 6 shows the DPVs obtained at Au-ZnO/GCE for the concentrations of DA
258	ranging from 0.1 μ M to 300 μ M in pH 7.0. The corresponding graph of anodic peak
259	Fig. 6
260	current versus concentration of DA shows linear relationship. The correlation
261	coefficient for the linearity was 0.9983 for the Au-ZnO/GCE, as shown in inset of Fig.
262	5. The limit of detection (LOD) is calculated to be 0.02 μM based on the
263	signal-to-noise ratio of 3. (S/N= 3). Compared with the analytical data in literatures,

284

285

RSC Advances

264	the fabricated electrochemical sensor was more comparable and exhibited a relatively
265	lower detection limit (listed in Table 1).
266	Table 1
267	UA is the most important interference for electrochemical detection of DA. The
268	selective detection and determination of DA in the presence of higher concentrations
269	of UA is difficult at bare unmodified solid electrodes because the oxidation of UA
270	occurred at a potential close to that of DA. The separation of the oxidation peak
271	potentials between DA and UA plays an important role for the analysis of DA in the
272	presence of UA. In the biological fluids, the normal concentration range of UA is
273	about 10^{-4} M. So, the interfering influences of 400 μM UA were studied in PBS (pH
274	7.0). As shown in Fig. 7, when 130 μM DA and 400 μM UA were coexisted in the
275	same PBS, two separate anodic oxidation peaks were identified with the well peak
276	Fig. 7
277	separation. The anodic oxidation potentials were 0.234 V and 0.516 V for DA, and
278	UA, respectively. The peak-to-peak separations between DA and UA were 282 mV,
279	which are large enough to determine DA selectively.
280	3.6. Repeatability, stability and reproducibility
281	To evaluate the repeatability of the Au-ZnO/GCE, the peak currents of 20
282	successive measurements by DPV in a 50 μM DA solution was determined once in

0.5 h. The relative standard deviation (RSD) of 2.1% was obtained. When the

modified electrode was used intermittently and stored at ambient temperatures in PBS

solution for more than 20 days, the current signals showed less than 3.6% decrease

286	relative to the initial response. Six parallel-made Au-ZnO/GCEs were used to detect
287	50 μM DA, respectively. The RSD of the sensor was 2.8%. These results indicate a
288	satisfactory repeatability, reproducibility and stability could be obtained by this novel
289	electrochemical sensing platform.
290	3.7 Real-world sample analysis
291	In order to evaluate the practical applicability of the as prepared sensors, it was
292	applied for the detection of DA in urine samples. Urine samples of healthy individuals
293	were frozen until determination and diluted to 1:200. The results are shown in Table 2.
294	The total DA content in urine was 2.00×10^{-6} M. Standard addition methods were
295	Table 2.
296	used for testing recoveries and the recoveries in the range of 94.0-104.0% were
296 297	used for testing recoveries and the recoveries in the range of 94.0-104.0% were obtained with the RSDs of 2.6-3.8%.
296 297 298	used for testing recoveries and the recoveries in the range of 94.0-104.0% were obtained with the RSDs of 2.6-3.8%.4. Conclusions
296 297 298 299	 used for testing recoveries and the recoveries in the range of 94.0-104.0% were obtained with the RSDs of 2.6-3.8%. 4. Conclusions In this work, we successfully fabricated a simple and sensitive electrochemical
296 297 298 299 300	 used for testing recoveries and the recoveries in the range of 94.0-104.0% were obtained with the RSDs of 2.6-3.8%. 4. Conclusions In this work, we successfully fabricated a simple and sensitive electrochemical dopamine sensor by immobilizing nanosheet-based 3D hierarchical ZnO structure
296 297 298 299 300 301	used for testing recoveries and the recoveries in the range of 94.0-104.0% were obtained with the RSDs of 2.6-3.8%. 4. Conclusions In this work, we successfully fabricated a simple and sensitive electrochemical dopamine sensor by immobilizing nanosheet-based 3D hierarchical ZnO structure decorated with Au nanoparticle on GCE. The as-prepared electrode displayed low
296 297 298 299 300 301 302	used for testing recoveries and the recoveries in the range of 94.0-104.0% were obtained with the RSDs of 2.6-3.8%. 4. Conclusions In this work, we successfully fabricated a simple and sensitive electrochemical dopamine sensor by immobilizing nanosheet-based 3D hierarchical ZnO structure decorated with Au nanoparticle on GCE. The as-prepared electrode displayed low detection limit, good reproducibility and high stability. Additionally, such a novel
296 297 298 299 300 301 302 303	used for testing recoveries and the recoveries in the range of 94.0-104.0% were obtained with the RSDs of 2.6-3.8%. 4. Conclusions In this work, we successfully fabricated a simple and sensitive electrochemical dopamine sensor by immobilizing nanosheet-based 3D hierarchical ZnO structure decorated with Au nanoparticle on GCE. The as-prepared electrode displayed low detection limit, good reproducibility and high stability. Additionally, such a novel sensor may be employed in the selective and simultaneous determination of dopamine
296 297 298 299 300 301 302 303 304	used for testing recoveries and the recoveries in the range of 94.0-104.0% were obtained with the RSDs of 2.6-3.8%. 4. Conclusions In this work, we successfully fabricated a simple and sensitive electrochemical dopamine sensor by immobilizing nanosheet-based 3D hierarchical ZnO structure decorated with Au nanoparticle on GCE. The as-prepared electrode displayed low detection limit, good reproducibility and high stability. Additionally, such a novel sensor may be employed in the selective and simultaneous determination of dopamine and uric acid in their binary mixture. The successful application of this electrode

- to determine dopamine sensitively and selectively. 306
- 307 Acknowledgment

308		The authors are grateful for the financial support provided by National High
309	Тес	chnology Research and Development Program of China (No. 2012AA02A404),
310	Nat	tional Natural Science Foundation of China (No. 51173146), basic research fund of
311	No	rthwestern polytechnical university (JC20120248) and the Natural Science
312	Foi	undation of Henan Province (nos. 132300410406).
313		
314	Re	ferences:
315	1.	B.J. Venton, R.M. Wightman, Psychoanalytical electrochemistry: Dopamine and behavior,
316		Analytical Chemistry 75(2003), 414A-421A
317	2.	M.K. Zachek, A. Hermans, R.M. Wightman, G.S. McCarty, Electrochemical dopamine
318		detection: Comparing gold and carbon fiber microelectrodes using background subtracted
319		fast scan cyclic voltammetry, Journal of Electroanalytical Chemistry 614 (2008), 113-120.
320	3.	E. Baldrich, R. Gmez, G. Gabriel, F.X Muñoz., Magnetic entrapment for fast, simple and
321		reversible electrode modification with carbon nanotubes: Application to dopamine detection,
322		Biosensors & Bioelectronics, 26 (2011), 1876–1882.
323	4.	J. Szopa, G. Wilczyński, O. Fiehn, A. Wenczel, L. Willmitzer, Identification and
324		quantification of catecholamines in potato plants (Solanum tuberosum) by GC-MS,
325		Phytochemistry 58 (2001) 315–320.
326	5.	R.R. González, R.F. Fernández, J.L.M. Vidal, A.G. Frenich, M.L.G. Pérez, Development and
327		validation of an ultra-high performance liquid chromatography-tandem mass-spectrometry
328		(UHPLC-MS/MS) method for the simultaneous determination of neurotransmitters in rat
329		brain samples, J.Neurosci. Meth. 198 (2011) 187-194.

330	6.	M.R. Moghadam, S. Dadfarnia, A.M.H. Shabani, P. Shahbazikhah, Chemometric-assisted
331		kinetic-spectrophotometric method for simultaneous determination of ascorbic acid, uric acid,
332		and dopamine , Anal. Biochem.410 (2011) 289-295.
333	7.	L. Zhang, N. Teshima, T. Hasebe, M. Kurihara, T. Kawashima, Flow-injectiondetermination
334		of trace amounts of dopamine by chemiluminescence detection, Talanta 50 (1999) 677-683.
335	8.	R. Torabi, R.G. Compton, A simple electroanalytical methodology for the simultaneous
336		determination of dopamine, serotonin and ascorbic acid using an unmodified edge plane
337		pyrolytic graphite electrode, Analytical and Bioanalytical Chemistry 387 (2007) 2793–2800.
338	9.	K. Wu, J. Fei, S. Hu, Simultaneous determination of dopamine and serotonin on a glassy
339		carbon electrode coated with a film of carbon nanotubes, Analytical Biochemistry 318 (2003)
340		100–106.
341	10.	C.L. Sun, H.H. Lee, J.M. Yang, C.C. Wu, The simultaneous electrochemical detection of
342		ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites,
343		Biosensors and Bioelectronics 26 (2011) 3450-3455.
344	11.	D.P. Quan, D.P. Tuyen, T.D. Lam, P.T.N. Tram, N.H. Binh, P.H. Viet, Electrochemically
345		selective determination of dopamine in the presence of ascorbic and uric acids on the surface
346		of the modified Nafion/single wall carbon nanotube/poly(3-methylthiophene) glassy carbon
347		electrodes, Colloids Surf., B 88 (2011) 764–770.
348	12.	D. Jia, J. Dai, H. Yuan, L. Lei, D. Xiao, Selective detection of dopamine in the presence of
349		uric acid using a gold nanoparticles-poly(luminol) hybrid film and multi-walled carbon
350		nanotubes with incorporated β -cyclodextrin modified glassy carbon electrode, Talanta 85

351 (2011) 2344–2351.

352	13.	S. L, J. Yan, G.W. He, D.D. Zhong, J.X. Chen, L.Y. Shi, X.M. Zhou, H.J. Jiang,
353		Layer-by-layer assembled multilayer films of reduced graphene oxide/gold nanoparticles for
354		the electrochemical detection of dopamine, Journal of Electroanalytical Chemistry 672 (2012)
355		40–44.
356	14.	C.Y. Li, Y. J. Cai, C. H. Yang, C. H. Wu, Y. Wei, T. C. Wen, T. L. Wang, Y. T. Shieh, W. C.
357		Lin, W. J. Chen, Highly sensitive and selective electrochemical determination of dopamine
358		and ascorbic acid at Ag/Ag ₂ S modified electrode, Electrochim. Acta 56 (2011) 1955–1959.
359	15.	Y. Tong, Z. C. Li, X. F. Lu, L. Yang, W. N. Sun, G. D. Nie, Z. J. Wang, C. Wang,
360		Electrochemical determination of dopamine based on electrospun CeO ₂ /Au composite
361		nanofibers, Electrochimica Acta 95 (2013) 12–17.
362	16.	Y. Fan, H.T. Lu, J. H. Liu, C. P. Yang, Q. S. Jing , Y. X. Zhang, X. K. Yang, K. J. Huang,
363		Hydrothermal preparation and electrochemical sensing properties of TiO_2 -graphene
364		nanocomposite, Colloids and Surfaces B: Biointerfaces 83 (2011) 78-82
365	17.	Q. Qiao, B. H. Li, C. X. Shan, J. S. Liu, J. Yu, X. H. Xie, Z. Z. Zhang, T. B. Ji, Y. Jia, D. Z.
366		Shen, Light-emitting diodes fabricated from small-size ZnO quantum dots, Materials Letters,
367		74 (2012), 104-106
368	18.	J. Jean , S. Chang , P. R. Brown , J. J. Cheng , P. H. Rekemeyer, M. G. Bawendi, S. Gradecak ,
369		and V. Bulovic, ZnO Nanowire Arrays for Enhanced Photocurrent in PbS Quantum Dot Solar
370		Cells, Advanced Materials, 25 (2013) 2790-2796.
371	19.	Y. T. Shi, C. Zhu, L. Wang, Ch. Y. Zhao, W. Li, K. K. Fung, T. L. Ma, A. Hagfeldt, and N.
372		Wang, Ultrarapid Sonochemical Synthesis of ZnO Hierarchical Structures: From
373		Fundamental Research to High Efficiencies up to 6.42% for Quasi-Solid Dye-Sensitized

RSC Advances Accepted Manuscript

- 374 Solar Cells, Chem. Mater, 25(2013) 1000-1012.
- 375 20. H. Zhu, C. X. Shan, J.Y. Zhang, Z. Z. Zhang, B. H. Li, D. X. Zhao1, B. Yao, D. Z. Shen, X.W.
- 376 Fan, Z. K. Tang, X. H. Hou, K. L. Choy, Low-Threshold Electrically Pumped Random Lasers,
- 377 Advanced Materials, 16 (2010) 1877-1883
- 378 21. H. Zhu, C. X. Shan, B. Yao, B. H. Li, J. Y. Zhang, Z. Z. Zhang, D. X. Zhao, D. Z. Shen, X. W.
- Fan, Y. M. Lu, Z. K. Tang, Ultralow-Threshold Laser Realized in Zinc Oxide, Advanced
 Materials, 16 (2009) 1613-1618
- 381 22. X. b. Zhao, G. M. Ashley, L. G. Gancedo, H. Jin, J. K. Luo, A. J. Flewittd, J. R. Lu, Protein
- functionalized ZnO thin film bulk acoustic resonator as an odorant biosensor, Sensors and
 Actuators B, 163 (2012) 242-247.
- 23. L. L. Xie, Y. D. Xu, X.Y. Cao, Hydrogen peroxide biosensor based on hemoglobin
 immobilized at graphene, flower-like zinc oxide, and gold nanoparticles nanocomposite
 modified glassy carbon electrode, Colloids and Surfaces B: Biointerfaces, 107 (2013) 245–
- **387** 250.
- 388 24. M.G. Zhao, Z.L. Li, Z. Q. Han, K. Wang, Y. Zhou, J. Y. Huang, Z. Z. Ye, Synthesis of
- mesoporous multiwall ZnO nanotubes by replicating silk and application for enzymatic
 biosensor, Biosensors and Bioelectronics, 49 (2013) 318–322.
- 391 25. P. Nayak, B. Anbarasan, and S. Ramaprabhu, Fabrication of organophosphorus biosensor
- 392 using ZnO nanoparticle-decorated carbon nanotube-graphene hybrid composite prepared by a
- 393 novel green technique, J. Phys. Chem. C, 117 (2013), 13202–13209
- 394 26. K. Jindal, M. Tomar and V. Gupta, Nitrogen-doped zinc oxide thin films biosensor for
- determination of uric acid, Analyst, 138 (2013) 4353-4362

396	27. J.Y. Kim, S.Y. Jo, G. J. Sun, A. Katoch, S. W. Choi, S. S. Kim, Tailoring the surface area of
397	ZnO nanorods for improved performance in glucose sensors, Sensors and Actuators B:

- 398 Chemical, 192 (2014) 216–220
- 399 28. S. Chawla, C. S. Pundir, An amperometric hemoglobin A1c biosensor based on
 400 immobilization of fructosyl amino acid oxidase onto zinc oxide nanoparticles-polypyrrole
 401 film, Anal. Biochem, 430 (2012) 156-162.
- 402 29. D. J. Gargas, H. W. Gao, H. T. Wang, and P. D. Yang, High quantum efficiency of band-edge
 403 emission from ZnO nanowires, Nano Lett, 11 (2011) 3792-3796.
- 404 30. H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng, G.Q. Lu, Anatase
- 405 TiO_2 single crystals with a large percentage of reactive facets, Nature 453 (2008) 638-641.
- 406 31. J. Zhang, J.G. Yu, Y. Zhang, Q. Li, J.R. Gong, Visible light photocatalytic H₂-production
- 407 activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer ,
- 408 Nano Letters 11 (2011) 4774-4779.
- 409 32. R. Chai, R. Yuan, Y.Q. Chai, C.F. Ou, Amperometric immunosensors based on layer-by-layer
- 410 assembly of gold nanoparticles and methylene blue on thiourea modified glassy carbon
 411 electrode for determination of human chorionic gonadotrophin, Talanta 74 (2008) 1330–
 412 1336.
- 413 33. A.I. Gopalan, K.P. Lee, K.M. Manesha, P. Santhosha, Gold nanoparticles dispersed into
 414 poly(aminothiophenol) as a novel electrocatalyst-fabrication of modified electrode and
 415 evaluation of electrocatalytic activities for dioxygen reduction, Journal of Molecular
 416 Catalysis A 256 (2006) 335–345.

417	34.	S. L. Yang, Y. L. Yin, G. Li, R. Yang, J. J. Li , L. B. Qua, Immobilization of gold
418		nanoparticles on multi-wall carbon nanotubes as an enhanced material for selective
419		voltammetric determination of dopamine, Sensors and Actuators B 178 (2013) 217-221.
420	35.	W. C. Zhu, T. Chen, X. M. Ma, H. Y. Ma, S. H. Chen, Highly sensitive and selective
421		detection of dopamine based on hollow gold nanoparticles-graphene nanocomposite modified
422		electrode, Colloids and Surfaces B: Biointerfaces 111 (2013) 321-326
423	36.	C. Y. Wang, F. C. Ye, H. F. Wu, Y. Qian, Depositing Au nanoparticles onto graphene sheets
424		for simultaneous electrochemical detection ascorbic acid, dopamine and uric acid, Int. J.
425		Electrochem. Sci., 8 (2013) 2440 – 2448.
426	37.	C. L. Zhou, S. Li, W. Zhu, H. J. Pang, H. Y. Ma, A sensor of a polyoxometalate and Au-Pd
427		alloy for simultaneously detection of dopamine and ascorbic acid, Electrochimica Acta 113
428		(2013) 454-463.
429	38.	F. Xiao, F.Q. Zhao, J.W. Li, L.Q. Liu, Characterization of hydrophobic ionic liquid carbon
430		nanotubes-gold nanoparticles composite film coated electrode and the simultaneous
431		voltammetric determination of guanine and adenine, Electrochimica Acta 53 (2008) 7781-
432		7788.
433	39.	A.I. Gopalan, K.P. Lee, K.M. Manesha, P. Santhosh, Electrochemical determination of
434		dopamine and ascorbic acid at a novel gold nanoparticles distributed poly(4-aminothiophenol)
435		modified electrode, Talanta 71 (2007) 1774D-1781D.
436	40.	X.Q. Tian, C.M. Cheng, H.Y. Yuan, J. Dua, Simultaneous determination of L-ascorbic acid,

- dopamine and uric acid with gold nanoparticles-cyclodextrin-graphene-modified electrode by
- 438 square wave voltammetry, Talanta 93 (2012) 79–85.

439	41.	G.Z. Hu, D.P. Zhang, W.L. Wu, Z.S. Yang, Selective determination of dopamine in the
440		presence of high concentration of ascorbic acid using nano-Au selfassembly glassy carbon
441		electrode, Colloid Surface B 62 (2008) 199–205.
442	42.	L. X. Fang, B. L. Zhang, W. Li, X. J. Li, T. J. Xin, Q. Y. Zhang, Time-dependent control of
443		phase and morphology transformation of porous ZnO hollow microsphere by a facile
444		one-step solution route RSC Adv., 2014, 4, 7167-7173.
445	43.	X. Cao, N. Wang, L. Wang, L. Guo, Synthesis of nanochain-assembled ZnO flowers and their
446		application to dopamine sensing, Sensors and Actuators B 147 (2010) 629-634.
447	44.	Chun-Fang Tang, S. Ashok Kumar, Shen-Ming Chen, Zinc oxide/redox mediator composite
448		films-based sensor for electrochemical detection of important biomolecules, Analytical
449		Biochemistry 380 (2008) 174–183.
450	45.	G.P. Jin, X.Q. Lin, J.M. Gong, Novel choline and acetylcholine modified glassy carbon
451		electrodes for simultaneous determination of dopamine, serotonin and ascorbic acid, Journal
452		of Electroanalytical Chemistry 569 (2004) 135–142.
453		
454		
455		
456		
457		
458		
459		
460		

RSC Advances Accepted Manuscript

Electrode materials	Linear range (µM)	LOD (µM)	References
β-CD-MWCNTs/Plu-AuNPs	1.00-50	0.380	12
{AuNPs/RGO}20	1.00-60.0	0.0200	13
Ag_2S	1.00-10.0	1.00	14
CeO ₂ /Au composites nanofibers	10.0-500	0.0560	15
TiO ₂ -graphene nanocomposites	5.00-200	2.00	16
Nanochain-assembled ZnO flowers	0.110-180	0.0600	43
Zinc oxide/redox mediator composites	6.00-120	0.500	44
5-Hydroxytryptophan	0.500-30.0	0.310	45
Au-ZnO nanocomposites	0.100-300	0.0200	In this work

461	Table 1 Com	parison between	the proposed	l sensor and othe	er reported s	sensor for DA detection.
-----	-------------	-----------------	--------------	-------------------	---------------	--------------------------

462

463

Table 2 Determination of DA in human urine sample with developed method (*n*=5).

Sample	No spiked (µM)	Added (µM)	$Found^a(\mu M)$	Recovery (%)	RSD (%)
1	0.0100	0.500	0.500	98.0	3.30
2	-	0.500	0.480	96.0	3.80
3	0.0100	0.500	0.520	104	2.60
4	-	0.500	0.470	94.0	3.00
5	-	0.500	0.480	96.0	2.80
6	0.0200	0.500	0.510	102	3.60
7	-	0.500	0.490	98.0	3.10

464 ^a RSD for 5 repetitive measurements

Figure captions

Fig.1. (a) low magnification FESEM image of ZnO microsphere, (b) 466 high-magnification FESEM image of ZnO microsphere, (c) high-magnification 467 FESEM images of Au-ZnO nanocomposite, (d) EDS spectra of Au-ZnO 468 nanocomposite, (e) HRTEM image of Au-ZnO nanocomposite, the inset is TEM 469 image of Au-ZnO nanocomposite. (f) XRD pattern (curve a) of the ZnO microspheres 470 471 and XRD pattern (curve b) of Au-ZnO nanocomposite Fig. 2 The electrochemical impedance spectroscopy (EIS) of bare GCE (a), Au-ZnO 472 (b), ZnO (c), in 0.1 M KCl aqueous solution containing 5.0 mM $[Fe(CN)_{6}]^{3-/4-}$. The 473 frequency range is from 0.1 Hz to 100 KHz at the formal potential of 0.2 V. The inset 474 A represents the Randles equivalent circuit model for the impedance of the 475 476 electrochemical sensing system. The inset B is the enlarged view of curve a. Fig. 3 In PBS solution (0.1 M, PH 7.0), CVs of Au-ZnO/GCE without DA (a) and 477 ZnO/GCE (b), GCE (c), Au-ZnO/GCE (d) for 50 μ M DA. Scan rate:100 mV s⁻¹. 478 Fig. 4 At the Au-ZnO/GCE electrode, cyclic voltammograms of 50 μ M DA in 479 480 different pH solutions (a) 5; (b) 6; (c)7; (d) 8 and (e) 9 (from right to left) (A), and the dependences of the DA oxidation peak current and redox potential on the PBS 481 solution pH with a scanning rate of 100 mVs⁻¹ (B). 482 Fig. 5 Cyclic voltammograms of 50 µM DA at Au-ZnO/GCE in PBS (PH 7.0) at 483 various scan rates: inner to outer are 10-700 mVs⁻¹. Inset to (B) shows the linear 484 485 dependence of peak currents with scan rate.

486 Fig. 6. DPV profiles at Au-ZnO/GCE in 0.1M PBS (PH 7.0) different concentrations

RSC Advances Accepted Manuscript

- 487 of DA: 0.1, 5, 20, 40, 80, 130, 180, 240 and 300 μM (from a to i). Scan rate: 100 mV
- s^{-1} . Inset: the calibration curve for the determination of DA;
- 489 Fig. 7 The effect of UA on the DPV response of DA: 130 μM DA (a), 130 μM DA
- and 400 μ M UA (b) at Au-ZnO/GCE in 0.1 M PBS (pH 7.0)

518 Fig. 2

Fig.4

527

531 Fig.5

532

533 Fig.6

534

535

538 Fig.7

539