

RSC Advances

Synthesis and Electrochemical Performances of Maricite-NaMPO4 (M=Ni, Co, Mn) Electrodes for Hybrid Supercapacitors

Journal:	RSC Advances
Manuscript ID:	RA-ART-06-2014-006050.R1
Article Type:	Paper
Date Submitted by the Author:	19-Sep-2014
Complete List of Authors:	Baskar, Senthilkumar; Bharathiar University, Physics; Vijaya Sankar, Kalimuthu; Bharathiar University, Physics Vasylechko, Leonid; Lviv Polytechnic National University, Semiconductor Electronics Lee, Yun-Sung; Chonnam National University, Applied Chemical Engineering Ramakrishnan, Kalai; Bharathiar University, Physics

SCHOLARONE[™] Manuscripts

254x190mm (96 x 96 DPI)

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

ARTICLE TYPE

Synthesis and Electrochemical Performances of Maricite-NaMPO₄ (M=Ni, Co, Mn) Electrodes for Hybrid Supercapacitors

Baskar Senthilkumar^a, Kalimuthu Vijaya Sankar^a, Leonid Vasylechko^b, Yun-Sung Lee^c and Ramakrishnan Kalai Selvan^{*a}

5 Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

Sodium metal phosphates, NaMPO₄ (M = Mn, Co and Ni) were successfully synthesized by solution combustion synthesis (SCS) method using glycine-nitrate as a precursor. XRD Rietveld refinement method was revealed the crystal structure and lattice parameters of NaMPO₄ (M = Mn, Co and Ni). For the first time, the crystal structure parameters of the orthorhombic NaNiPO₄ maricite-type phase were evaluated. Similarly, it was identified that the NaCoPO₄ and NaMnPO₄ have high temperature hexagonal and maricite phase, respectively. The calculated BET specific surface area (S_{BET}) of NaMnPO₄, NaCoPO₄ and NaNiPO₄ were 17.7, 22.6 and 18.7 m² g⁻¹, respectively. The NaMPO₄ (M = Mn, Co and Ni) electrode exhibits good specific capacitance in 1 M NaOH electrolyte, when compared with 1 M Na₂SO₄, 1 M NaNO₃ and 1 M NaCl. This difference in specific capacitance was analysed based on the influence of electrolyte anions (Cl⁻, SO₄²⁻, OH⁻ and NO₃⁻) and pH conditions of the electrolyte solution. Overall, maricite-NaNiPO₄ nanoparticles provided a high specific capacitance of 368 F g⁻¹ compared to NaMnPO₄ (163 F g⁻¹) and NaCoPO₄ (249 F g⁻¹) in 1 M NaOH electrolyte. Subsequently, hybrid supercapacitor (AC||NaNiPO₄) was fabricated and it delivered a good specific capacitance and cyclic stability than the commercially available device.

20

10

15

1. Introduction

Among various energy storage devices, Li-ion batteries are promising power sources for cell phones, laptops, digital cameras, power tools and electric vehicles owing to its high ²⁵ energy density.^{1,2} However its broad applications in grid storage are limited due to the high cost, low abundance of Li metal and organic electrolytes.³ Next to Li, Na is second metallic element having lower ionic radius (0.97 Å) and similar intercalating properties of Li. Therefore in order to decrease the cost and ³⁰ improve the safety, using both Na- based intercalating materials and aqueous electrolyte used is one of the recent strategies instead of Li based materials.^{3,4} In this regard, various sodium based electrode materials including NaFePO₄,⁵ Na₄Mn₉O₁₈,⁶ Na_xMnO₂,⁷ NaVPO₄F,⁸ NaCrO₂,⁹ NaNi_{1/3}Co_{1/3}Mn_{1/3}PO₄,¹⁰ ³⁵ Na[Ni_{1/3}Co_{1/3}Mn_{1/3}]O₂¹¹ and Na₄CO₃(PO₄)₂P₂O₇¹² have been

- experienced as electrode materials for energy storage applications due to its Na-ion intercalating properties, low cost and environmental friendliness.⁵⁻¹² Initially, layered sodium manganese oxide (NaMnO₂) has been proposed as cathode ⁴⁰ materials for Na-ion batteries.⁷ Among the Na based cathodes,
- NaMnO₂ delivered high specific capacity of 140 mAh g⁻¹ due to its six biphasic transitions.¹³ However, these materials delivered poor cycling performance since its multiple phase transition Na insertion/de-insertion reactions.^{7,14}
- ⁴⁵ As well as sodium metal phosphates having the general chemical formula of NaMPO₄ (M=Mn, Co and Fe) have also been studied as electrode materials for sodium ion batteries.^{5,15-17} Thermal stability and higher voltage due to the inductive effect

are the reasons for phosphate based materials to be the promising 50 cathode materials in Na-ion batteries.^{18,19} Recently, NaFePO₄/Č was prepared by potentiodynamic polarization in saturated aqueous NaNO₃ solution, which delivered a high storage capacity of 118 mAh g⁻¹ compared to LiFePO₄/C.²⁰ Normally NaMPO₄ (M=Mn, Co and Fe) exhibits thermodynamically stable maricite 55 structure, where transition metal ions occupies M(1) site, and sodium occupied M(2) sites, which is completely reversed in olivine structure. It was believed that the maricite structure is electrochemically inactive as a cathode material for battery applications in non aqueous media.²¹ On the other hand, recent 60 works demonstrated that the maricite structure is actively involved in charge storage process in alkali aqueous (NaOH) electrolyte.^{10,15} However, to the best of our knowledge, there is no report available on the supercapacitive performance of pristine NaMPO₄ (M=Mn, Co and Ni).

In this present work, we have demonstrated that the synthesis of sodium metal phosphates (NaMPO₄; M= Mn, Co and Ni) by solution combustion method using glycine-nitrate as precursors. The presence of nano-pores on the surface of the particles was clearly observed from field emission scanning electron 70 microscope image (FE-SEM). The intercalation/de-intercalation properties of Na ion in maricite-type structured NaMnPO₄ were investigated. The orthorhombic maricite-NaNiPO₄ nanoparticles provided higher capacitance of 368 F g⁻¹ compared to hexagonal high temperature phase-NaCoPO₄ (249 F g⁻¹) and maricite-75 NaMnPO₄ (195 F g⁻¹) in 1 M NaOH electrolyte. A hybrid supercapacitor is fabricated using NaNiPO₄ and activated carbon (AC) as positive and negative electrodes, respectively. The hybrid

This journal is © The Royal Society of Chemistry [year]

supercapacitor delivered excellent electrochemical performances relative to the commercially available device (AC||AC).

2. Experimental section

5 2.1 Materials

Sodium nitrate (NaNO₃), manganese nitrate tetrahydrate (Mn(NO₃)₂.4H₂O), cobalt nitrate hexahydrate (Co(NO₃)₂.6H₂O), nickel nitrate hexahydrate (Ni(NO₃)₂.6H₂O), ammonium ¹⁰ dihydrogen phosphate (NH₄H₂PO₄), glycine (C₂H₅NO₂), sodium hydroxide (NaOH) and aqueous ammonia (NH₃.H₂O) were purchased from Merck and used as received without further purification.

15 2.2 Synthesis of NaMPO₄, (M=Mn, Co and Ni)

For the synthesis of maricite NaMnPO₄, a stoichiometric amount of $Mn(NO_3)_2.4H_2O$ (2.073 g), NaNO₃ (0.8499 g) and NH₄H₂PO₄ (1.150 g) were dissolved in desired amount of ²⁰ distilled water and mixed with the above solutions. The desired amount of glycine was dissolved in distilled water and poured into above solution. In this reaction, oxidant to fuel ratio was maintained as 1. Further, the pH of the precursor solution was adjusted to 7 by adding ammonia solution. The resulting solution

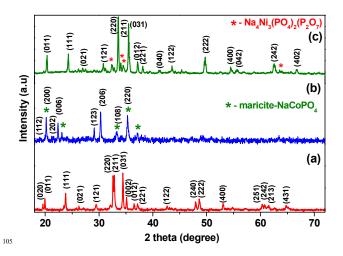
- ²⁵ was placed on hot plate at 200 °C for dehydration. After complete dehydration, the remaining solid mass was transferred into muffle furnace and the temperature was raised to 300 °C. After 10 minutes, decomposition occurred with gradual release of gaseous by-products. The final foamy product was collected after grinding
- ³⁰ it on agate mortar pestle and then used for further characterization. The foamy product was calcined at 400 °C for 3h to form the single phase NaMnPO₄. The similar procedure was repeated for the synthesis of NaCoPO₄ and NaNiPO₄ by using Co(NO₃)₂.6H₂O and Ni(NO₃)₂.6H₂O, respectively. Here, the
- ³⁵ single phase of NaNiPO₄ was obtained after 700 °C calcinations and NaCoPO₄ phase was obtained without any calcinations.

2.3 Characterization techniques

- ⁴⁰ Phase formation was identified by powder X-ray diffractometer (Bruker, D8 advance) with CuKα radiation. A quantitative twophase full-profile Rietveld refinement has been performed by using WinCSD program package. To investigate the morphology of the prepared samples, JEOL JEM 2100 High Resolution
- ⁴⁵ Transmission Electron Microscope (HRTEM) with 200 kV acceleration voltages was used. The surface area and pore size distribution of the composites were investigated by N₂ adsorption-desorption experiments at 77 K using Micromeritics ASAP 2010 surface area analyser. The electrochemical
- ⁵⁰ performances of NaMPO₄, (M=Mn, Co and Ni) were investigated using cyclic voltammetry (CV) and galvanostatic chargedischarge techniques. The electrochemical experiments were carried out in three electrode system using platinum wire as a counter electrode. Ag/AgCl and Hg/HgO were used as a reference electrode. Ag/AgCl and Hg/HgO were used as a
- ⁵⁵ reference electrode. Aqueous solution of 1 M Na₂SO₄, 1 M NaCl, 1 M NaNO₃ and 1 M NaOH were used as electrolyte. The cyclic voltammetry and galvanostatic charge-discharge studies of the composites were carried out using SP-150, Bio-Logic Science Instruments in room temperature.

2.4 Electrode preparation

To prepare active electrode material, NaMPO₄ (80 wt %), carbon black (15 wt %) and polyvinlidene fluoride (PVDF) (5 wt


 65 %) were suspended in 0.4 mL of N-methyl-2-pyrrolidinone (NMP) to form a slurry. The slurry was coated on a small piece of graphite sheet (area of coating, 1 cm²). The loaded active material was approximately 2 mg in each case. Activated carbon (AC) was purchased from Aldrich with surface area of $\sim 1800 \ m^2 g^{-1}$. To rop prepare active negative electrode material, AC (90 wt %) and polyvinlidene fluoride (PVDF) (10 wt %) were used. A hybrid full cell (AC||NaNiPO_4) was fabricated by employing a polypropylene separator.

75 3. Results and discussion

3.1 Structural analysis

XRD pattern of combustion synthesized sodium metal ⁸⁰ phosphates (NaMPO₄, M=Mn, Co and Ni) are shown in Fig. 1 (ac). The observed diffraction maxima for NaMnPO₄ (Fig. 1 (a)) is basically matched with the standard diffraction pattern of maricite-type phase (JCPDS no. 84-0852). Full profile Rietveld refinement confirms the phase composition of NaMnPO₄ (see ⁸⁵ Fig. S1) and allows establishing the lattice parameters of the orthorhombic NaMnPO₄. Refined values of the cell dimensions of NaMnPO₄ in comparison with the literature data for the reference compound are given in Table 1. The calculated lattice parameters are consistent with the reported values.

On the other hand, the majority of observed diffraction peaks of combustion synthesized NaCoPO₄ (Fig. 1 (b)) are matched with the standard diffraction pattern of the high temperature β-phase of NaCoPO₄ (JCPDS no. 52-0335), which belongs to the family of stuffed tridymites. As it is derived from the quantitative
 ⁹⁵ XRD phase analysis, performed by two-phase Rietveld refinement, the sample shows coexistence of two NaCoPO₄ polymorphs - 77 wt. % of hexagonal NaCoPO₄ phase (Fig.S2). Refined values of the cell dimensions of two NaCoPO₄ in comparison with the literature data for the reference compounds. Lattice parameters of combustion synthesized NaCoPO₄ is well matched with reported high temperature hexagonal NaCoPO₄.

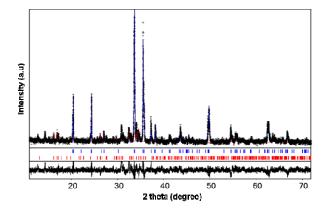
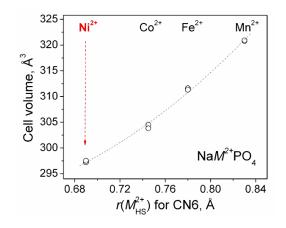


Fig. 1. XRD pattern of combustion synthesized (a) NaMnPO₄, (b) NaCoPO₄ and (c) NaNiPO₄.

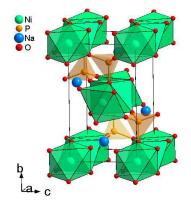
From the XRD pattern of NaNiPO₄ (Fig. 1 (c)), orthorhombic maricite-type NaNiPO₄ is detected as the main phase. Besides ¹¹⁰ NaNiPO₄, this sample contains Na₄Ni₃(PO₄)₂(P₂O₇). According to the two-phase Rietveld refinement, the weight ratio of NaNiPO₄


and Na₄Ni₃(PO₄)₂(P₂O₇) phases in the sample is 81:19 (Fig. 2). At the Rietveld refinement procedure, the atomic positions in the NaMnPO₄ structure²² are taken as a starting model for the refinement of NaNiPO₄ structural parameters. For the secondary $Na_4Ni_3(PO_4)_2(P_2O_7)$ phase the atomic coordinates from Ref. [23]

are taken; these values are fixed during the refinement procedure.

Fig. 2. Graphical results of the Rietveld refinement of the NaNiPO₄ sample showing presence of NaNiPO₄ (81 wt.%, blue) ¹⁰ and Na₄Ni₃(PO₄)₂(P₂O₇) (19 wt.%, red) phases.

Structural parameters of the NaNiPO₄ compound, obtained for the first time in the present work, are in excellent agreement with the literature data for the isotypical NaMPO₄ (M=Co, Fe, Mn) compounds. In particular, the lattice parameters in the ¹⁵ NaMPO₄ series (Table 2) increases systematically with increasing ionic radii of M^{2+} ions and the unit cell volumes increase almost linearly in accordance with Vegard's law (Fig. 3) [3]. The values of refined lattice parameters, positional and displacement parameters of atoms in NaNiPO₄ structure are presented in Table ²⁰ 3. Selected values of bond length and bond angles in the NaNiPO₄ structure calculated from the refined structural parameters are tabulated in Table 3. According to our knowledge, no lattice parameters or atomic coordinates in the NaNiPO₄ structure are reported in the literature so far.


Fig. 3. Dependence of the unit cell volumes in Na*M*PO₄ (M = Ni, Co, Fe, Mn) series on the ionic radii of M^{2+} cations.

25

Similar to the related NaMPO₄ maricite-type compounds with Mn, Fe and Co,^{22,24,25} the NaNiPO₄ structure can be described as ³⁰ edge-sharing chains of distorted NiO₆ octahedra running parallel to the [100]-direction (Fig. 4). Neighbouring chains are cross-connected by almost regular PO₄ tetrahedra, thus form large

cavities in which the Na ions are located. The bond length and bond angles inside PO₄ tetrahedra in NaNiPO₄ structure (Table ³⁵ S1) are similar to those in the related NaMPO₄ compounds, ^{22,24,25} and the average bond length of 1.537 Å corresponds well to the length of P-O bonds in phosphates. The NiO₆ octahedra are rather distorted, with two compressed and two stretched bonds (Table S1). Besides, distortion of NiO₆ octahedra is manifested itself in a ⁴⁰ significant deviation of the intra-octahedral O–Ni–O bond angles

from 90° (Table S1). Like as in the related Na MPO_4 compounds, coordination polyhedra of Na ions could be also considered as octahedral, however the distortion of NaO₆ polyhedra is much more pronounced in comparison with NiO₆ octahedra (Table S1).

Fig. 4. NaNiPO₄ structure as a frame of the columns of edgeshared NiO₆ octahedra connected via PO₄ tetrahedra.

3.2 Morphological Analysis

45

In general, the morphological features are important to 50 mend the electrochemical performance of the material. The formation of porous particles is the characteristic features of combustion method and the amount of pores mainly depend upon the amount of gases released during the reaction. Fig. 5 (a) shows the SEM image of NaMnPO₄. It can be seen that the particles are 55 having micro meter in size. The measured sizes of the particles are to be 0.02 to 0.6 um using scion image software. TEM image (inset of Fig. 5 (a)) of NaMnPO₄ further supports the formation of larger size particles. Here, the agglomeration of the particles may be due to the high temperature calcination. Similarly, the 60 spherical like particles are observed in NaCoPO₄ (Fig. 5 (b)) and NaNiPO₄ (Fig. 5(c)). Subsequently, the presence of porous on the surface of the particles is clearly visible. On the other hand, in NaNiPO₄, the presence of smaller sized particles also observed compared to NaCoPO₄. Hence, the formation of microsized 65 particles are due to the aggregation of smaller sized particles. So, the presence of pores and smaller sized particles may facilitate to improve the charge storage by the reduction of diffusive path lengths and improves the electrode/electrolyte contact area. ^{30,3}

3.3 Surface Area Analysis

The N₂ adsorption-desorption isotherms and pore size distribution (BJH-plot) of nanoporous NaMPO₄ (M = Mn, Co and Ni) particles are shown in Fig. 6. The observed type IV isotherm and BJH-plot for the NaNiPO₄ and NaCoPO₄ particles indicates the presence of mesopores on the surface of the particles. For 75 NaMnPO₄, Type II isotherm was observed, which confirms the nonporous nature of the particles. Hence, all these well substantiates the FE-SEM result. The calculated specific surface

area (SBET) of NaMnPO4, NaCoPO4 and NaNiPO4 porous particles are 17.7, 22.6 and 18.7 m² g⁻¹ respectively. The pore size distributions of the samples are calculated by using Barrett-Joyner-Halenda (BJH) method. The obtained average pore s diameter of the NaCoPO₄ (~ 4 nm) and NaNiPO₄ (~ 4 nm) particles indicates the presence of mesopores. The high surface area and mesoporous structure of NaCoPO₄ and NaNiPO₄ nanoparticles when compared with NaMnPO₄ will provide more active reaction sites and improve the ions transport.³

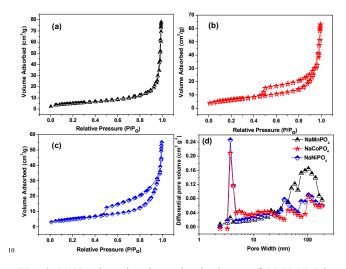


Fig. 6. (a) N₂ adsorption-desorption isotherms of (a) NaMnPO₄, (b) NaCoPO₄ and (c) NaNiPO₄. (d) Pore-size distributions of NaMPO₄

3.4 Electrochemical Analysis

- In order to well understand the working potential window, 15 redox potential of the active species and charge storage kinetics of the electrode, the cyclic voltammogram analysis was carried in different aqueous electrolytes. CV curves of NaMnPO4 in different electrolytes including 1 M Na₂SO₄, 1 M NaCl, 1 M 20 NaNO3 and 1 M NaOH are given in Figure 7. Overall, the potential dependent and independent current regions are observed based on the electrolytes. Specifically, the potential independent current response or rectangular shape CV curves was observed in 1M NaCl electrolyte. It infers that the contribution of charge 25 storage was mainly due to the EDLC type *i.e.*,
- adsorption/desorption of ions at the electrode/electrolyte interfaces. On the other hand, a small redox peak (a potential independent current region) was observed for NaMnPO₄ at 0.59 V and 0.62V vs. Ag/AgCl in 1 M Na₂SO₄ and 1 M NaNO₃
- 30 electrolytes, respectively, that revealed the occurrence of intercalation/de-intercalation of Na⁺ ions. Similar type of redox peaks have been reported for MnO2^{26a,b} NH4MnPO4^{26c} and Na_xMnO₂.^{26d} The possible charge storage mechanism of NaMnPO₄ in 1 M Na₂SO₄ and 1 M NaNO₃ electrolyte is as 35 follows²⁶

 $Na_{1-x}MnPO_4 + xNa^+ + xe^- \leftrightarrow NaMnPO_4$ (1)

Where, x is the mole fraction of inserted sodium ions. The potential difference between the anodic and cathodic peak is smaller than 56 mV, which indicates the good reversibility of the

⁴⁰ electrode. However the major contribution of the charge storage in neutral aqueous electrolyte depends on adsorption/desorption of Na⁺ions.

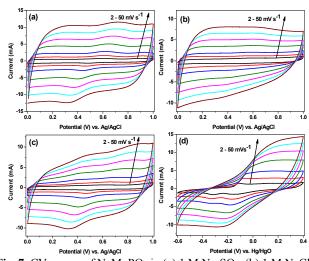
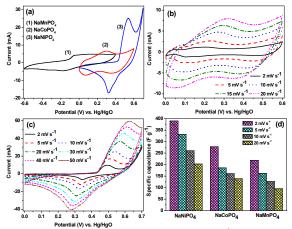
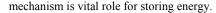



Fig. 7. CV curves of NaMnPO₄ in (a) 1 M Na₂SO₄, (b) 1 M NaCl, 45 (c) 1 M NaNO₃ and (d) 1 M NaOH at various scan rates of 2, 5, 10, 20, 30, 40 and 50 mV s⁻¹.

Interestingly, a well-defined oxidation/reduction peaks were obtained in 1 M NaOH electrolyte (Fig. 7(d)), which indicates the pseudocapacitive behavior of NaMnPO₄ electrodes. The observed ⁵⁰ redox peaks in the potential +0.015/-0.281V vs. Hg/HgO is due to the Faradic redox reaction of Mn as explained from the Pour-baix diagram.²⁷ The calculated specific capacitances^{30a} are 219, 132, 123 and 113 Fg⁻¹ for 1 M NaOH, 1 M NaCl, 1 M Na₂SO₄ and 1 M NaNO₃ respectively, at 2 mV s⁻¹. The difference in specific 55 capacitance of NaMnPO₄ at different electrolytes is due to the difference charge storage mechanism. This may be explained based on the pH and ionic solvation radius of the electrolytes. According to the Pour-baix diagram of Mn, the Mn²⁺ ions involve in redox reactions only in alkali aqueous (1 M NaOH) 60 electrolytes and not in neutral aqueous electrolytes like NaCl, NaNO₃ and Na₂SO₄. The observed redox peaks of NaMnPO₄ in NaOH electrolyte is mainly due to the electron transfer between Mn^{3+} and Mn^{2+} ions.

 $_{65}$ Fig. 8. CV curves of (a) NaMPO₄ at 10 mV s⁻¹, (b) NaCoPO₄ and (c) NaNiPO₄ in 1 M NaOH at different scan rates, (d) SC vs. scan rate for $NaMPO_4$ (M = Mn, Co and Ni).


Similarly, the ionic solvation radius of OH⁻ (3.00 Å) ions is low compared to NO_3^- (3.35 Å), CI^- (3.32 Å) and SO_4^- (3.79 Å) ions. 70 Therefore the electrolyte OH ions can easily diffuse into the pores of the electrode that lodges more number of ions which in turn high specific capacitance .^{28,29} In other words, the ions with smaller ionic solvation radius having high ionic conductivity in aqueous solutions that improves the maximum number of ions to interact with active electrode. Subsequently it creates more active s sites in the electrode material.^{30b} Overall, low ionic solvation

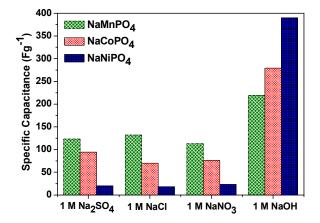

radius of electrolyte anions and pH of the electrolyte has favourably improved the electrochemical performances.

Fig. 8(a) shows the comparative CV curve of NaMPO₄ at 10 mV s⁻¹ and Fig. 8(b-c) shows the CV curves of NaNiPO₄ and ¹⁰ NaCoPO₄ in NaOH electrolyte at various scan rates. Similar to NaMnPO₄, both the materials also exhibited EDLC and intercalation/de-intercalation behavior in 1 M Na₂SO₄, 1 M NaCl, 1 M NaNO₃ and 1M NaOH electrolytes. A couple of redox peaks were observed for both NaNiPO₄ and NaCoPO₄ nanoparticles in 1

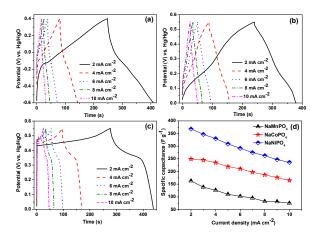
- ¹⁵ M NaOH electrolyte due to intercalation/de-intercalation process, which is clearly seen in Fig. 8(a-c). The redox peak observed in NaNiPO₄ is due to the diffusion controlled reversible redox reaction of Ni(II) ↔ Ni(III).³¹⁻³³ The redox reaction of Co(II) ↔ Co(III) is the reason for the peaks obtained at 0.22/0.15 V vs.
- ²⁰ Hg/HgO in NaCoPO₄.^{31,34} An extra pair of redox peak was observed at 0.55/0.45 V for NaCoPO₄ which is attributed to the redox reaction of Co(III) ↔ Co(IV).³⁴ The reproducibility of the redox peaks in the CV curves at higher scan rates confirms the good electronic and ionic transport of the material.^{31,33} The ²⁵ capacitance value calculated for NaMPO₄, in various scan rates of ²⁶

2-20 mV s⁻¹ is presented in Fig. 8(d). The capacitance value is decreased with increase in scan rate which is due to the decrease in charge diffusion of electrolyte ions into the inner active sites at higher scan rates.³⁵ It is well agreed with morphological and ³⁰ surface area analysis results. However, the charge storage

Fig. 9. Capacitance of NaMPO₄ (M = Mn, Co and Ni) in various electrolytes at 2 mV s⁻¹ scan rate.

- $_{35}$ For comparison, the calculated voltametric specific capacitance of NaMPO₄ in all Na based aqueous electrolytes is presented in Fig. 9. It can be seen that the NaMPO₄ provides high capacitance in 1 M NaOH electrolyte than other electrolytes, due to its pseudocapacitive behaviour. Hence, it can be optimized that 1 M
- ⁴⁰ NaOH is the best electrolyte due to its smaller solvation sphere radius (OH'), high ionic conductivity, and better reversibility of the electrode. Particularly, the NaNiPO₄ deliver a high capacitance of 390 F g⁻¹ at a scan rate of 2 mV s⁻¹ compared to NaMnPO₄ (219 F g⁻¹) and NaCoPO₄ (279 F g⁻¹) due to the battery
- ⁴⁵ like behaviour and reversible redox reaction of Ni(II) ↔ Ni(III).³¹⁻³³ Among the studied sodium metal phosphates, NaNiPO₄ is electrochemically more active than NaMnPO₄ and

NaCoPO₄. Based on the CV analysis, the combination of NaNiPO₄ and 1 M NaOH are the best electrode and electrolyte. It so is well known that the total amount of charge stored in the electrode is mainly due to the contribution of both capacitive and intercalation process.²⁶ However, the capacitive process consists of two mechanisms including surface redox pseudocapacitive and ions adsorption/desorption reaction at the electrode/electrolyte so interface. According to Power's law, the scan rate dependence of


CV current can be expressed as^{36a-c}

$$i(V) = av^{b} \tag{2}$$

Where, v is scan rate (V s⁻¹), a and b are the adjustable parameters. The slope of log i vs log v at a fixed potential (V) is ⁶⁰ gives the value of b. The value of b has two conditions like b=0.5for intercalation of ions into the electrode and b=1 for capacitive process. It is the best way to know the charge storage kinetics at each potential. Fig. S3(a) infers that the value of b is different in different potentials for NaNiPO₄. It shows that the value of b is closer to 0.5 at each potential in 1M NaOH electrolyte. Hence, the CV curve is directly proportional to the square root of scan rate. It reveals that the NaNiPO₄ stores the charge based on intercalation/deintercalation mechanism rather than capacitive mechanism (Fig. S3(a)). However, it reveals that the ⁷⁰ intercalation/deintercalation mechanism is dominant in 1 M NaOH electrolyte for NaNiPO₄. It is well substantiates the previous result.

The specific capacitance contribution from inner and outer surface of the electrode is calculated using Trasatti plot.^{36a-d} The ⁷⁵ plot between specific capacitance and inverse square root of scan rate implies the specific capacitance contribution from outer surface of the electrode (Fig. S3(b)). Similarly, the plot between specific capacitance *vs* square root of scan rate implies the specific capacitance contribution from the entire electrode (426 ⁸⁰ Fg⁻¹) (Fig. S3(c)). From this, it can be calculated that the specific

- ⁸⁰ Fg⁻¹ (Fig. 55(c)). From this, it can be calculated that the specific capacitance contribution from inner surface of the electrode that is the difference between total surface of the electrode and outer surface of the electrode. Then, the calculated specific capacitance contribution from inner and outer surface of the electrode is 333 s and 93 Fg⁻¹. It witnessed that the electrode stores more charges in
- the inner surface of the electrode due to the low ionic solvation radius and high ionic mobility.

Fig. 10. Galvanostatic charge-discharge curves of (a) NaMnPO₄, ⁹⁰ (b) NaCoPO₄ and (c) NaNiPO₄ in 1 M NaOH electrolyte. (d) Specific capacitance vs. current density of NaMPO₄ (M = Mn, Co and Ni).

Hence, galvanostatic charge-discharge measurements were performed in 1 M NaOH for the NaMPO₄ electrodes and are given in Fig. 10. Two different discharge behaviours *i.e.*, linear and non-linear regions are observed for all the cases. The linear s region implies that the electrode stores the charge based on

- s region implies that the electrode stores the charge based on adsorption/desorption reaction at the electrode surface. Similarly, the non-linear region is the evidence that the electrode stores the charge based on redox or intercalation mechanism. The asymmetric charge-discharge profiles were obtained for NaMPO₄
- ¹⁰ (M=Mn, Co and Ni) at all the current densities. It demonstrates the pseudocapacitive nature of the materials. The charge/discharge plateau regions were observed for NaNiPO₄ which demonstrates the battery type charge storage of the material. The plateau regions provide high specific capacitance
- ¹⁵ (above 500 F g⁻¹) in narrow potential window and it shows high charge storage capability of the material. The calculated specific capacitance³³ at a current density of 2 mA cm⁻² for NaMnPO₄, NaCoPO₄ and NaNiPO₄ is 163 F g⁻¹, 249 F g⁻¹ and 368 F g⁻¹, respectively. The high capacitance of the NaNiPO₄ compared to
- ²⁰ other electrodes substantiates the CV results. The specific capacitance of NaMPO₄ as a function of current density is shown in Fig. 10 (d). The specific capacitance was decreased with increase in current density which is normal behaviour. More than 64 % of capacitance at low current density (2 mA cm⁻²) was
- ²⁵ retained at higher current rates (10 mA cm²) for NaCoPO₄ and NaNiPO₄ which show high rate capability of the materials.

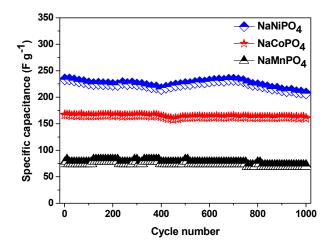


Fig. 11. Variation of the SC with cycle number at 10 mA cm⁻² for $_{30}$ NaMPO₄ (M = Mn, Co and Ni).

For practical applications, the cycle life of electrode material is an important parameter. The cycling stability of the materials was tested up to 1000 cycles at a current density of 10 mA cm⁻². The specific capacitance of NaMPO₄ as a function of cycle ³⁵ number is shown in Fig. 11. No significant capacitance fading was observed for NaMnPO₄ and NaCoPO₄ up to 1000 cycles. 93 and 96 % of initial capacitance was observed for NaMnPO₄ and NaCoPO₄, respectively. In case of NaNiPO₄ more than 88 % of initial capacitance was retained after 1000 cycles. The results ⁴⁰ showed good cycling stability of the materials in 1 M NaOH.

3.5 Asymmetric AC||NaNiPO4 supercapacitor characteristics

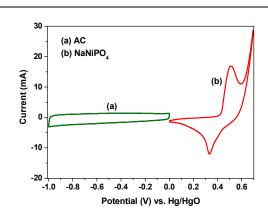
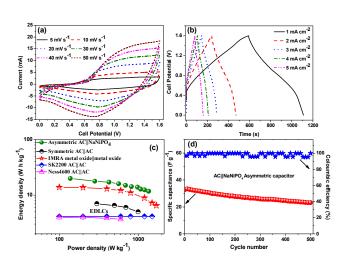


Fig. 12. CV curve of (a) AC and (b) NaNiPO₄ nanoparticles at a $_{45}$ scan rate of 5 mV s⁻¹.

From the above charge-discharge studies, NaNiPO₄ electrodes delivered more capacitance (368 F g⁻¹) compared to NaMnPO₄ and NaCoPO₄. Therefore an asymmetric full cell (AC||NaNiPO₄) was fabricated using NaNiPO₄ and activated carbon (AC) as 50 positive and negative electrodes, respectively. The CV curve of NaNiPO₄ and AC in a three electrode system eas recorded at a scan rate of 5 mV s⁻¹ is shown in Fig. 12. The observed rectangular type CV curve of AC confirms the adsorption/desorption of electrolyte cations (Na⁺) and EDLC 55 behavior. The far negative working potential (-1.0 V) of the AC in aqueous electrolyte is promising to use this material as anode material for asymmetric supercapacitors. The specific capacitance calculated from the CV curve is 100 Fg⁻¹ for AC at a scan rate of 5 mV s⁻¹. In the same scan rate, NaNiPO₄ delivered a capacitance 60 of 323 Fg⁻¹. It is well known that the positive and negative charge should be balanced $(q_{+}=q_{-})$ for fabrication of the full cell.^{36e} The mass balancing will follow equation (3),

$$\frac{m_+}{m_-} = \frac{c_-}{c_+} \times \frac{\Delta E_-}{\Delta E_+} \tag{3}$$


Where, m is mass of the active material in the electrode and ΔE is the working potential of the material. On the basis of the specific electric quantity values, the mass for negative electrode is calculated to be ~ 3.9 mg. So the mass loading of the negative electrode material was adjusted to 4 mg. The working potential of the cell is optimized from the CV curve (Fig. 12). The maximum 70 working potential of the asymmetric cell is set to 1.6 V which is higher than that of the AC based symmetric supercapacitor (1.0 V) in alkali aqueous electrolyte.³⁷⁻³⁹

The CV measurements for the asymmetric full cell (AC||NaNiPO₄) recorded at various scan rates is shown in Fig. 13 75 (a). The redox peaks observed in the CV curves confirms the pseudocapacitance in positive electrode. An adsorption/desorption of electrolyte cations (Na⁺) at the negative electrode (AC), with the formation of electrical double layer facilitate the charge storage process. The possible electrodemical ⁸⁰ charge storage reactions in the cell are, for the positive electrode is due diffusion controlled reversible redox reaction of Ni, and for the negative electrode, ⁴⁰ the mechanism is given below

 $AC + x Na^{+} + xe^{-} \leftrightarrow AC (xe^{-}) \parallel xNa^{+} - - - - (4)$

(here, || indicates double layer)

70

Fig. 13. (a) CV and (b) charge-discharge curves for AC||NaNiPO₄ asymmetric supercapacitor, (c) Ragone plot, (d) Cycling stability ⁵ and coulombic efficiency of AC||NaNiPO₄ asymmetric capacitor at 10 mA cm⁻².

Galvanostatic charge-discharge curves of the asymmetric capacitor were recorded at various current densities which are shown in Fig. 13 (b). The mirror like form of charge discharge ¹⁰ curves shows good electrochemical reversibility of the cell. Subsequently, the non-linear charge-discharge profile is observed which also well substantiates the CV results. The specific capacitance, energy density and power density of the full cell were calculated using the formulae reported else where.³⁰ The ¹⁵ specific capacitance value obtained for the cell from the discharge

- curves is 56, 50, 41, 36 and 33 F g^{-1} at current densities 1, 2, 4, 6, 8 and 10 mA cm⁻², respectively. Fig. 13 (c) compares the Ragone plots derived from charge/discharge curves at various current densities. The asymmetric capacitor delivers an energy density of
- ²⁰ 20 Wh kg⁻¹ at a power density of 138 W kg⁻¹ and 12 W h kg⁻¹ even at a high power density of 1358 W kg⁻¹. The power and energy density of the asymmetric AC||NaNiPO₄ capacitor is comparatively higher than symmetric (AC||AC) and the current state-of-art electrical double layer capacitor (EDLC)
 ²⁵ technology.⁴¹ Moreover, the energy density value of the capacitor
- is significantly higher than the reported $AC||NaMnO_2^{42}$ and $AC||NaNi_{1/3}Co_{1/3}Mn_{1/3}PO_4^{10}$ hybrid capacitors. However, the energy density is low compared with recent reports of $AC||K_{0.27}MnO_2.0.6H_2O^{43}$ and $AC||Na_{0.35}MnO_2^{44}$ supercapacitors.
- ³⁰ The cycle life of the cell was investigated up to 500 cycles. Fig. 13 (d) shows the specific capacitance and coulombic efficiency of the cell tested for 500 charge-discharge cycles at a current density of 10 mA cm⁻². Superior coulombic efficiency (> 95 %) was observed for the asymmetric cell; capacitance is stable and above 70 % of
- ³⁵ initial capacitance was retained up to 500 cycles. Overall, the maricite-type NaNiPO₄ is the promising electrode material for energy storage applications based on their good electrochemical reversibility, a high specific capacitance, a smaller particle size, a high surface area, mesoporous structure and a good cycle life.

40 4. Conclusions

In summary, $NaMnPO_4$ microstructures and $NaMPO_4$ (M=Co and Ni) nanoparticles were successfully synthesized by solution combustion synthesis technique. The formation of crystalline

⁴⁵ NaMPO₄ was identified by XRD Rietveld refinement. Structural parameters of new maricite-type NaNiPO₄ phase were refined.

From N₂ absorption/desorption measurements specific surface area and pore size distributions of the samples were calculated. The electrochemical performance of the materials was first ⁵⁰ investigated in various Na based aqueous electrolytes and the charge storage mechanism was proposed. The NaNiPO₄ delivered a maximum capacitance of 368 F g⁻¹ due to intercalation/deintercalation like behaviour in 1 M NaOH electrlyte, nano meter size of the particles and reversible redox reaction of Ni. An ⁵⁵ asymmetric full cell (AC||NaNiPO₄) was fabricated and it delivered a high specific capacitance (56 F g⁻¹) and energy density (20 Wh kg⁻¹).

Notes and references

 ^a Solid State Ionics & Energy Devices Laboratory, Department of Physics,
 ⁶⁰ Bharathiar University, Coimbatore 641 046, India. Tel: +91-422-2428446; E-mail: selvankram@buc.edu.in

^b Semiconductor Electronics Department, Lviv Polytechnic National University, 12 Bandera Street, Lviv 79013, Ukraine.

^cFaculty of Applied Chemical Engneering, Chonnam National University, 65 Gwangju 500-757, Korea

- 1. B. Dunn, H. Kamath and J. M. Tarascon, Science, 2011, 334, 928.
- 2. M. S. Whittingham, Science, 1976, 192, 1126.
- (a) H. Pan, Y-S. Hu and L. Chen, *Energy Environ. Sci.* 2013, 6, 2338. (b) J. Molenda, A. Kulka, A. Milewska, W. Zajac and K.
- Swierczek, *Materials*, 2013, 6, 1656-1987.
 (a) F. Wang, S. Xiao, Y. Hou, C. Hu, L. Liu and Y. Wu, *RSC Adv.*, 2013, 3, 13059-13084. (b) F. Shi, L. Li, X-L. Wang, C-D. Gu and J-P. Tu, *RSC Adv.*, 2014, 4, 41910-41921. (c) S. P. Ong, V. L.
- 75 Chevrier, G. Hautier, A. Jain, C. Moore, S. Kim, X. Ma and G. Ceder, *Energy Environ. Sci.*, 2011, 4, 3680.
- P. Moreau, B. guyomard, J. Gaubicher and F. Boucher, *Chem. Mater.*, 2010, 22, 4126-4128.
- 6. A. D. Tevar and J. F. Waitacre, *J. Electrochem. Soc.*, 2010, **157**, 80 A870-A875.
- J. P. Parant, R. Olazcuaga, M. Devalette, C. Fouassier and P. Hagenmuller, J. Solid State Chem., 1971, 3, 1-11.
- 8. J. Zhao, J. He, X. Ding, J. Zhou, Y. Ma, S. Wu, R. Huang, *J Power Sources*, 2010, **195**, 6854-6859.
- S. Komaba, C. Takei, T. Nakayama, A. Ogata and N. Yabuuchi, Electrochem. Commun., 2010, 12, 355-358.
- M. Minakshi, D. Meyrick and D. Appadoo, *Energy and Fuels*, 2013, 27, 3516-3522.
- D. Kim, E. Lee, M. Slater, W. Lu, S. Rood and C.S. Johnson, *Electrochem. Commun.*, 2012, 18, 66-69.
- M. Nose, H. Nakayama, K. Nobuhara, H. Yamaguchi, S. Nakanishi and H. Iba, J Power Sources, 2013, 234, 175-179.
- F. Sauvage, L. Laffont, J. M. Tarascon and S. Skaarup, *Inorg. Chem.*, 2007, 46, 3289-3294.
- 95 14. D. Yuan, W. He, F. Pei, F. Wu, Y. Wu, J. Qian, Y. Cao, X. Ai and H. Yang, J. Mater. Chem. A, 2013, 1, 3895-3899.
 - 15. M. Minakshi and D. Meyrick, J. Alloys Compd., 2013, 555, 10-15.
- K. T. Lee, T. N. Ramesh, F. Nan, G. Botton and L. F. Nazar, *Chem. Mater.*, 2011, 23, 3593-3600.
- 100 17. S-M. Oh, S-T. Myung, J. Hassoun, B. Scrosati and Y-K. Sun, *Electrochem. Commun.*, 2012, **22**, 149-152.
 - A. K. Padhi, K. S. Nanjundaswamy and J. B. Goodenough, J. Electrochem. Soc., 1997, 144, 1188-1194.
- 19. H. Pan, Y-S. Hu and L. Chen, *Energy Environ. Sci.*, 2013, **6**, 2338-2360.
 - 20. Y. Zhu, Y. Xu, C. Luo and C. Wang, *Nanoscale*, 2013, **5**, 780-787.
 - K. Zhagib, J. Trottier, P. Hovington, F. Brochu, A. Guerfi, A. Mauger and C. M. Julien, *J Power Sources*, 2011, **196**, 9612-9617.
- J. Moring, E. Kostiner, *J. Solid State Chem.*, 1986, **61**, 379-383.
 P.G. Nagornyi, A.A. Kapshuk, A.N. Sobolev, N.V. Golego,
 - 23. P.G. Nagornyi, A.A. Kapshuk, A.N. Sobolev, N.V. Golego, *Kristallografiya*, 1996, **41**, 835-838.
 - 24. J.N. Bridson, S.E. Quinlan, and P.R. Tremaine, *Chem. Mater.* 1998, **10**, 763-768
 - 25. R. Hammond, J. Barbier, Acta Cryst., 1996, B52, 440-449.

- (a) S. Pang, A. M. Anderson, *J. Mater. Chem.*, 2000, **15**, 2096-2106.
 (b) Y-H. Chu, C-C. Hu, K-H. Chang, *Electrochim. Acta*, 2012, **61**, 124-131.
 (c) H. Pang, Z. Yan, W. Wang, Y. Wei, X. Li, J. Li, J. Chen, J. Zhang and H. Zheng, *Int. J. Electrochem. Sci.*, 2012, **7**,
- 12340-12353. (d) L. Mai, H. Li, Y. Zhao, L. Xu, X. Xu, Y. Luo, Z. Zhang, W. Ke, C. Niu and Q. Zhang, *Scientific Reports*, 2013, **3**, 1718, 1-6.
- 27. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, Pergamon, New York, 1966.
- 10 28. C-C. Hu and C-C. Wang, J. Power Sources, 2004, 125, 299-308.
- F. Cheng, C. Hc, D. Shi, H. Chen, J. Zhang, S. Tang, D. E. Finlow, Mater. Chem. Phys., 2011, 131, 268-273.
- (a) B. Senthilkumar, M. Danielle, Y-S. Lee and R. Kalai Selvan, *RSC Adv.*, 2013, **3**, 16542-16548. (b) K. V. Sankar, D. Kalpana, R.
 K. Selvan, *J Appl Electrochem*, 2012, **42**, 463-470.
- (a) B. Senthilkumar, K. Vijaya Sankar, R. Kalai Selvan, M. Danielle and M. Manickam, *RSC Adv.*, 2013, 3, 352-357.
- 32. C. C. Hu, J. C. Chen and K. H. Chang, *J Power Sources*, 2013, **221**, 128-133.
- 20 33. G. Wang, L. Zhang, J. Kim and J. Zhang, J. Power sources, 2012, 217, 554-561.
- M-C. Liu, L-B. Kong, X-J. Ma, C. Lu, X-M. Li, Y-C. LuO and L. Kang, New. J. Chem., 2012, 36, 1713-1716.
- 35. M. Aghazadeh, A. N. Golikand and M. Ghaemi, Int. J. Hydrogen
- 25 Energy, 2011, **36**, 8674-8679.

- (a). M. Sathiya, A. S. Prakash, K. Ramesha, J.M. Tarascon, A. K. Shukla, *J. Am. Chem. Soc.* 2011, **133**, 16291–16299. (b). Jonathon Duay, Stefanie A. Sherrill, Zhe Gui, Eleanor Gillette, and Sang Bok Lee, *ACS Nano* 2013, 7, 1200-1214. (c). Haihong Yina, Changqing Song, Yang Wang, Shouchuan Li, Min Zeng, Zhengli Zhang,
- Ziqiang Zhu, Ke Yu, *Electrochim. Acta* 2013, 111, 762-770, (d). K.
 V. Sankar, R. K. Selvan, RSC Advances 2014, 4, 17555-17566, (e).
 J. Cao, Y. Wang, Y. Zhou, J-H. Ouyang, D. Jia and L. Guo, *J. Electroanal. Chem.*, 2013, 689, 201-206.
- 35 37. E. G. Calvo, F. Lufrano, P. Staiti, A. Brigandi, A. Arenillas and J. A. Menendez, *J. Power Sources*, 2013, 241, 776-782.
 - X. Sun, X. Zhang, H. Zhang, D. Zhang and Y. Ma, J. Solid State Electrochem., 2012, 16, 2597-2603.
- 39. L-B. Kong, M. Lu, J-W. Lang, Y-C. Luo and L. Kang, *J. Electrochem. Soc.*, 2009, **156**, A1000-A1004.
- 40. Y. Zhao, Q. Y. Lai, Y. J. Hao, and X. Y. Ji, J. Alloys Compd., 2009, 471, 466-469.
- Burke, A. F. Proc. IEEE Veh. Power Propulsion Conf. (VPPC"05), 2005, 356-366.
- 45 42. Q. T. Qu, Y. Shi, S. Tian, Y. H. Chen, Y. P. Wu and R. Holze, *J. Power Sources*, 2009, **194**, 1222-1225.
- 43. Q. Qu, L. Li, S. Tian, W. Guo, Y. P. Wu and R. Holze, *J. Power Sources*, 2009, **195**, 2789-2794.
- 44. B. H. Zhang, Y. Liu, Z. Chang, Y. Q. Yang, Z. B. Wen, Y. P. Wu and R. Holze, *J. Power Sources*, 2014, **253**, 98-103.

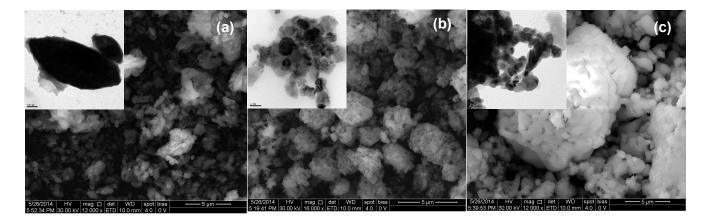
Table 1. Lattice parameters of the NaMPO₄ (M=Mn and Co) phases in comparison with the literature data

Composition	Space group	a, Å	b, Å	c, Å	$V, Å^3$	Reference
NaMnPO ₄	Pmnb	6.9053(9)	9.085(2)	5.1149(7)	320.9(2)	This work
NaMnPO ₄	Pmnb	6.9041(1)	9.0882(1)	5.1134(1)	320.8	[22]
NaCoPO ₄	$P6_{5}$	10.169(3)	-	23.868(7)	2137.5(9)	This work
<i>h</i> -NaCoPO ₄	P65	10.166(1)	-	23.881(5)		JCPDS no. 52-33

60

55

Table 2. Lattice parameters of NaNiPO₄ sample in comparison with the literature data for the related maricite-type Na MPO_4 (M=Co, Fe, Mn) compounds.


Composition	Space Group	<i>a</i> , Å	b, Å	<i>c</i> , Å	V, Å ³	Reference
NaNiPO ₄	Pmnb	6.7373(7)	8.7735(10)	5.0336(6)	297.5(1)	This work
N ₂ C ₂ DO	Pnma	8.871(3)	6.780(3)	5.023(1)	302.1	JCPDS no. 87-1016
NaCoPO ₄	Pnma	8.896(1)	6.8007(9)	5.0341(7)	304.5	JCPDS no. 88-481
NaFePO ₄	Pmnb	6.867	8.989	5.049	311.6	JCPDS no. 29-1216
	Pnma	8.990	6.862	5.047	311.3	JCPDS no. 89-816
NaMnPO ₄	Pmnb	6.9041(1)	9.0882(1)	5.1134(1)	320.8	JCPDS no.84-852

65

70

Atoms, sites	x/a	y/b	z/c	$\frac{B_{\rm iso/eq}}{1.5(3)}$	
Na, 4 <i>c</i>	3/4	0.8544(15)	0.553(2)		
Ni, 4 <i>a</i>	0	0	0	1.1(2)	
P, 4 <i>c</i>	1/4	0.8206(11)	0.535(2)	1.1(3)	
01, 4 <i>c</i>	1/4	0.882(2)	0.243(2)	0.5(4)	
O2, 8 <i>d</i>	0.4365(14)	0.8756(15)	0.6732(15)	0.7(4)	
O3, 4 <i>c</i>	1/4	0.6442(14)	0.539(3)	0.3(5)	

Table 3. Crystallographic data for NaNiPO₄ structure (space group *Pmnb*, Z = 4, a = 6.7373(7) Å, b = 8.7735(10) Å, c = 5.0336(6) Å)

s Fig. 5. FE-SEM images of nanoporous (a) NaMnPO₄, (b) NaCoPO₄ and (c) NaNiPO₄ particles (inset) TEM image.