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A highly emissive thio-analogue of deoxyguanosine triphosphate, thdGTP, was synthesized and enzymatically 

incorporated into DNA through primer extension and PCR amplification. The straightforward amplification 

of thdG-labeled DNA by natural polymerases by simple addition of thdGTP to the standard PCR mix was 

demonstrated. The present results will facilitate the broad application of long fluorescent DNA. 10 

   Fluorescent probes are powerful and indispensable tools with 
which to detect and monitor biomolecules. Their development 
combined with fluorescence spectroscopy techniques1 is opening 
up new realm of research, and many biological phenomena have 
been understood by tracking fluorescent signals in living 15 

systems.2 For nucleic acids, the development of fluorescent 
nucleobase analogues has become an important challenge since 
native nucleic acids are practically non-emissive.3 It also has 
great significance in the viewpoint of the expansion of an 
artificial genetic molecule with diverse functionality. In this 20 

context, many researchers are endeavoring to design and 
synthesis fluorescent nucleoside surrogates that satisfy versatile 
photophysical properties and isomorphicity. Recently, Tor and 
co-workers developed isomorphic fluorescent RNA nucleosides 
that are characterized by the electronic and structural resemblance 25 

to the native nucleosides and have very significant photophysical 
features, including visible-light emission and high quantum 
yield.4 We have also synthesized a highly emissive 
deoxyguanosine analogue, thdG (see Figure 1 (a)), and 
demonstrated that it can be used to enable the direct visualization 30 

of transitions between the B- and Z-forms of DNA as a result of 
different π-stacking.5 In the previous study, thdG was 
synthetically incorporated into the oligonucleotide strands by 
automated solid-phase synthesis and the application of 
phosphoramidite chemistry. To further expand the utility of thdG, 35 

we turned to enzymatic incorporation through the use of naturally 
occurring enzymes and replication systems.6-9  
 

Figure 1. (a) 
th
dG monomer. (b) Hydrogen bonding between 

th
dG 

and dC (R=2′-deoxyribose). 40 

Herein, we report the synthesis of a fluorescent nucleoside 
triphosphate, thdGTP, and its enzymatic incorporation into DNA 
through primer extension and PCR amplification. This study 
demonstrates that highly emissive thdGTP can be recognized and 
amplified in place of natural dGTP and that the preparation of 45 

long fluorescent DNA is feasible using enzymatic approaches and 
natural DNA polymerases. 
The synthesis of thdGTP was performed by following published 
procedures for generating thdG5 and triphosphate nucleoside 
derivatives9 (Scheme 1). The protected guanosine mimic O5′-50 

dimethoxytrityl-N2-DMF-2-aminothieno[3,4-d] pyrimidine 
deoxynucleoside was synthesized from commercially available 
methyl 4-aminothiophene-3-carboxylate hydrochloride. The 3′-
hydroxyl group was protected by acetoxylation, and the 
dimethoxytrityl protection of the 5′-hydroxyl group was removed 55 

in dichloroacetic acid. The 5′-hydroxyl group was then 
phosphorylated with 2-chloro-4H-1,3,2-benzodioxaphosphorin-4-
one and bis(tributylammonium) pyrophosphate following 
oxidization by I2 solution, and the desired thdGTP was isolated 
by HPLC. 60 

 

Scheme 1. Synthesis of 
th
dGTP. Reagents and conditions: (a) (i) 

acetic anhydride, pyridine; (ii) dichloroacetic acid, DCM, 0 °C, 51%; 

(b) 2-chloro-4H-1,3,2-benzodioxaphosphorin-4-one, dioxane, 

pyridine, tri-n-butylamine, bis(tri-n-butylammonium)pyrophosphate, 65 

DMF, then I2/pyridine/H2O, 39%. 
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Primer extension involving thdGTP incorporation was examined 
by using the 3′→5′ exonuclease-proficient Klenow fragment, a 
FAM-labeled 10-mer primer, and a 17-mer DNA template 1–3 
containing several cytosine residues in the extension area (see 
Figure S3). Cytosine residues at the 11th, 14th, or 17th position 5 

of the templates served as the paired base for thdG (Figure 2a). 
These primer extension assays were analyzed by determining the 
length of the extension products using gel electrophoresis. To our 
delight, primer extension including thdGTP incorporation 
opposite to C gave full-length products. Furthermore, primer 10 

extension assays with increasing numbers of thdGTP 
incorporation positions also proceeded as well as with natural 
dGTP. To verify the incorporation of thdGTP in the DNA, primer 
extension experiments were conducted with the 10-mer primer 
without FAM labeling; under these conditions, blue bands in the 15 

unstained gel were only observed in the lanes loaded with DNA 
incorporating thdGTP (Figure 2b). 
 

 
 20 

 
 
 
 
 25 

 
 
 
 
 30 

 
 
 

Figure 2. (a) Primer extension experiments with 17-mer templates 

1–3, in the presence of either natural dGTP or 
th
dGTP and three 35 

dNTPs (dATP, dTTP, and dCTP). (b) Analyses by denaturing gel 

electrophoresis of primer-extended products using primer without 

FAM labeling.  

 
We conducted PCR amplification of the template containing only 40 

one cytosine in the amplification area with various polymerases, 
using thdGTP instead of natural dGTP (Figure 3a). A 56-mer 
single-stranded DNA template was used together with forward 
and reverse primers that yield a product of the same length as the 
template. Throughout all of the experiments conducted in this 45 

study, the following PCR cycle was employed: 98 °C for 2 min, 
95 °C for 15 sec, 53 °C for 30 sec, and 68 °C for 10 sec. After 40 
cycles of PCR, the products were analyzed by native 
polyacrylamide gel electrophoresis (Figure 3b). KOD –Plus-, 
OneTaq, and Deep Vent (exo–) polymerases all gave the full-50 

length products. However, Deep Vent (exo+) polymerase gave 
only low amounts of product. It seems that 3′→5′ exonuclease-
deficient DNA polymerase is more effective at incorporating 
thdG. It is interesting to note that in addition to Deep Vent (exo–), 
which is a 3′→5′ exonuclease-deficient DNA polymerase, a high 55 

proof-reading polymerase, KOD -Plus-, could also incorporate 
thdGTP in place of dGTP. 
 
 

 60 

Figure 3. (a) Scheme for PCR amplification experiments using 56-

mer templates, in the presence of 
th
dGTP with three dNTPs (dATP, 

dTTP, and dCTP). (b) Analyses by native PAGE of PCR-amplified 

products with KOD -Plus-, OneTaq, Deep Vent (exo–), or Deep 

Vent (exo+). 65 

 

These results inspired us to investigate the efficiency of PCR 
amplification of much longer templates that contain more 
cytosines as paired bases for thdG. We first conducted a 338-mer 
PCR amplification with pET28a plasmid and KOD -Plus-70 

polymerase, using thdGTP instead of natural dGTP. However, the 
desired amplified product was not observed after fractionation by 
agarose gel electrophoresis, and no products were observed even 
after a much longer extension time (20 min). This result suggests 
that proximal thdGTP residues are difficult to incorporate 75 

consecutively. We therefore conducted PCR amplification using a 
mixture of dGTP and thdGTP. Upon increasing the proportion of 
thdGTP gradually from 1:1 to 1:9, fluorescent labeling of the 
long DNA construct was achieved, and PCR products containing 
thdGTP were obtained. The amplified products were fractionated 80 

and analyzed by agarose gel electrophoresis. After residual 
dNTPs were removed using a PCR purification kit (Sigma–
Aldrich), fluorescence spectra were obtained for each DNA 
solution (Figure 4b).  

 85 

Figure 4. (a) Analyses by agarose gel electrophoresis of amplified 

338 bp products. PCR amplification was conducted with dCTP, 

dTTP, and dATP (200 µM each), and a combined total of 200 µM 

dGTP and 
th
dGTP mixture (1:0, 1:1, 1:3, 1:5, 1:7, 1:9, and 0:1). (b) 

Fluorescence spectra of purified DNA solutions obtained as 90 

described in (a) from dGTP/
th
dGTP nucleotide ratios. All samples 

contained 3 µM DNA. Excitation wavelength was 325 nm. (c) 

Relationship between the dGTP/
th
dGTP ratio and extent of 

th
dG 

incorporation and the yield of amplified products. Average of three 

runs. 95 
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It was found that, as expected, the intensity of fluorescence of the 
purified DNA solution increased with the proportion of thdGTP. 
This indicated that a substantial amount of thdGTP was 
incorporated during PCR. To gain a more detailed understanding, 
the amplified DNA products were hydrolyzed and the respective 5 

amounts of constituent nucleosides were evaluated quantitatively. 
The amount of thdG was deduced using a standard HPLC chart 
obtained by injecting equimolar amounts of nucleosides including 
thdG. After enzymatic hydrolysis, HPLC analyses indicated that 
the ratio of thdG to dG in the amplified products increased with 10 

the thdGTP/dGTP ratio as shown in Figure 4c, although the yield 
of the amplification product diminished. This result implies that 
the ratio of thdGTP to dGTP should be adjusted according to the 
intended purpose. Encouraged by these results, we established a 
simple enzymatic method with which to incorporate thdG into 15 

DNA by simply adding thdGTP (5 equiv) into the standard PCR 
reaction mixture. To investigate the scope of the system with 
respect to the amplified products, we conducted PCR 
amplification of 298-, 480-, and 761-mer DNA using pGEM or 
pUC18 plasmids with other sets of primers. As a result, 20 

fluorescent products of the expected length were obtained that 
were labeled by thdG (Figure 5). 
 

Figure 5. Simple 
th
dG labeling for long fluorescent DNA. Analyses 

by agarose gel electrophoresis of PCR-amplified products; 
th
dGTP 25 

(5 equiv, 1 mM) was added to 200 µM dNTPs (dCTP, dTTP, dATP, 

and dGTP) and standard PCR reaction mixture. Photograph taken 

(top) under 254 nm irradiation before staining, and (bottom) after 

staining with ethidium bromide. 
 30 

In conclusion, we have synthesized a visible fluorescent 
nucleoside triphosphate, thdGTP, and incorporated it into DNA 
through primer extension and PCR amplification. thdGTP can be 
incorporated into DNA with only slightly lower efficiency than 
natural substrate dGTP, and straightforward addition of thdGTP 35 

into the standard PCR mixture gives emissive thdG-labeled DNA 
strands that can be observed under UV irradiation with the naked 
eye. We expect that this methodology, which keeps the inherent 
structure of DNA intact, will facilitate the application of long 
fluorescent DNA in areas such as the construction of fluorescent 40 

DNA nanostructures. Furthermore, these results raise the 
intriguing possibility that thdG could be incorporated into living 
cells as a fluorescent probe.10,11 
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40 cycles of PCR 
dATP, dCTP, dTTP,  

dGTP, and thdGTP 

plasmid 
thdGTP      +  +  + -  - - 

298 bp products  480 bp  761 bp 

standard PCR condition 

FRprimer　           1 µM  
Template              1 nM  

dNTP mix          200 µM 

KOD -Plus-     0.02 U/µL 

+  5 equiv of thdGTP 

thdGTP    1 mM 
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