

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

Page 1 of 27

RSC Advances

4 Jun Cheng*, Yun Huang, Hongxiang Lu, Rui Huang, Junhu Zhou, Kefa Cen

5 State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China

6 Abstract

7 In order to eliminate the inhibition of the toxic nitric oxide (NO) in flue gas on microalgal growth and CO_2 fixation, NO was converted by a wet UV/H₂O₂ to produce 8 9 nitrate (NO₃⁻), which then be used as a nitrogen source for microalgae to improve its growth. The growth ability and biomass compositions of the microalgae cultivated 10 with the produced NO₃⁻ from NO gas were similar to those of the microalgae 11 12 cultivated with equivalent moles of commercial NaNO₃. The NO₃⁻ concentration produced from NO increased with UV lamp power, H₂O₂, and NO concentrations 13 increased, resulting in an improved microalgal growth. The concentration of NO₃⁻ 14 from 500 ppm NO wet-oxidized by 6% (v/v) H_2O_2 and 55 W UV light was up to 8.8 15 16 mM. When the produced nitrate used as supplementary nitrogen source, the maximum growth productivity of Chlorella PY-ZU1 at 15% (v/v) CO₂ reached 1.18 g/L/d (0.97 17 18 times higher than that cultivated with the standard medium). The peak fixation efficiency of 15% (v/v) CO₂ was 69.6% (1.13 times higher than that cultivated with 19 the standard medium). 20

²¹ **Keywords:** microalgae, nitrogen oxide, UV/H₂O₂, CO₂ fixation, biomass

^{*} Corresponding author: Prof. Dr. Jun Cheng, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China. Tel.: +86 571 87952889; fax: +86 571 87951616. E-mail: juncheng@zju.edu.cn

22 **1. Introduction**

23	Pollutants (including CO_2 , NO_X , SO_2 , and fine particles) are released into the
24	atmosphere when fossil fuels are burned. As a result, environment and human health
25	are seriously harmed. For example, greenhouse effect occurs because of excessive
26	CO_2 concentrations in the atmosphere, this condition has caused problems in terms of
27	environmental and energy aspects. Thus, CO2 emissions should be reduced using
28	efficient and economical methods. For microalgae has a higher growth rate (1 to
29	3-fold increases in biomass per day), and can fix CO_2 with efficiency (2-10%) ten
30	times greater than that of terrestrial plants (<1%), one of the efficient CO_2 reduction
31	methods involves the cultivation of microalgae in photobioreactors supplied with
32	CO ₂ -enriched gas streams, such as those emitted from coal-fired power plant flue
33	gases. ¹⁻⁴ In addition, the CO ₂ capture process using microalgae has the following
34	advantages: (i)co-producing high value materials based on biomass, such as biofuel
35	and biogas; ⁵⁻¹⁰ (ii) being an environmental sustainable method that can be connected
36	to urban and industrial sewage cleaning. ¹¹
37	Some high CO ₂ -tolerant microalgae species have been isolated out. ¹²⁻¹⁶ However
38	the inhibitory effects of toxic compounds, such as NO_X and SO_2 , in addition to high
39	CO ₂ concentrations, on microalgae can be critical. ¹⁷⁻²¹ It was reported that NO in fossil
40	fuel flue gas can be removed and used by the microalgae, Dunaliella tertiolecta. ²²
41	However, for almost all of the other microalgal species, the presence of NO will lead
42	to the formation of toxic nitrites or pH decrease in their culture, therefore, it will

43	hinder their growth and CO ₂ fixation. ^{17-21, 23, 24}
44	In recent years, some studies have focused on the alleviation of the effect of NO
45	on microalgae growth. These studies have shown that the growth and survival of
46	Synechococcus sp. and Chlorella sp. have improved against exposure to intermittent
47	NO_2 by adding growth stimulators, such as triacontanol and sodium bicarbonate. ²⁵
48	The tolerance of Chlorella KR-1 to continuous NO exposure can be enhanced by
49	maintaining the pH of the culture media at an adequate value (\sim 7), which is achieved
50	by adding an alkaline solution (NaOH). ¹⁹ However, this condition can be effective for
51	some specific microalgae only. A previous study also showed that the presence of NO
52	may lead to the formation of toxic nitrites in microalgae culture, therefore, its
53	inhibitory effect on microalgae growth was evaluated ²⁴ . It must take some techniques
54	making NO dissolve into less NO_2^- but to more usable substances, such as NO_3^- .
55	Advanced oxidation process (AOP) can produce free radicals with strong
56	oxidation, such as hydroxyl free radicals (•OH). By a wet AOP using hydrogen
57	peroxide solution with ultraviolet lamp (UV/ H_2O_2), the toxic NO was completely
58	converted into valuable NO_3^- without generating any other byproduct. ²⁶⁻²⁹ The wet
59	AOP (UV/ H_2O_2) has been used in coal-fired power plants to simultaneously remove
60	NO, SO_2 and Hg pollutants in flue gas. But how to deal with and reutilize the large
61	amount of byproducts (nitrate, sulfate and Hg^{2+}) is a big problem. Whether the
62	oxidation byproduct (NO ³⁻) derived from the wet AOP can be consumed and used by
63	microalgae has not been reported in literatures till now. Whether the different
64	oxidation conditions (UV lamp power, H_2O_2 and NO concentrations) in wet AOP

RSC Advances Accepted Manuscript

65 (UV/H_2O_2) have important effects on microalgae growth has not been clarified. It was 66 first proposed to reutilize the oxidation byproduct (NO³⁻) derived from the wet AOP 67 by microalgae as a supplementary nitrogen source in this paper. This novel process 68 not only eliminated the effect of toxic NO on microalgal growth but also improved 69 microalgal biomass productivity and CO₂ fixation. The effects of different UV/H₂O₂ 70 conditions on microalgal growth and CO₂ fixation efficiency were investigated.

71 **2. Materials and methods**

72 **2.1 Strains and media**

Chlorella PY-ZU1, a highly CO₂-tolerant and fast-growing microalgal species, 73 was used in this study. This strain was obtained by γ irradiation and high 74 concentrations of CO₂ domesticated from *Chlorella pyrenoidosa*.¹⁵ The cells were 75 maintained in Brostol's solution (also known as soil extract, SE),^{15, 30} containing 0.25 76 g of NaNO₃, 0.075 g of K₂HPO₄•3H₂O, 0.075 g of MgSO₄•7H₂O, 0.025 g of 77 CaCl₂•2H₂O, 0.175 g of KH₂PO₄, 0.025 g of NaCl, 40 mL of soil extract, 0.005 g of 78 FeCl₃•6H₂O, 1 mL of Fe-EDTA, and 1 mL of A5 solution in 958 mL of de-ionized 79 80 water.

81 2.2 System design by which the oxidation product of NO in flue gas

82

with UV/H₂O₂ is used as a nitrogen source for microalgal growth

Because of its strong oxidation ability and environmentally friendly characteristics, UV/H_2O_2 AOP has a wide range of studies in the gas purification field. Experimental system in which the NO in flue gas was converted to NO_3^- as nitrogen source for microalgal growth was performed in a bubble column reactor (Fig. 1). The

87 proposed system comprised the following: (1) 3000ppm of NO and pure N_2 (used as 88 balance gas); (2) Mass flow meter; (3) a bubble column reactor (height of 450 mm 89 and inner diameter of 75 mm); (4) cooling water cycle system; (5) sand chip gas 90 distributor (outer diameter of 45 mm, height of 30 mm, and average pore size of 0.105 mm to 0.18 mm); (6) UV lamps (UV lamp powers were changed by replacing and 91 92 using three sets of UV lamps with different powers (36 W, 55 W, and 75 W, Haining 93 Light Factory). All the lamps were of the same model (L-L) and of the same 94 wavelength of 253.7 nm); and (7) effluent NO scrubber (the residual NO in the mixed 95 gas was further scrubbed using 400 mL mixed solution containing $KMnO_4$ (0.05) mol/L) and NaOH (0.1 mol/L; Sinopharm Chemical Reagent, China) to avoid 96 97 environmental pollution).

98 The prepared H_2O_2 solution with the required concentration (1%, 3%, 6%, and 99 9%) was placed in the bubble column reactor. Temperature was maintained at 25 $^{\circ}$ C 100 by recycling the cooling water. NO concentration (75, 150, 300, and 500 ppm, 101 balanced with N_2) was regulated using a mass flow meter (SevenstarCS200, China). 102 The NO gas passed uniformly across the sand chip gas distributor into the H_2O_2 103 solution at a rate of 600 ml/min. After the UV lamp was turned on, H_2O_2 was released, 104 forming hydroxyl free radicals (•OH). These free radicals exhibit an extremely strong 105 oxidation ability that can convert NO into HNO₃ without generating any other byproduct via the following reactions (2)-(3).^{26, 31} 106

107
$$H_2O_2 + hv \rightarrow 2^{\circ}OH$$
 (1)

108
$$\text{NO} + \text{`OH} \rightarrow \text{HNO}_2$$
 $\text{HNO}_2 + \text{`OH} \rightarrow \text{HNO}_3 + \text{`H}$ (2)

RSC Advances Accepted Manuscript

109	$NO + OH \rightarrow NO_2 + H \qquad NO_2 + OH \rightarrow HNO_3$ (3)
110	The reaction solution was collected after 6 h and the remaining H_2O_2 was
111	removed by ultrasonic wave (SK5210HP, China). The solution was then used to make
112	the medium for Chlorella PY-ZU1 by adding the same quantities of nutrients as those
113	present in the SE medium. The initial pH of the medium was adjusted to 6.5 with 0.1
114	M NaOH. The SE medium was used as the control condition. For the final AOP runs,
115	NOx in the reactor was 500 ppm, $\mathrm{H_2O_2}$ concentration was 6% (v/v), and UV power
116	was 55 W. The medium prepared with the 15 h oxidation solution was used as the
117	CO_2 fixation medium and labeled as SE#.
118	2.3 NO ₃ ⁻ produced from NO oxidation used as supplement nitrogen
119	source to improve <i>Chlorella</i> PY-ZU1 growth and CO ₂ fixation
120	All of the cultivation experiments were performed in an artificial greenhouse at
121	27 °C. Approximately 270 mL SE medium was inoculated with 30 mL of Chlorella
122	PY-ZU1 pre-culture in the bioreactor (BR, 160 mm \times $\Phi56$ mm, 300 ml of working
123	volume). For the verification experiments of using NO_3^- (derived from NO oxidation
124	by UV/H ₂ O ₂) as a nitrogen source for <i>Chlorella</i> PY-ZU1, continuous light of 52
125	$\mu mol/m^2/s$ at the surface of BR was supplied by four cool white lights combined with
126	two plant lights (Philips, TLD 36W) that were fixed above the BR. For the other
127	experiments in this study, 68 μ mol/m ² /s of light was supplied by six cool white lights
128	(Philips, TLD 36 W) at the surface of BR. The mixed gas of 15% (v/v) CO_2
129	containing different NO concentrations was bubbled at a rate of 30 ml/min through a
130	long steel pipe (180 mm \times Φ 3 mm). The NO concentrations were controlled at 0, 75,

131 150, 300, and 500 ppm by a mass flow meter (Sevenstar CS200, China).

Chlorella PY-ZU1 was cultured in SE# and aerated continuously with 15% (v/v) 132 CO_2 in nine-stage sequential bioreactors³⁰ to investigate the effect of NO_3^- produced 133 134 from NO on CO₂ fixation. For comparison, Chlorella PY-ZU1 was cultured with SE 135 medium and aerated continuously with 15% (v/v) CO_2 or with 15% (v/v) CO_2 gas 136 containing 500 ppm NO. The influent and effluent CO₂ concentrations were 137 monitored online by a CO₂ analyzer (Servomex4100, UK). CO₂ fixation efficiency 138 was calculated according to the carbon dioxide difference between influent and effluent as described in a previous study.³⁰ 139 CO_2 fixation efficiency = $(1 - \frac{total \ output \ CO_2}{total \ input \ CO_2}) \times 100\%$ 140 (4) 141 where the total input CO_2 = influent CO_2 concentration × influent flow rate, and the 142 total output CO_2 = effluent CO_2 concentration × effluent flow rate. 143 2.4 Analysis of microalgal productivity and biomass compositions 144 During cultivation, 10 mL of the samples was dewatered by centrifugation 145 (Beckman Avanti J26-XP, USA) at 8,500 rpm for 10 min and dried at 70 °C for 24 h 146 to obtain the weight of the dried biomass. Biomass concentration (g/L) was calculated 147 from the microalgal dry weight produced per liter. Growth productivity (AGP, g/L/d) 148 was calculated using Eq. (5): $AGP = \frac{M_1 - M_2}{t_1 - t_2}$ 149 (5) where M_1 is the biomass concentration at time t_1 and M_2 is the biomass concentration 150

151 at time t_2 . Total carbohydrate quantity was determined using the anthrone method

RSC Advances Accepted Manuscript

(with glucose as the standard).⁸ The lipid of the biomass was extracted as described in 152 a previous study.⁶ Fatty acid compositions were determined by gas chromatography 153 (Agilent 7890A, USA). 154 2.5 Calculation of NO oxidation efficiency and residual NO 155 concentration 156 The NO₃⁻ concentrations in the collected solution as prepared in Section 2.2 157 were analyzed with ion chromatography (MagIC, Metrohm, Switzerland). The NO 158 oxidation efficiency (mean value) was calculated according to NO₃⁻ in the solution 159 160 using Eq. (6): NO oxidation efficiency= $\frac{M_{NO_3} \times V}{\sum M_{NOin}}$ 161 (6) where $M_{NO,-}$ is the molar concentration of NO₃⁻ in volume V (L) of the oxidized 162 163 solution and $\Sigma^{M_{NOin}}$ is the total number of moles of NO flowing into the oxidation 164 reactor. In this study, NO_3^- was the only product of NO oxidation; thus, NO oxidation 165 efficiency also corresponded to NO₃⁻ production efficiency. The remaining NO 166 concentration (mean value) was calculated using Eq. (7):

167 $C_{\text{NOut}} = C_{\text{NOin}} \times (1 - \text{NO oxidation efficiency})$ (7)

168 **3. Results and discussion**

169 **3.1 Effects of NO on the growth of** *Chlorella* PY-ZU1

The effects of NO concentrations on the growth of *Chlorella* PY-ZU1 and the pH of the culture were examined in the BR (Fig.2). *Chlorella* PY-ZU1 showed a higher tolerance to NO than other NO-tolerant algal strains, which could not grow under 150 ppm NO.²⁰ When aerated with 15% CO₂ gas containing 150ppm NO, biomass

174	concentration of Chlorella PY-ZU1 decreased after 5 days of cultivation, and the pH
175	of culture decreased to 6.27. The maximum biomass concentration was 2.03 g/L and
176	decreased by 24.3% to that of microalgae cultivated without NO aeration (2.68 g/L).
177	When NO concentration was further increased to 500 ppm, microalgae could grow but
178	with a 50.7% decrease in the maximum biomass concentration to that of microalgae
179	cultivated without NO. The decrease in biomass yield was due to pH decrease in the
180	culture caused by NO aeration. ^{19, 20} The pH of the culture decreased with the
181	increasing cultivation time. Once the pH of the culture decreased beyond the adequate
182	range (6.5~7.5 for <i>Chlorella</i>), the microalgae growth was inhibited. This was why the
183	biomass concentration of Chlorella PY-ZU1 decreased after 5 days cultivation
184	with >150 ppm of NO. However, Chlorella PY-ZU1 showed a higher tolerance to NO
185	than Chlorella KR-1, ²⁰ whose growth was completely suppressed when aerated with
186	15% CO ₂ gas containing 300ppm NO. This verified that microalgae tolerance to NO
187	depends on the microalgae species but with a decrease in biomass productivity. ¹⁹
188	Some methods were used to alleviate microalgae growth inhibition caused by
189	NO, such as controlling culture pH and adding some growth stimulators to culture. ²⁵
190	Although Dunaliella tertiolecta could use NO dissolved in microalgae culture as a
191	nitrogen source, NO absorbed in the medium could be converted to NO_2^- and then
192	oxidized to NO_3^{-22} . This oxidation process was extremely slow. The improvement
193	effect of little NO ₃ ⁻ produced from NO on <i>Chlorella</i> PY-ZU1 did not overcome the
194	toxic effect of NO. Thus, a much faster NO oxidation method will be needed.

195 **3.2 Confirmation of using NO₃** (derived from NO oxidation by

196	UV/H_2O_2) as a nitrogen source for <i>Chiorella</i> PY-ZU1
197	During UV/H ₂ O ₂ AOP process, the remaining H ₂ O ₂ concentration in the solution
198	was decreased with the oxidation time, resulting in a decrease in NO_3^- production
199	efficiency. 26 In the process of 500 ppm NO oxidized by 55 W UV/6% $\rm H_2O_2,$ the $\rm NO_3^-$
200	production rate was stabilized at 0.427 mM/h and 53% of NO was converted into
201	NO_3^- in the first 6 h [Fig.3(a)]. In the next 6 h, the NO_3^- production rate gradually
202	decreased to 10.65% with H_2O_2 digestion. After 15 h, NO_3^- concentration in the
203	solution reached to 8.8 mM. The total NO_3^- concentration in the medium prepared
204	with this oxidation solution was 11.8 mM, which could satisfy the NO_3^- requirement
205	of <i>Chlorella</i> PY-ZU1 under 15% CO ₂ . ³⁰ <i>Chlorella</i> PY-ZU1 cultivated in the SE#
206	medium under 52 $\mu mol/m^2/s$ of continuous light and 15% CO2 for 11 d exhibited a
207	peak growth productivity and maximum biomass concentration of 0.76 g/L/d and 5.48
208	g/L, respectively. These values were almost equal to those of <i>Chlorella</i> PY-ZU1 (0.73
209	g/L/d and 5.31 g/L, respectively) cultivated in the SE medium with 11.8 mM
210	commercial NaNO ₃ . In addition, the growth curve of Chlorella PY-ZU1 cultivated
211	with NO ₃ ⁻ produced from NO is consistent with that of the <i>Chlorella</i> PY-ZU1
212	cultivated with commercial NaNO ₃ [Fig.3(b)].
213	The total carbohydrate quantity of the dried biomass of Chlorella PY-ZU1
214	cultivated with NO_3^- produced from NO (41.57%, w/w biomass) was almost equal to
215	that of the Chlorella PY-ZU1 cultivated with commercial NaNO ₃ (43.57%; data not
216	shown). The lipid contents in the two biomasses were 18.11% and 17.92%,

217 respectively. The biodiesel compositions from these two kinds of biomasses were

10

218	analyzed (Table 1). The fatty acid profiles indicated the presence of C16:0, C16:1,
219	C16:2, C16:3, C18:0, C18:1, C18:2, and C18:3. Palmitic acid, oleic acid, linoleic
220	acid, and linolenic acid were considered as the main components, which ranged from
221	12% to 24% of the total fatty acids. These results indicated that oxidation product of
222	NO (derived from NO in flue gas by UV/H_2O_2) can be used as a nitrogen source for
223	Chlorella PY-ZU1 instead of the commercial NaNO ₃ .
224	3.3 Effects of different NO conversion conditions on the growth of
225	Chlorella PY-ZU1
226	The NO_3^- concentration produced from NO increased with increase of lamp
227	power, H ₂ O ₂ , and NO concentration. As a result, microalgae growth was improved.
228	Under UV light irradiation, H_2O_2 can release •OH free radicals. •OH free radicals
229	exhibit strong oxidation ability to convert NO to $NO_3^{-26, 29}$ A high concentration of
230	produced NO_3^- in AOPs results in a high biomass yield during microalgae
231	cultivation. ^{30, 32}
232	NO_3^- , the oxidation product derived from 300 ppm NO with 6% H ₂ O ₂ for 6 h,
233	could increase the biomass productivity of Chlorella PY-ZU1 under 15% CO2 as UV
234	lamp power was increased (Fig.4). The maximum biomass concentration of
235	microalgae was evidently increased from 3.45 g/L to 3.85 g/L [Fig.4(b)] as UV lamp
236	power increased from 36 W to 55 W. However, with further increasing the UV lamp
237	power from 55 to 75W, the growth rate of maximum biomass concentration gradually
238	decreased. Two main reasons could explain the results. On one hand, under UV light
239	irradiation, H_2O_2 can release •OH free radicals by Eq. (1) reaction. ²⁶ The •OH free

RSC Advances Accepted Manuscript

240	radicals have extremely strong oxidation ability to convert NO into NO ₃ ⁻ according to
241	Eq. (2–3). Therefore, compared with the reaction system without UV light, addition of
242	UV light can greatly enhance NO conversion into NO_3^- . Furthermore, increasing UV
243	lamp power can improve the energy density per unit in solution, thus produce more
244	effective photons and •OH free radicals. Therefore, the NO_3^- produced rate increased
245	with an increase in UV lamp power. ^{26, 31} Consequently, the maximum biomass
246	concentration of Chlorella PY-ZU1 was increased. On the other hand, once the power
247	of UV lamp exceeds a certain value, some side reactions, such as Eq. (8–9), may
248	occur in the solution, leading to a great loss of •OH free radicals. ²⁷ Therefore, a
249	further increase in UV lamp power only has a little impact on NO_3^- production and
250	thus a little effect on the growth of Chlorella PY-ZU1.
251	$H_2O_2 + OH \rightarrow HO_2 + H_2O $ (8)

$$252 \qquad \quad \operatorname{OH} + \operatorname{OH} \to \operatorname{H}_2\operatorname{O}_2 \tag{9}$$

253 Similarly, the NO_3^{-} production efficiency derived from NO (300 ppm) by UV/H₂O₂ (55 W of UV for 6 h) increased from 56.60% to 79.33% and the derived 254 255 NO₃⁻ concentration increased from 2.70 mM to 3.79 mM [Fig.4(c)] when H₂O₂ 256 concentration increased from 3% to 6%. This finding resulted in an evident increase 257 in the maximum biomass concentration of microalgae from 3.43 g/L to 3.85 g/L 258 [Fig.4(d)]. However, a further increase in H₂O₂ concentration from 6% to 9% did not 259 increase the maximum biomass concentration (stabilized at 3.91 g/L). This is mainly because appropriate H_2O_2 concentration may cause a reaction such as Eq.(1) in the 260 solution. Therefore, within a certain range, the increase in $\mathrm{H_2O_2}$ concentration can 261

improve the yield of $NO_3^{-,26}$ and then increased the biomass growth of *Chlorella*.PY-ZU1.²⁵ Once H₂O₂ concentration exceeding a certain value, any further increase may cause side reactions as Eq. (8–9) which lead to a decrease in the oxidation ability of free radicals.²⁷ Therefore, further increase in H₂O₂ concentration only had little effect on the yield of NO₃⁻ and a slight impact on biomass production of *Chlorella*.PY-ZU1.

NO₃⁻ production efficiency decreased from 91.26% to 53.00% [Figure 5(a)] as NO concentration increased from 75 ppm to 500 ppm because of the limitation of NO residence time and •OH free radicals.^{26, 31} However, the derived NO₃⁻ concentration from NO increased from 1.09 mM to 4.22 mM; thus, the maximum biomass concentration of *Chlorella* PY-ZU1 increased from 3.05 g/L to 4.15 g/L [Fig.5(b)].

273 **3.4 CO₂ fixation by** *Chlorella* PY-ZU1 cultivated with NO₃⁻ derived

274

from NO oxidation

275	When 500 ppm NO was directly aerated into microalgal culture, biomass
276	production was decreased by 50.7% to that of 2.68 g/L of microalgae cultivated
277	without aerated NO (Fig.2[a]). By contrast, biomass production increased when 500
278	ppm NO was converted into nitrate by UV/H_2O_2 as a supplement nitrogen source for
279	microalgae under continuous light of 68 μ mol/m ² /s. Overall, the maximum biomass
280	concentration and peak growth productivity of Chlorella PY-ZU1 were 5.40 g/L and
281	1.18 g/L/d. These dependent parameters increased by 107.7% and 96.7%, respectively,
282	compared with those of the microalgae cultured in the SE medium (2.68 g/L and 0.60
283	g/L/d, respectively) (Fig.6).

284	Although Chlorella can tolerate up to 50 % concentration of CO ₂ , the biomass
285	concentration does not reach a higher value (almost $< 1g/L$). ³³ That makes CO ₂
286	mitigation by microalgae difficult. The appropriate concentration of CO ₂ for
287	microalgae growth is always below 10%. Anjos et al. optimized CO ₂ -mitigation by
288	Chlorella vulgaris P12 under different CO ₂ concentrations (ranging from 2% to 10%).
289	Results showed that 6.5% was the most appropriate CO ₂ concentration for <i>Chlorella</i>
290	P12. ³⁴ When <i>Chlorella pyrenoidosa</i> was cultivated with SE medium, experiments also
291	showed that 6% was the most appropriate CO ₂ concentration. ¹⁵ In order to increase
292	the ability of Chlorella to grow under higher CO ₂ concentrations, Chlorella
293	pyrenoidosa was mutated by nuclear irradiation and domesticated with high
294	concentrations of CO ₂ in our previous study. The most appropriate CO ₂ concentration
295	for the mutant <i>Chlorella</i> PY-ZU1 was up to $12 \% (v/v)$. ^{15,30}
296	CO ₂ fixation experiments were performed in a nine-stage sequential bioreactor
297	described in the previous studies. ^{15, 30} The sequential bioreactor was filled with SE#
298	medium and operated for 2 days without microalgae to determine the abiotic removal
299	of CO ₂ . Hence, the abiotic removal of CO ₂ should be eliminated in the calculation of
300	CO ₂ fixation efficiency by microalgae.
301	In the nine-stage sequential bioreactor, the CO ₂ fixation efficiency of the
302	microalgae cultivated at 500 ppm NO was lower than that of the microalgae cultivated
303	without NO (Fig.6). The peak CO ₂ fixation efficiency of 26.2% was decreased by
304	19.9%, whereas the mean CO_2 fixation efficiency of 17.3% was decreased by 33.2%.
305	However, when 500 ppm NO was converted into NO_3^- by UV/H ₂ O ₂ as a supplement

306	nitrogen source for <i>Chlorella</i> PY-ZU1, CO ₂ fixation efficiency was higher than that of
307	microalgae cultured in the SE medium without NO. The peak and mean CO_2 fixation
308	efficiency were 69.6% and 52.3%, respectively, increased by 112.8% and 101.9%
309	compared with those of the microalgae cultivated in the SE medium without aerated
310	NO (32.7% of the peak CO_2 fixation efficiency and 25.9% of the mean CO_2 fixation
311	efficiency).
312	Ramanan et al. has demonstrated an increase in CO ₂ fixation efficiency by
313	maneuvering chemically aided biological sequestration of CO ₂ . Chlorella sp. showed
314	the peak CO ₂ fixation efficiency of 46 % at input CO ₂ concentration of 10 $\%$. ³⁵ Chiu
315	et al. replaced a half of the culture broth with fresh medium every day to enhance
316	growth rate of <i>Chlorella sp.</i> and CO ₂ reduction. The CO ₂ fixation efficiency of
317	<i>Chlorella sp.</i> was 16% at input CO ₂ concentration of 15 $\%$. ³⁶ In this study, the
318	produced NO_3^- from the oxidation of 500 ppm NO was used as supplementary
319	nitrogen source. The peak CO ₂ fixation efficiency of <i>Chlorella</i> PY-ZU1 was 69.6% at
320	input CO_2 concentration of 15 %. These results indicated that NO_3^- derived from NO
321	oxidation as a nitrogen source for microalgae growth can overcome the toxic effect of
322	NO and improve microalgal biomass production and CO ₂ fixation.

323 **4. Conclusions**

NO pollutant in flue gas could be converted into useful NO_3^- by UV/H₂O₂ oxidation. The NO_3^- product can be used as a nitrogen source to improve microalgal growth and CO₂ fixation ability. When NO_3^- derived from 500 ppm NO oxidation was used as a nitrogen source, the peak growth productivity and CO₂ fixation

efficiency of *Chlorella* PY-ZU1 were increased by 96.67% (1.18 g/L/d) and 112.8% (69.6%), respectively. This finding provided information regarding environmental and economical benefits to culture microalgae with waste carbon and nitrogen sources (exhaust CO_2 gas and NO oxidation products) in flue gas.

332 Acknowledgements

333 This study was supported by the National Natural Science Foundation of China 334 (51176163, 51476141), National High Technology R&D Program of China 335 (2012AA050101), International Sci. & Tech. Cooperation Program of China 336 (2012DFG61770), Zhejiang Provincial Natural Science Foundation of China (LR14E060002), Program for New Century Excellent Talents in University 337 (NCET-11-0446), Specialized Research Fund for the Doctoral Program of Higher 338 339 Education (20110101110021), Science and Technology Project of Guangxi Province 340 (1346011-1).

341 **References**

- C. Yoo, S.-Y. Jun, J.-Y. Lee, C.-Y. Ahn and H.-M. Oh, *Bioresource Technology*,
 2010, 101, S71-S74.
- A. F. Clarens, E. P. Resurreccion, M. A. White and L. M. Colosi,
 Environmental Science & Technology, 2010, 44, 1813-1819.
- 346 3. Y. Chisti, *Biotechnol Adv*, 2007, **25**, 294 306.
- J. Cheng, A. Xia, W. Song, H. Su, J. Zhou and K. Cen, *International Journal of Hydrogen Energy*, 2012, **37**, 6536-6544.
- A. Xia, J. Cheng, L. Ding, R. Lin, R. Huang, J. Zhou and K. Cen, *Bioresource Technology*, 2013, **146**, 436-443.
- J. Cheng, T. Yu, T. Li, J. Zhou and K. Cen, *Bioresource Technology*, 2013, 131,
 531-535.

16

353	7.	L. Jiang, S. Luo, X. Fan, Z. Yang and R. Guo, <i>Applied Energy</i> , 2011, 88,
354		3336-3341.
355	8.	J. Cheng, A. Xia, Y. Liu, R. Lin, J. Zhou and K. Cen, International Journal of
356		Hydrogen Energy, 2012, 37 , 13330-13337.
357	9.	X.L. Zhang, S.Yan, R.D. Tyagi, R.Y. Surampalli, Renewable and Sustainable
358		Energy Reviews, 2013, 26, 216-223.
359	10.	Y.T. Huang, Lee, H.T. Lai, W. Chung. Journal of Nanoscience and
360		Nanotechnology, 2013, 13, 2117-2121.
361	11.	O. Komolafe, S.B. V. Orta, I. Monje-Ramirez, I. Noguez, A. P. Harvey, M. O.
362		Ledesma, Bioresource Technology, 2014, 154, 297-304.
363	12.	L. Yue and W. Chen, Energy Conversion and Management, 2005, 46,
364		1868-1876.
365	13.	K. D. Sung, J. S. Lee, C. S. Shin and S. C. Park, Renewable Energy, 1999, 16,
366		1019-1022.
367	14.	M. G. de Morais and J. A. V. Costa, Energy Conversion and Management,
368		2007, 48 , 2169-2173.
369	15.	J. Cheng, Y. Huang, J. Feng, J. Sun, J. Zhou and K. Cen, Bioresource
370		Technology, 2013, 136 , 496-501.
371	16.	S. Basu, A. S. Roy, K. Mohanty and A. K. Ghoshal, Bioresource Technology,
372		2013, 143 , 369-377.
373	17.	E. M. Radmann, F. V. Camerini, T. D. Santos and J. A. V. Costa, Energy
374		Conversion and Management, 2011, 52 , 3132-3136.
375	18.	M. Negoro, N. Shioji, K. Miyamoto and Y. Micira, Applied Biochemistry and
376		Biotechnology, 1991, 28-29, 877-886.
377	19.	JN. Lee, JS. Lee, CS. Shin, SC. Park and SW. Kim, in Twenty-First
378		Symposium on Biotechnology for Fuels and Chemicals, eds. M. Finkelstein
379		and B. Davison, Humana Press, 2000, pp. 329-342.
380	20.	JS. Lee, DK. Kim, JP. Lee, SC. Park, JH. Koh, HS. Cho and SW.
381		Kim, Bioresource Technology, 2002, 82, 1-4.
382	21.	JS. Lee and JP. Lee, <i>Biotechnology and Bioprocess Engineering</i> , 2003, 8 , 17

383		354-359.
384	22.	H. Nagase, Ki. Yoshihara, K. Eguchi, Y. Okamoto, S. Murasaki, R.
385		Yamashita, K. Hirata and K. Miyamoto, Biochemical Engineering Journal,
386		2001, 7, 241-246.
387	23.	S. Y. Chiu, C. Y. Kao, T. T. Huang, C. J. Lin, S. C. Ong, C. D. Chen, J. S.
388		Chang and C. S. Lin, Bioresource Technology, 2011, 102, 9135-9142.
389	24.	P. Westerhoff, Q. Hu, M. Esparza-Soto and W. Vermaas, Environmental
390		<i>Technology</i> , 2010, 31 , 523-532.
391	25.	B. E. Taştan, E. Duygu, O. Atakol and G. Dönmez, Energy Conversion and
392		Management, 2012, 64 , 28-34.
393	26.	Y. Liu, J. Zhang, C. Sheng, Y. Zhang and L. Zhao, Chemical Engineering
394		Journal, 2010, 162, 1006-1011.
395	27.	Y. Liu, J. Zhang and C. Sheng, Chemical Engineering Journal, 2011, 168,
396		183-189.
397	28.	A. M. El-Dein, J. Libra and U. Wiesmann, Journal of Chemical Technology &
398		Biotechnology, 2006, 81, 1239-1245.
399	29.	C. Cooper, C. Clausen, L. Pettey, M. Collins and M. Pozo de Fernandez,
400		Journal of Environmental Engineering, 2002, 128 , 68-72.
401	30.	J. Cheng, Y. Huang, J. Feng, J. Sun, J. Zhou and K. Cen, Bioresource
402		Technology, 2013, 144, 321-327.
403	31.	M. Muruganandham and M. Swaminathan, Dyes and Pigments, 2004, 62,
404		269-275.
405	32.	W. Kim, J. Park, G. Gim, SH. Jeong, C. Kang, DJ. Kim and S. Kim,
406		Bioprocess and Biosystems Engineering, 2012, 35, 19-27.
407	33.	Y.T. Huang, C.P. Su, International Journal of Environmental Science and
408		<i>Technology</i> , 2014, 11 ,703–710.
409	34.	M. Anjos, B.D. Fernandes, A.A. Vicente, J.A. Teixeira, G.Dragone,
410		<i>Bioresource Technology</i> , 2013, 139 , 149-154
411	35.	R. Ramanan, K. Kannan, A. Deshkar, R. Yadav, T. Chakrabarti, Bioresource

- 412 *Technology*, 2010, **101**, 2616-2622.
- 413 36. S.Y. Chiu, C.Y. Kao, C.H. Chen, T.C. Kuan, S.C. Ong, C.S. Lin, Bioresource
- 414 *Technology* 2008, **99**, 3389-3396.

415

416

417 List of figures and tables:

- 418 **Fig.1.** Experimental system in which the NO in flue gas was converted to NO₃⁻ as
- 419 nitrogen source for microalgal growth.
- 420 Fig.2. Effects of NO on *Chlorella* PY-ZU1 growth and pH of the cultures.
- 421 Fig.3. Microalgal growth with NO₃⁻ derived from NO oxidation and commercial
- 422 NaNO₃.
- 423 **Fig.4.** Effects of UV lamp power and H_2O_2 concentration on NO_3^- production and
- 424 microalgal growth.
- 425 **Fig.5.** Effects of NO concentration on NO₃⁻ production and microalgal growth.
- 426 **Fig.6.** CO₂ fixation and biomass growth of *Chlorella*.PY-ZU1 cultivated with NO₃⁻
- 427 derived from NO oxidation.
- 428 **Table 1.** Compositions of lipids in microalgae cultivated with commercial NaNO₃ and
- 429 NO_3^- derived from NO oxidation.
- 430
- 431

Fig.1. Experimental system in which the NO in flue gas was converted to NO_3^- as nitrogen source for microalgal growth.

(b) Effects on pH value.

Fig.2. Effects of NO on Chlorella PY-ZU1 growth and pH of the cultures.

(b) Microalgal growth in SE medium with derived $\mathrm{NO_3}^-$ from NO and commercial

NaNO₃

Fig.3. Microalgal growth with NO₃⁻ derived from NO oxidation and commercial NaNO₃.

(b) Effects of UV power on microalgal growth.

(d) Effects of H_2O_2 on microalgal growth.

Fig.4. Effects of UV lamp power and H_2O_2 concentration on NO_3^- production and microalgal growth.

(b) Effects of NO concentration on microalgal growth

Fig.5. Effects of NO concentration on NO₃⁻ production and microalgal growth.

Fig.6. CO_2 fixation and biomass growth of *Chlorella*.PY-ZU1 cultivated with NO_3^- derived from NO oxidation.

Table 1. Compositions of lipids in microalgae cultivated with commercial NaNO ₃
and NO_3^- derived from NO oxidation.

Conditions		Commercial NaNO ₃	NO ₃ ⁻ derived from NO oxidation
Lipid content (% of dry bioma	uss)	17.92	18.11
lipids composition (% of total lipid)	C16:0	23.85±0.29	22.37±0.10
	C16:3	7.02±0.34	6.80±0.29
	C18:0	3.15±0.26	3.17±0.01
	C18:1	15.88±0.75	14.82±0.76
	C18:2	15.52±0.83	14.76±0.57
	C18:3	12.77±0.34	12.65±0.46
	Others(C16-C24)	21.8±0.63	25.4±0.45
	Total	100	100