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Abstract: 

The advent of different approximate accelerated stochastic simulation methods have helped 

considerably in reducing the computational load of the exact simulation algorithms. However, 

along with the reduction in the computational load comes the risk of driving the molecular 

numbers to the regime of negative numbers during the simulations. Over the years, various 

methods have been developed in order to solve the problem by using different strategies. Some 

methods have employed binomial numbers to model the reactions, while others have tried the 

partitioning of the reaction network. In this manuscript, we have proposed a new approach where 

the noise inherent in the choice of the number of firings of a given reaction during a time step is 

taken into account. This idea of noise accounting is used in conjunction with the accelerated 

stochastic method: the Representative Reaction Approach (RRA). It is found that the new 

method is successful at solving the problem of negative numbers, and compares very favorably 

with other state-of-the-art stochastic simulation methods. 
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Introduction 

The stochastic time evolution of a chemical system can be described by the Chemical 

Master Equation
[1,2] 

(CME). But owing to its complexity, solving the CME is a difficult task and 

one has to rely on Monte Carlo simulation techniques that generate stochastic realizations of the 

underlying chemical kinetics. One such technique is the kinetic Monte Carlo
[3]

 based Stochastic 

Simulation Algorithm
[4,5] 

(SSA) developed by Daniel Gillespie. This technique simulates a 

randomly chosen single reaction during each time step giving stochastic realizations until a 

desired time is reached. However, this approach is demanding for the simulations of realistic 

systems. Subsequent to the development of the SSA, several methods have been developed in 

order to improve the performance of the SSA, such as the next reaction method
[6]

, the optimized 

direct method
[7]

 , the sorting direct method
[8]

 and the more recent recycling direct method
[9]

 

(RDM). In addition to these methods, the Delay Stochastic Simulation Algorithm
[10]

 (DSSA), 

which considers time delays, has also been developed. It has been found that such attempts to 

increase the computational performance of the SSA have only been marginally successful.  

The lack of significant success in improving the SSA with exact simulation approaches has 

led to the development of new approximate methods, where some of the accuracy of the SSA has 

been sacrificed. One such approach consists of hybrid methods
[11-13]

, which have been used for 

the multiscale simulations of chemical systems. In these methods, the Chemical Langevin 

Equation
[14]

 or the Reaction Rate Equations are coupled with the SSA. Even though the hybrid 

methods have succeeded in reducing the computational load of the SSA to some extent, they 

have lost the simplicity of the SSA. Another approach consists of leaping methods, where larger 

time steps are taken in order to simulate the occurrence of more reactions. In one such method, 
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which was the first of its kind, Daniel Gillespie proposed Gillespie’s Approximate Stochastic 

Algorithm
[15]

 (GASA). In this method, the time step during the simulations is derived from the 

Leap Condition
[15]

: a condition wherein a change in the number of reactant molecules in a given 

reaction is allowed as long as it alters the “propensity function” (the product of the reactant 

number of molecules and the rate constant) by an infinitesimal amount for that reaction. This 

method has helped to reduce the computational load of the simulations. Over the years, several 

improvements to this approach have been proposed, which includes the Gillespie-Petzold
[16]

 (G-

P) method, the implicit tau-leaping method of Rathinam et al.
[17]

, the efficient step size method 

of Cao et al.
[18]

, the K-leap method of Cai and Xu
[19]

, the N-leap method of Xu and Lan
[20]

 and 

the recent Representative Reaction Approach
[21]

 (RRA) that we have developed. 

In all the approximate accelerated methods mentioned above, the reaction numbers are 

modeled by a Poisson distribution. Since the range of random variables generated by the Poisson 

distribution is unlimited, some reactions will fire many more times, thereby giving rise to 

physically unrealistic or negative numbers during the simulations. In other words, the occurrence 

of the negative population during the simulations can also be interpreted as the consequence of a 

violation of the Leap Condition. One obvious way to avoid the occurrence of negative 

populations is to model reaction numbers by random variables that have a finite range. Hence, 

simulation methods which use binomial random variables were developed. They include the BD 

-τ  leap methods of Tian-Burrage
[22]

, Chatterjee et al.
[23]

, the multinomial τ - leap
[24] 

approach, 

the efficient binomial leap
[25]

, the R-leap
[26]

, and the Generalized binomial leap
[27]

 for delayed 

reactions, as well as the RRA used in conjunction with the binomial distribution.
[28]

 Apart from 

these methods, Cao et al.
[29] 

have developed a method where the reaction network is partitioned 
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into critical and noncritical reactions. This same concept of partitioning of a reaction network  

has been used by Yates et al.
[30]

 in their confidence-based method. In case of such methods, the 

noncritical reactions were modeled by Poisson variables.  

However, all the methods mentioned in the above paragraph have their own pros and cons. 

The BD-τ  leap method of Tian-Burrage
[22]

 is based on the concept of limiting reactants, which 

is used to determine the upper bound on the maximum allowed firings of each reaction channel 

during a leap. This constraint seems to be artificial in some situations; for instance, in reaction 

networks in which there are certain reactions that tend to increase the consumed reactant 

numbers for that particular reaction. Along with this, this method also fails to simulate the cases 

where there are multiple channel reactant dependencies, i.e. cases where a single reactant gets 

consumed in multiple reactions. Chatterjee et al.
[23]

 approached this problem by employing the 

binomial distribution while updating the currently available molecular population. This 

introduces some bias in the choice of the reaction numbers, as the earlier reactions occur more 

frequently than those selected afterwards. In other words, it depends on the order in which the 

reactions are selected. A potential solution to this problem that has been suggested is to choose 

the reactions randomly at each time step. The efficient binomial leap attempts to solve the 

problem, but it becomes slow due to the requirement of some more binomial random variables at 

each time step. Cao et al.
[29]

 tried to fix the problem, but their solution became less flexible with 

the introduction of the second control parameter. Along with this, the use of Poisson random 

variables keeps alive the risk of physically unrealistic numbers being obtained. The multinomial 

τ -leaping
[24]

 and R-leaping,
[26]

 which are extensions of the binomial methods, have obtained 
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some success at solving the aforementioned problems, but lose the computational simplicity of 

these methods.               

Therefore, as the paragraphs above indicate, there are difficulties inherent in all the 

previous methodologies that have been employed to date. In this current work, we report a new 

approach that we have adopted in order to try and surmount these difficulties. This new method 

is primarily based on the notion of “noise”, and works in conjunction with the Representative 

Reaction Approach (RRA). The new approach is based on the reasoning that approximate 

stochastic simulation methods fail because the number of firings determined for each reaction 

during the simulation step by these methods is greater than the appropriate number. In other 

words, if “y” is the number of firings determined by an approximate accelerated method for a 

given reaction during a given time step, it is in excess of the appropriate value, say “x”, by a 

value “n”. By “appropriate”, what is meant is that “x” is the value of the number of firings of that 

specific reaction that would be perfect in keeping with the Leap Condition. The implication here 

is that if “x” had been chosen as the number of firings by the approximate accelerated method, 

instead of “y”, then the simulation would have proceeded perfectly, without encountering 

problems such as that of negative populations. So, if one could find the correct number of firings 

(“x”) for each reaction in each time step, one could proceed with the accelerated simulation. 

Now, since y = x + n, if one could determine the amount (n) by which y exceeds the appropriate 

number of firings, x, then one could determine x and thus proceed with an accelerated algorithm 

that would give results faster than SSA but with problems such as negative populations 

eliminated. But how would one find n ?  
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We postulate that n is the noise inherent in the determination of the number of firings (y) 

for a given reaction by the approximate accelerated method. Now, “noise” in this context in the 

system can have both positive and negative values, because actual stochastic dynamics can both 

slow down or accelerate at any stage of the reaction. However, for the leap in question, where the 

number of firings has led to negative populations, the noise correction can only be a subtraction 

from the determined number of firings of the given reaction. This is because considering the 

fluctuations/noise as a positive correction to the number of firings would lead to even more 

unphysical negative values for the populations. Therefore, such corrections, while they can be 

calculated, are discarded.  

Hence, if the noise n is subtracted from y, viz. x y n= − , then one would obtain the correct 

number of firings for each step, in accordance with the Leap Condition. This is further illustrated 

in Figure 1 below. 

 

Figure 1. The pictorial theme of the concept of noise associated with every reaction; in a 

particular time step, x is the appropriate number of reactions, y is the calculated number of 

reactions and n is the associated noise.  

Page 6 of 39RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



7 

 

We have tested this idea for the case of the Representative Reaction approach (RRA), an 

accelerated stochastic method that we have developed
[21]

, by incorporating this new concept of 

subtracting the noise, n, from the number of firings obtained for each step for every reaction. 

This new approach (termed as RRA-Noise), has been compared to a number of other accelerated 

methods that have been proposed in the literature, including GASA
[15]

, G-P
[16]

, the BD-τ  of   

Chatterjee et al. 
[23]

 etc. The current approach provides results which compares very favorably 

with other approaches, in addition to being relatively simple and easy to implement.   

The rest of the paper is organized as follows:  in the Methodology section, we have 

discussed in brief the necessary background required for the theoretical discussion, with the 

description of the new method followed by the implementation details of the same. In the Results 

and Discussion section, simulations of different examples have been reported that confirm the 

reliability and efficiency of the newly proposed approach. The conclusions are provided in the 

last section.         

Methodology 

Background 

A well-stirred mixture of N chemical species { }21
, ,..., NS S S , which are interacting with 

each other through M chemical reactions { }21
, ,..., MR R R  has been considered. The mixture is 

assumed to be in thermal equilibrium at some finite temperature T. The state of this mixture at 

any particular time, t, is specified by a state change vector: 1 2( ) ( ( ), ( ),..., ( ))NX t X t X t X t≡ . Our 

aim is to study the time evolution of this N component vector from some given initial conditions, 
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say, 0 0( )X t x≡ . Each chemical reaction jR  in the mixture is characterized by a propensity 

function, ja  and by the state change vector, 1 2( , ,..., )j j j Njν ν ν ν= . Here, ijν  is the change 

produced by the jR  reaction in the molecular population of the iS  species. The quantity 

( )ja x dt gives the probability that the jR
th
 reaction will occur somewhere in the next infinitesimal 

time interval [ ),t t dt+ .    

Concept of Noise   

As mentioned in the Introduction, the current approach is to determine the value of the 

number of firings (n) that is in excess of the appropriate value (x) that would be in accordance 

with the Leap Condition. This value n is determined as the noise present in the number of firings 

(y) calculated by the approximate accelerated stochastic method. In order to determine the value 

of the noise, n, we calculate the “Poisson noise” for every reaction firing value calculated for 

every step.  

In an attempt to accelerate the SSA, Gillespie had modeled
[15]

 the occurrences of different 

chemical reactions by Poisson random variables. Since the number of events (chemical 

reactions) taking place in a specific time interval are discrete in nature, it is apt to model them by 

the Poisson probability distribution. In other words, the firings of chemical reactions are treated 

as Poisson processes. It was further shown by Gillespie that the mean (or expected) value and the 

variance of the jR
th
 reaction is ja τ . In a Poisson process, the actual number of reactions 

fluctuates about its mean value, ja τ , with a standard deviation of ja τ .  These fluctuations in 
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the reaction numbers are treated as Poisson noise. In electronics, similar fluctuations are known 

as “shot noise”.
[31,32]

    

The fluctuation in every individual reaction implies that all reactions in the chemical 

system are accompanied by noise. The noise also expresses the basic form of uncertainty 

associated with the occurrence of the reactions. The uncertainty is substantial when the number 

of molecules participating in such reactions (or the propensity function) is small enough. It can 

be negligible (or very small), when the number of molecules (or the propensity function) are 

abundant. This means that the reactions in any chemical system are always accompanied by the 

noise. The strength of the noise associated with a reaction varies as the square root of the 

expected number of firings of the given reaction. Thus, the noise relatively decreases as the 

expected number of firings of the reaction increases. However, the ratio of expected number of 

reactions to the noise, i.e., 
j

j

a

a

τ

τ
, increases.  

In case of chemical systems that have less number of molecules, the simulations may show 

unfeasible fluctuations, which, in turn, may give rise to unrealistic (or negative) numbers. Hence, 

the occurrence of negative numbers can be avoided by removing such unfeasible fluctuations 

that are in the form of noise. Furthermore, it will be shown in the Results and Discussion section 

that the removal of noise associated with every reaction does not affect the accuracy of the 

simulations.   

Representative Reaction Approach (RRA) with Noise  
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In order to speed up the SSA simulations, the Representative Reaction Approach
[21]

 (RRA) 

has been proposed. In this recently proposed method, the chemical system to be simulated is 

represented by a single representative reaction (RR). The reaction that has been found to be the 

most effective is 2A B→ . Like any other reaction, the RR is also characterized by the rate 

constant and the propensity function. The propensity function, 0 ( )a x  is the sum of propensities 

of all the individual reactions and the rate constant, 0C  is a weighted average of all the rate 

constants. Thereafter, the total number of hypothetical species, 0x   are calculated.  Furthermore, 

by applying the leap condition to this RR, the expected reactions that are supposed to take place 

in the next time step are determined. The firings of the individual reactions are modeled by using 

the Poisson random number generator.
[33]

 However, as discussed in the Introduction, such 

approximate accelerated methods as the RRA are prone to exhibiting negative numbers during 

the simulations, for certain reaction systems.  

The current approach is to employ the notion of noise whenever negative numbers are 

encountered in a given step during the simulation. Initially, the simulations of any chemical 

system are carried out in the usual way by the RRA approach. When negative numbers are 

obtained at any time step, that step of the RRA is annulled. Working on the assumption that the 

negative numbers obtained are an indication of excess noise in the leap (see Figure 1), the 

current method attempts to reduce the uncertainty in the fluctuations by removing the noise from 

the expected number of reactions. The procedure for the noise-elimination based approach that is 

employed along with the RRA, is provided in the next subsection.           

Steps for the Implementation of RRA-Noise  
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The implementation details of the new method, RRA-Noise, are outlined below: 

Step 1: input the initial number of species and the rate constants of the constituent reactions; 

initialize the counters and the random number generators to a seed value and transfer the initial 

number of species to some temporary locations (variables).   

Step 2: calculate the propensity functions: }{ 1 2, ,..., Ma a a   

the sum of the propensity functions : 0

1

( )
M

M

j

a x a
=

=∑  

the weighted rate constant: 0

1 0

( )

( )

M
j

j

j

a x
C c

a x=

 
=  

 
∑  

Step 3: calculate the total number of species present: 

2

0 0 0 0

0

0

8

2

C C a c
x

c

+ +
=  

Step 4: calculate the time step 0

0 ( )

N

a x
τ = , where the total number of reactions are: 

0
0

0 0

16 ( )

(2 1)

a x
N

C x

ε
=

−
, the value of ε  being 0.06. 

Step 5: calculate the expected number of reactions for the individual reactions: exp j ja τ=  

Step 6: calculate the actual number of firings of individual reactions: (exp , )j jk poidev iseed=   

Step 7: make the necessary changes in the molecular populations using the appropriate 

stoichiometric parameters and reaction numbers. 
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Step 8: if negative numbers are not found, continue with the RRA; else discard the step and use 

the initial species stored for that step in the temporary locations. 

Step 9: calculate the noise: jσ  = ja τ   

Step 10:  calculate the corrected expected number of reactions: 'exp j = exp j  - jσ  

Step 11:  calculate the new actual number of reactions: '(exp , )j jn poidev iseed=  

Step 12:  make the necessary changes in the molecular populations.  

Step 13:  go to step 1. 

Results and Discussion   

Discussed below are the results of simulations done for four different chemical systems. In 

addition to the simulations done with the newly proposed RRA-Noise method, simulations have 

also been done with the Stochastic Simulation Algorithm
[4,5] 

(SSA) and the approximate 

accelerated methods: the Gillespie’s Approximate Stochastic Algorithm (GASA)
[15]

, the 

Gillespie- Petzold (GP) method
[16]

 and the Binomial distribution based tau (BD-τ) method of 

Chatterjee et al.
[23]

. This section discusses the results of the simulations for the different systems 

and provides a comparison of the efficiency and robustness of the RRA-Noise method in 

comparison to the other methods. Specifically, what was compared was (i) the means and the 

coefficient of variations (CVs) obtained for 500 simulation runs for each method, and (ii) the 

average CPU times and the number of steps for a simulation obtained from the CPU times of the 
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500 simulation runs for each method. This was done for all the five chemical system examples 

considered. The stability analysis of the newly proposed algorithm has been discussed for the  

system of first order reactions and the oscillatory reaction model.  

The Carletti-Burrage Model 

The following reaction network model was proposed by Carletti and Burrage.
[25]

  

                                                   

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

: 1

: 1

:

:

: 2

: 2

: 1

: 1

: 1 2

: 2 1

c

c

c

c

c

c

c

c

c

c

R RNA DNA

R DNA RNA

R m RNA

R RNA m

R m D

R D m

R DNA D DNA

R DNA DNA D

R DNA D DNA

R DNA DNA D

→

→

→

→

→

→

+ →

→ +

+ →

→ +

                                        (1) 

 where RNA, DNA, DNA1, DNA2, D and m are the species taking part in the different 

reactions; and the symbols ( 1c  to 10c ) over the arrows indicate the rate constants of the respective 

reactions. 

The numerical values of the rate constants of the reactions and initial molecular species are 

given in Table S8 and Table S9 of the Supporting Information.  

The Carletti-Burrage Model is simulated by different methods which have been discussed 

earlier in the manuscript. In case of simulation by Gillespie’s Approximate Stochastic Algorithm 
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(GASA), we found that negative molecular numbers occurred for some species during certain 

steps of the simulations. Thus, GASA was found to be unsuitable for the simulation of this 

model. Moreover, the binomial distribution based tau (BD-τ) method of Tian-Burrage
[22]

 could 

not be applied for this model, since there are some species which take part in multiple reactions: 

a situation that the BD-τ method of Tian-Burrage is incapable of handling, making it technically 

non-applicable for such reaction networks. Hence, only the methods that were successfully able 

to reproduce the simulation trajectories are reported here. They are: the Stochastic Simulation 

Algorithm
[4,5] 

(SSA)
 
, the Gillespie-Petzold (G-P) method

[16]
, the binomial distribution based  tau 

(BD-τ ) method of Chatterjee et al.
[23]

, and our newly proposed method: RRA-Noise.  

The error control parameter,ε , with a standard value of 0.03 was used for doing the 

simulations with GASA and G-P (this value of ε has been the standard value employed in 

previous reports
[15,16]

), while, in the case of the RRA-Noise, the value of ε  has been taken as 

0.06. These ε values have been used for all the subsequent examples of the chemical systems 

simulated by these methods. As mentioned earlier, the values of the means (with their respective 

error bars) and the CVs reported in Figure 2 and Figure 3 have been calculated over an ensemble 

of 500 simulation runs, using a different seed value for the random number for each run.       

The comparisons of the means (with ±1 SD error bars) of the probability distributions of 

some key  species of the Carletti-Burrage Model using SSA, G-P, the BD-τ  method of 

Chatterjee-Vlachos-Katsoulakis, and the  RRA-Noise is shown in Figure 2. The coefficient of 

variation (CV) for the same species for the same set of simulation methods is shown in Figure 3 

below. 
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Figure 2. The trajectories of the means with ±1 SD error bars [(a)-(d)]  for the probability 

distributions  of the species  DNA, DNA1, DNA2 and RNA  using SSA (blue curve), G-P (green 

curve), BD-τ  of Chatterjee-Vlachos-Katsoulakis (magenta curve) and RRA-Noise (red curve) 

for the case of the Carletti-Burrage Model. 
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Figure 3. The trajectories of the CVs [(a)-(d)]  for the probability distributions  of the species  

DNA, DNA1, DNA2 and RNA  using SSA (blue curve), G-P (green curve), BD-τ  of Chatterjee-

Vlachos-Katsoulakis (magenta curve) and RRA-Noise (red curve) for the case of the Carletti-

Burrage Model. 

The average CPU time and the number of steps taken by the different simulation methods is 

shown in Table 1.   

Table 1. The average values of the CPU times (in seconds) and the number of steps for 500 

simulations taken by different simulation methods for the case of Carletti-Burrage Model. 
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Simulation 

Methods 

SSA G-P BD-τ  RRA-Noise  

CPU time (sec) 

 

5.029 14.970 40.327 4.234 

 

Steps 33210 30905 16368 2854 

 

 

The CPU time values in Table 1 show that the newly proposed RRA-Noise is significantly 

faster than the G-P and the BD-τ methods, and faster than the SSA. This is evident by the less 

number of steps taken by the RRA-Noise method. The overlap of the trajectories of the means of 

the respective species in Figure 2 is an indicator of good agreement between the different 

simulation methods. In the case of the BD-τ of Chatterjee-Vlachos-Katsoulakis (Magenta), it is 

found that the tail ends of the simulated trajectories (for DNA, DNA1 and DNA2) are not within 

the ±1 SD error bars of the SSA trajectories. The spikes in profiles of CVs for the same species 

in Figure 3 are a signature of this deviation, which are not in agreement with the others. The 

occurrence of the spikes is attributed to the increase in the standard deviation at the respective 

time points. In case of the BD-τ method, the time steps are taken by employing a coarse grain 

factor
[23]

, f, taken as 2.0. It has been found that the smaller value of the coarse grain factor serves 

to make the simulations more accurate. However, this also leads to an increase in the CPU time. 

The increase in the value of  “f ” reduces the CPU time, but this now leads to the loss of accuracy 

in the simulations. This is shown in Figure S1 of the Supporting Information, where the 

simulations are performed by increasing the coarse grain factor, f, to 4.0. Figure S1 depicts 

different (inaccurate) simulation trajectories obtained from the BD-τ of Chatterjee-Vlachos-
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Katsoulakis at the reduced CPU time. On the other hand, in the case of the G-P method, the 

choice of SSA during the simulations contributes to the increase in the CPU time. Thus, with the 

RRA-Noise results lying within the SSA results in terms of ±1 SD error bar, it turns out that it 

provides good results in terms of accuracy. This is a heartening result, especially since the RRA-

Noise is seen to perform considerably better than the BD-τ method, which had been specifically 

developed to tackle the problem of negative populations in chemical systems.
[23]

 

The Simple Isomerization Reaction Model  

The Simple Isomerization Reaction Model consists of the following three reactions.  

1

2

2

1 1 2

2 2 1

3 2 3

:

:

:

c

c

c

R X X

R X X

R X X

→

→

→

                                               (2) 

where X1, X2, X3 are the reacting species and c1, c2 and c3 are the rate constants of the 

corresponding reactions. 

The numerical values of the rate constants of the reactions and initial molecular species are 

given in Table S10 of the Supporting Information. 

Like for the previous example, the Simple Isomerization Reaction Model has also been 

simulated by different simulation methods. The comparisons of the means with ±1 SD error bars 

and the CVs of the probability distributions for the species X1, X2, X3 by using the SSA, the G-P, 

the BD-τ  method of Chatterjee-Vlachos-Katsoulakis, and the RRA-Noise is shown in Figure 4. 

Their trajectories have been calculated over an ensemble of 500 simulation runs.  
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Figure 4. The trajectories of the means with ±1 SD error bars [(a)-(c)]  and the CVs [(d)-(f)] for 

the probability distributions  of the species  X1, X2, X3 using SSA (blue curve), BD-τ  of 

Chatterjee-Vlachos-Katsoulakis (magenta curve) and RRA-Noise (red curve) for the case of the 

Simple Isomerization Model. 

Table 2. The average values of CPU time (in seconds) and the number of steps taken by different 

simulation methods for the case of the Simple Isomerization Reaction Model.  
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Simulation 

Methods 

SSA G-P BD-τ  RRA-Noise  

CPU time (sec) 

 

83.919 33.131 59.479 35.151 

Steps 68468 36126 34895 27826 

 

It was found that the simulation of this model by GASA leads to negative numbers, making 

it inapplicable for comparisons with other methods. The model system has been simulated by the 

BD-τ  method with a coarse grain factor, f , equal to 2.0. It was seen that while the simulated 

profiles are accurate for this coarse grain factor value, the simulation also takes excess CPU time 

of 59.479 seconds. An attempt to reduce this CPU time by increasing the value of “f” to 50.0 and 

100.0 gives totally different trajectories, as shown in Figures S2 and S3 of the Supporting 

Information. The corresponding values of the CPU times are given in Table S2 and S3. 

Furthermore, this also comes at the risk of obtaining negative numbers for the species X2. Thus, 

for this example, the RRA-Noise again scores over BD-τ : a method that had been developed 

specifically in order to sort out the issue of negative numbers.  

Admittedly, the G-P method is marginally better in terms of accuracy in comparison to 

RRA-Noise, and the two methods are found to be equally accurate, which indicates that the G-P 

is the most effective method for the simulation of this particular chemical system. However, the 

RRA-Noise is only slightly less efficient, which indicates that it would be almost as effective as 

the G-P in simulating this system. It takes less number of steps than observed for all of the other 

methods (Table 2). It is also found that the trajectories obtained from the RRA-Noise simulations 

are within the SSA results from the viewpoint of ±1 SD error bars. Therefore, this example also 
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showcases the efficiency and reliability of RRA-Noise at simulating a chemical system that is 

susceptible to the problem of negative numbers.   

Simple Model System    

The Simple Model system of two reactions discussed here was used by Cao et al.
[29]  

 to test 

the reliability and efficiency of their modified Poisson tau leap method.  It consists of the 

following set of reactions:  

1

2

1 1 2

2 2 3

:

:

c

c

R X X

R X X

→

→
                                     (3) 

where X1, X2, X3 are the reacting species and c1, c2 are the rate constants of the 

corresponding reactions. 

The numerical values of the rate constants of the reactions and initial molecular species are 

given in Table S11 of the Supporting Information. 

The study of the associated rate constants of the two reactions ( 1 210, 0.1c c= = ) and the 

corresponding reactant species (X1 = 9, X2 = 20000) indicates that there is a possibility of getting  

negative numbers for the X1 species. This fact gets confirmed when the G-P method is seen to 

drive the X1 species to unrealistic numbers during the simulations. The same is seen to be true for 

GASA. Hence, apart from the SSA, only BD-τ and RRA-Noise have been considered. The 

results are shown in Figure 5 and Table 3 below. 
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In case of species X1, it was observed that it falls off rapidly and afterwards does not 

demonstrate any fluctuation. Hence, the time trajectories of the X1 species are not reported in 

Figure 5. What is shown are the time trajectories of the X2 and the X3 species. For these two 

species, the values shown in Figure 5 indicate that there is considerable agreement between all 

the simulation methods.  

 

 

Figure 5. The trajectories of the means with ±1 SD error bars [(a) and (b)]  and the CVs [(c) and 

(d)] for the probability distributions  of the species X2 and X3 using SSA (blue curve), BD-τ  of 
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Chatterjee-Vlachos-Katsoulakis (magenta curve) and RRA-Noise (red curve) for the case of the 

Simple Model System. 

Table 3. The average values of CPU time (in seconds) and the number of steps taken by different 

simulation methods for the case of the Simple Model System. 

Simulation 

Methods 

SSA BD-τ  RRA-Noise  

CPU time (sec) 

 

8.298 16.794 7.257 

Steps 19633 9814 726 

The mean trajectories of X2 and X3  are within the  ±1SD error bars of the SSA trajectories. 

The significantly less number of steps contribute to the CPU time performance of the RRA-

Noise. The simulated trajectories and the CPU times tabulated in Table 3 indicate the 

effectiveness of the RRA-Noise.  More importantly, it is again seen to be faster than the BD-τ  

method. Like earlier examples, any attempt to increase the efficiency of BD-τ   leads to loss of 

accuracy in the results. The results corresponding to different coarse grain values  are provided in 

the Supporting Information. 

Model of First Order Reactions: Simulation and Numerical Stability     

In this section, the simulation along with its numerical stability of the model of four 

unimolecular reactions is discussed. This model was used by Chatterjee et al.
[23]

 to test their BD-

τ  method.                                                 
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1

2

3

4

1 1 2

2 2 3

3 3 2

4 2 1

:

:

:

:

c

c

c

c

R X X

R X X

R X X

R X X

→

→

→

→

          (4) 

Here, X1, X2 and X3 are the species taking part in four different reactions and c1, c2,  c3  and c4  

are the rate constants of these reactions.  

The numerical values of the rate constants of the reactions and the initial molecular species 

are given in Table S12 of the Supporting Information.  

In this model, which consists of all first order reactions, the species X2 takes part in several 

of the reactions. This makes the reaction network more complicated in comparison to the earlier 

example pertaining to the Simple Isomerization Reaction Model.  

As shown in Figure 6, there is good agreement between the means and CVs of the 

probability distributions for the species X1, X2 and X3 obtained by using the SSA, the BD-τ  

method of Chatterjee-Vlachos-Katsoulakis and RRA-Noise. Unlike the previous two examples, 

the G-P method gives rise to negative numbers during the simulations as does GASA. Hence, 

they are not included for the comparative study along with the others. As in all the previous 

cases, the time profiles of all the species have been calculated over an ensemble of 500 different 

simulation runs.  
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Figure 6. The trajectories of the means with ±1 SD error bars [(a)-(c)]  and the CVs [(d)-(f)] for 

the probability distributions of the species  X1, X2, X3 using SSA (blue curve), BD-τ  of 

Chatterjee-Vlachos-Katsoulakis (magenta curve) and RRA-Noise (red curve) for the case of the 

model consisting of First Order Reactions. 

Table 4. The average values of CPU time (in seconds) and the number of steps taken by different 

simulation methods for the case of the model consisting of First Order Reactions.  

 

Simulation 

Methods 

SSA BD-τ  RRA-Noise  
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CPU time (sec) 

 

18.141 56.224 9.557 

Steps 199180 100001 3640 

 

The average  CPU times shown in Table 4 indicates that RRA-Noise is computationally 

more efficient than the other methods. It is almost twice as fast as the SSA. It also indicates that 

the number of steps taken by RRA-Noise are very much less than other methods. The low 

computational efficiency of BD-τ  can be attributed to the small size of the time steps, leading to 

a large number of steps. As before, this can be changed by increasing the value of the coarse 

grain factor (2.0), but that, as in the previous examples, leads to a significant loss of accuracy. 

This is  illustrated in Figure S4 of the Supporting Information, showing the results of simulations 

where the coarse grain factor had been increased to 5000.0. As Figure S4 indicates, the mean and 

the CVs for the different species becomes far less accurate for the BD-τ  case in comparison to 

the other methods. Further increase in the coarse grain factor to 10000.0 also leads to similar 

results as shown in Figure S5. The CPU values corresponding to the aforementioned f  values are 

given in Table S4 and S5 of the Supporting Information.   

The results in Figure 6 provide a good match of simulation methods with each other in 

terms of ±1 SD error bars. Overall this model of first order reactions is a classic example where, 

in addition to the accuracy, the CPU times of the corresponding methods are of prime 

importance. And here, as in the previous cases, the newly proposed RRA-Noise again ends as the 

most favorable approximate simulation method. 
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The numerical stability of the RRA-Noise is discussed for this example by taking multiple 

runs and further benchmarking them against the SSA. The SSA is simulated over an ensemble of 

20000 (black curve) simulation runs. The RRA-Noise is simulated over an ensemble of 100 (red 

curve), 500 (green curve), 1000 (blue curve), 5000 (brown curve) and 10000 (orange curve) 

simulation runs. It has been found that with the increase in the number of realizations, the RRA-

Noise gets converged to the SSA trajectories with the decrease in the error. The error between 

the trajectories of the SSA and the RRA-Noise has been calculated at some chosen discrete time 

points. The Figure 7 below shows the trajectories ((a)-(c)) of the species along with their closely 

monitored behavior ((d)-(f)) on a different scale. The Table 5 provides the absolute errors for the 

different realizations at specific time points.          
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Figure 7. The trajectories of the means with ±1 SD error bars [(a)-(c)]  and the same trajectories 

on a different scale [(d)-(f)] simulated using RRA-Noise with 100 (red curve),500 (green 

curve),1000 (blue curve),5000 (brown curve),10000 (orange curve) runs and SSA with 20000 

runs  (black curve) for the case of the model consisting of First Order Reactions. 

Table 5. The absolute errors between the trajectories of the SSA and the RRA-Noise for 

different runs at discrete time points.  
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Time points 100 runs  

1 17.779 2.922 14.856 

2 0.294 0.932 0.771 

3 9.910 8.100 0.189 

4 1.672 5.550 5.878 

Time points 500 runs 

1 9.663 5.020 4.642 

2 0.577 2.640 4.063 

3 1.826 1.895 1.930 

4 0.347 2.411 0.063 

Time points 1000 runs 

1 8.577 4.830 3.746 

2 0.649 1.958 4.608 

3 0.672 0.032 1.359 

4 0.035 0.580 1.455 

Time points 5000 runs  

1 8.379 4.153 4.225 

2 1.443 0.923 2.520 

3 0.326 2.344 0.672 

4 0.212 0.891 1.321 

Time points 10000 runs 

1 7.918 3.826 4.092 

2 0.728 0.861 1.867 

3 0.437 1.230 0.332 

4 0.145 0.885 1.260 

 

It is found that with the increase in the number of runs, the absolute error tends to decrease, 

thereby converging towards the SSA. The trajectory of RRA-Noise with 10000 runs (orange)  

gets closer to the SSA profile, relative to the curve which has 100 runs (red). This behavior can 

be observed in the Figures 7 ((d)-(f)), where wide fluctuations are observed for the curve with 

100 runs in comparison to those with 10000 runs. 

Oscillatory Model System: Simulation and Numerical Stability    
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The simulation as well as the numerical stability of the oscillatory reaction model, namely 

the Oregonator model, will be discussed in this section. This model was simulated by Daniel 

Gillespie by using the SSA. It consists of the following set of reactions: 

                                    

1

2

3

4

5

1 1 2 1

2 1 2 1

3 2 1 1 3

4 1 2

5 3 3 2

:

:

: 2

: 2

:

c

c

c

c

c

R X Y Y

R Y Y Z

R X Y Y Y

R Y Z

R X Y Y

+ →

+ →

+ → +

→

+ →

                                (5) 

Here, Y1, Y2 and Y3 are the species taking part in the different reactions, while 1X , 2X  and 

3X  signify that the molecular population levels of the species are constant during the 

simulations. c1, c2,  c3, c4, c5 are the rate constants of the reactions.  

The numerical values of the rate constants of the reactions and initial molecular species are 

given in Table S13 of the Supporting Information file. The simulation of this chemical system by 

GASA leads to negative numbers, hence the results with the GASA have not been discussed 

further. The BD-τ  of Chatterjee-Vlachos-Katsoulakis has been found to be inapplicable for this 

particular system. The rest of the methods: SSA, G-P and RRA-Noise have been discussed 

below. The oscillatory nature of this model poses a challenge to methods that claim to solve the 

problem of negative numbers.   

The mean trajectories are shown in Figures 8(a)-8(c), while Figures 8(d)-8(f) show the 

corresponding trajectories of the CVs. The behavior of the trajectories in the Figures 8(a)-8(c) by 

the different simulation methods underlines the oscillatory nature of the chemical system. The 
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trajectories of the G-P (green curve) show a slightly out-of-phase behavior relative to the others. 

However, the trajectories of SSA (blue curve) and RRA-Noise (red curve) are found to be in 

good agreement. This is observed to a good extent in all the curves. 

  

 

 

Figure 8. The trajectories of the means with ±1 SD error bars [(a)-(c)] and of the CVs [(d)-(f)] 

for the probability distributions of the species Y1, Y2, Y3 using SSA (blue curve), G-P (green 

curve) and RRA-Noise (red curve).  
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Table 6. The average values of CPU time (in seconds) and the number of steps taken by different 

simulation methods for the case of the Oregonator Model. 

Simulation 

Methods 

SSA G-P RRA-Noise  

CPU time (sec) 

 

70.069 14.976 35.224 

Steps 694868 16542 29125 

 

The comparison of the CPU times of different methods in Table 6 indicates that the G-P is 

more efficient than the rest of the methods. However, their simulated profiles indicates a slight 

outward shift relative to the trajectories of other methods. It is also observed that the G-P 

trajectories are not within the SSA trajectories in terms of ±1 SD error bars. On the other hand, 

the RRA-Noise is found to take relatively more steps, but is able to reproduce the trajectories 

accurately. More importantly, no negative molecular numbers have been found during the 

simulations.    

The numerical stability of this model system is discussed along the lines similar to those of 

the previous example. The given model is simulated by the SSA using an ensemble of 20,000 

(black curve) simulation runs, while the RRA-Noise is used for the simulation over an ensemble 

of 100 (red curve), 500 (green curve), 1000 (blue curve), 5000 (brown curve) and 10,000 (orange 

curve) simulation runs. Unlike the previous example, this is an oscillatory model with no steady 

state. It is found that the absolute error at some discrete points decreases with an increase in the 

number of realizations of the RRA-Noise.    
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 It has been found that with the increase in the number of realizations, the RRA-Noise gets 

converged to the SSA trajectories with decrease in the error. The error between the trajectories of 

the SSA and the RRA-Noise has been calculated at some chosen discrete time points. Figure 9 

below shows the mean trajectories ((a)-(c)) of the species, while Table 7 provides the absolute 

errors for the different realizations at specific time points.   

 

 

Figure 9. The trajectories of the means [(a)-(c)] simulated using the RRA-Noise with 100 (red 

curve), 500 (green curve), 1000 (blue curve), 5000 (brown curve), 10,000 (orange curve) runs 

and the SSA with 20,000 runs (black curve), for the case of the Oregonator Model.  
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Table 7. The absolute errors between the trajectories of the SSA and the RRA-Noise for 

different runs at discrete time points. 

Time points 100 runs  

1 11.396 161.357 18.711 

2 22.308 48.094 194.045 

3 2.155 11.085 160.426 

4 0.985 52.447 43.190 

Time points 500 runs 

1 3.174 6.695 17.408 

2 41.302 111.648 77.653 

3 11.188 72.191 49.520 

4 49.485 41.032 29.818 

Time points 1000 runs 

1 2.001 21.669 8.416 

2 30.584 109.157 22.778 

3 7.388 56.546 34.213 

4 49.250 38.105 94.080 

Time points 5000 runs  

1 0.979 47.324 2.136 

2 6.969 61.696 5.923 

3 17.139 9.866 61.658 

4 22.457 24.735 84.764 

Time points 10000 runs 

1 1.304 14.978 8.993 

2 3.192 9.973 0.945 

3 13.437 26.698 47.993 

4 5.367 25.048 10.685 

 

In Figure 9 above, it is observed that the simulation by the RRA-Noise with 100 runs (red 

curve) shows a downward and upward shift relative to the SSA trajectory with 20,000 runs 

(black curve). The trajectory with 10,000 runs (orange curve) gets substantially closer to the 

exact SSA trajectory. The variation in the absolute error in Table 7 is seen as a signature of the 

highly oscillatory character of the chemical system.    
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Overall, from the simulations of the five different examples, discussed in the sections 

above, it can be speculated that the newly developed method, which uses the RRA and accounts 

for noise during the simulation solves the problem of negative populations. In all the examples 

considered, it was seen that, unlike in the RRA-Noise case, one has to find the best possible 

value of the coarse grain factor for the BD-τ  method of Chatterjee et al.
[21] 

in order to achieve 

the necessary accuracy, a choice that usually led to a loss of efficiency for the method.  

The examples that have been chosen and discussed in the current work were those that 

highlight difficult cases where the existing state-of-the-art methods either fail or perform with 

lower efficiency. However, it is to be noted that the current approach is not a general theoretical 

modification in stochastic simulations for correcting the number of firings for every leap during 

the simulations, but is a remedy to the negative population problem for specific leaps where the 

reactant population becomes negative due to the wrongly calculated number of firings, for those 

leaps, by existing methods. Therefore, it is still possible that the current method, while clearly 

having been demonstrated to have performed well for the examples considered, might also 

provide negative numbers for reactant population in certain cases, and thus fail for certain 

chemical systems. It is, nevertheless, expected, that the current recipe for correcting the problem 

of negative populations would work in a large majority of cases, as the current set of examples 

demonstrates. 

Conclusions 

In order to achieve a speed-up over the SSA, various approximate accelerated methods 

have been developed. However, such approaches are fraught with problems of accuracy, 
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problems that become more acute when dealing with chemical systems that deal with low 

molecular populations. In such cases, there are instances where negative molecular numbers have 

been obtained during the simulations. In the current work, we have sought to solve this problem 

by introducing the novel concept of accounting for the “noise” obtained for the number of firings 

of each reaction in a given time step. We have tested out this idea by combining the “noise 

accounting” with the accelerated method: the Representative Reaction Approach (RRA) that we 

had developed earlier
[21]

. This new method, termed as “RRA-Noise”, has been tested on a 

number of different examples, ranging from simple unimolecular system to oscillatory chemical 

system. It has been found that the RRA-Noise is effective not only in terms of accuracy but also 

in efficiency, in comparison to state-of-the-art approximate accelerated methods such as 

Gillespie’s Approximate Stochastic Algorithm (GASA)
[15]

, Gillespie-Petzold (G-P)
[16]

, BD-τ of 

Chatterjee et al.
[23]

 This newly developed method has the added virtue of being quite simple and 

easy to code. The discussion pertaining to the stability of algorithm emphasizes the robustness of 

newly proposed method. Furthermore, for the newly proposed method, there is no necessity to 

change the value of error control parameter for every new chemical system that has to be 

simulated. Finally, it may also be mentioned that the notion of accounting for noise during a 

simulation may find applications in other fields of interest as well.           

Supplementary Information Available: The Fortran 95 codes for the different 

algorithms discussed in the text, including the SSA, G-P, BD-τ  of Chatterjee-Vlachos-

Katsoulakis, RRA-Noise are provided.  
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An attempt to reduce the computational time of the stochastic simulations of chemical kinetics 

leads to negative numbers, which in turn gives inaccurate simulation trajectories. A 

computational method based on the concept of noise in conjunction with the representative 

reaction approach is proposed to solve this problem. It has been found that, the new method 

performs better on the front of accuracy and efficiency than other state-of-the-art methods.    
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