# **RSC Advances**



This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.



www.rsc.org/advances

# Journal Name

# RSCPublishing

### COMMUNICATION

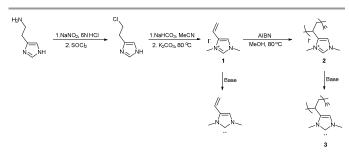
Cite this: DOI: 10.1039/x0xx00000x

## **Poly(4-vinylimidazolium) Iodides: A Highly Recyclable Organocatalyst Precursor for Benzoin Condensation Reaction**

Received 00th January 2012, Accepted 00th January 2012 Ue Ryung Seo and Young Keun Chung\*

DOI: 10.1039/x0xx00000x

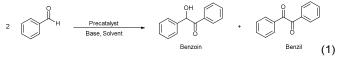
www.rsc.org/


The development of highly efficient, recyclable poly(4vinylimidazolium) iodides (2) for the benzoin condensation reaction under mild reaction conditions is discussed: poly(4vinyl N-heterocyclic carbene)s (3) obtained from 2 showed higher catalytic activity than monomeric 4-vinyl Nheterocyclic carbene and could be successfully recovered and reused over seven times without loss of performance.

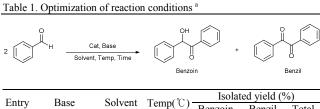
Organocatalysis related to green chemistry has attracted much attention and significantly progressed in recent years.<sup>1</sup> Imidazoles obtained from heterocycles are widely used as Lewis basic organocatalysts.<sup>2</sup> One of the most studied reactions by organocatalysis is the benzoin condensation reaction which affords  $\alpha$ -hydroxyketones (acyloins) via the self-condensation of two aromatic aldehydes.<sup>3</sup>  $\alpha$ -Hydroxyketones are important building blocks in organic synthesis and found in many biologically active compounds.<sup>4</sup>

Organocatalytic reactions are usually carried out under homogeneous conditions. However, due to the economic and environmental issues, many studies have been focused on reducing waste and reusing materials. In this regard, several studies on the heterogenization of organocatalysts using organic polymers<sup>5</sup> or mesoporous materials<sup>6</sup> have been reported. However, some of them suffered from relatively low yields and poor recyclability, probably because of poor stability or degradation of the catalysts under the basic conditions. Recently, a self-supported poly(NHC) (NHC = N-heterocyclic carbene), with in situ generated NHCs orthogonally positioned along a main chain was reported.<sup>7</sup> However, the catalytic activity of this catalyst for benzoin condensation was not satisfactory. The recyclability of the catalyst (10 mol%) was investigated only in three successive benzoin condensation reactions (67%, 66%, and 64% yields, respectively).

Recently, poly(NHC)s iodides, being polymeric ionic liquids (PILs) or poly(ionic liquid)s, obtained from 4-vinylimidazolium


iodide has attracted our interest. Because PILs can combine the unique properties of ionic liquids and mechanical stability of polymers, they would offer a great versatility in the catalyst design.<sup>8</sup> we envisioned that poly(4-vinylimidazolium) iodides would be a very useful polymeric support material and function as a polymerized catalyst.<sup>9</sup> In our previous study, we reported<sup>10</sup> the preparation of poly(4-vinylimidazolium)s and its application in the cycloaddition of CO<sub>2</sub> to epoxides using 1 8diazabicyclo[5.4.0]undec-7-ene (DBU) and ZnBr2. Herein we communicate the use of polv(4-vinvlimidazolium)s as an organic precatalyst for N-heterocyclic carbene-catalyzed benzoin condensation reaction and the tandem reaction of benzaldehyde and methyl acrylate to afford  $\gamma$ -butyrolactone. The in situ generated poly(NHC)s exhibits higher catalytic activity than the corresponding monomeric analog and can be recycled repeatedly without loss in performance in the benzoin condensation reaction. Recently, Taton et al. reported the use of poly(1-vinyl-3-alkylimidazolium)s as a precatalyst in benzoin condensation reactions.<sup>11</sup> However, poor recyclability with a lower yield was observed. As far as we are aware, our study shows the first successfully recyclable catalytic system for benzoin condensation reaction.




Scheme 1. Synthesis of 1 and 2 from Histamine

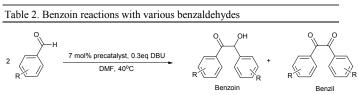
Journal Name

Starting from histamine, 4-vinylimidazolium (1) and poly(4-vinylimidazolium)s (2) were prepared.<sup>10</sup> With 1 and 2 in hand, their abilities to catalyze the benzoin condensation were investigated (eq 1).



First, the reaction conditions were investigated, including the reaction temperature, solvent and base to optimize the yield of benzoin (Table 1).<sup>11</sup>

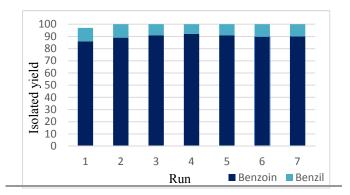



|                 |              |        |     | Benzoin | Benzıl | Total |
|-----------------|--------------|--------|-----|---------|--------|-------|
| 1               | none         | DMF    | 40  | 0       | 0      | 0     |
| 2               | t-BuOK       | DMF    | 60  | 11      | 9      | 20    |
| 3               | TEA          | DMF    | 60  | 0       | 0      | 0     |
| 4               | DBU (1 eq)   | $H_2O$ | 60  | 0       | 1      | 1     |
| 5               | DBU (1 eq)   | DMF    | 60  | 60      | 21     | 81    |
| 6               | DBU (1 eq)   | DMF    | 80  | 31      | 20     | 51    |
| 7               | DBU (1 eq)   | DMF    | 50  | 69      | 22     | 91    |
| 8               | DBU (1 eq)   | DMF    | 40  | 62      | 33     | 95    |
| 9               | DBU (1 eq)   | DMF    | r.t | 21      | 21     | 42    |
| 10              | DBU (0.5 eq) | DMF    | 40  | 74      | 22     | 96    |
| 11              | DBU (0.3 eq) | DMF    | 40  | 82      | 15     | 97    |
| 12 <sup>b</sup> | DBU (0.3 eq) | DMF    | 40  | 96      | 1      | 97    |
| 13°             | DBU (0.3 eq) | DMF    | 40  | 62      | 10     | 72    |

<sup>*a*</sup> Reaction conditions: 1.8 mmol benzaldehyde, 7 mol% catalyst, appropriate equiv of base were reacted in 1 ml solvent were reacted under nitrogen atmosphere..<sup>*b*</sup> Acidification after reaction. <sup>*c*</sup> 1 as a catalyst precursor

The yield of the reaction in the presence of 2 was highly sensitive to the base, reaction solvent, and reaction temperature. In the absence of a base or in the presence of triethylamine (TEA) as the base, no reaction was observed (entries 1 and 3). A particular range of reaction temperature (40-50 °C) in dimethyl formamide (DMF) maximized the yield of the reaction (entries 5-9). The amount of DBU could be reduced to 0.3 equiv without decreasing the yield (entries 10-11). As shown in Table 1, benzoin was obtained as the major product with benzil in various yields as the byproduct. The yields and product distributions were also highly dependent on the trituration method (entry 11 vs. 12) because the remaining DBU functioned as a catalyst in the conversion of benzoin to benzil.<sup>13</sup> The acidification of reaction mixture before exposing to air protects the transformation of benzoin to benzil in air. Thus, when the reaction mixture was treated with 4 M HCl in dioxane after the reaction, the best result was achieved (entry 12).<sup>14</sup> The optimum reaction conditions were as follows: 7 mol% 2, 0.3 equiv DBU, 1 mL DMF, 40 °C, and 24 h. Moreover, the catalytic activity of 2 was higher than that of 1 (entry 12 vs. 13).

Using the optimized reaction conditions, the catalytic activity of **1** and **2** were investigated for diverse functionalized derivatives (Table 2). Benzoins were obtained as the major products with benzil as the byproduct in various yields (less than 7%).


Interestingly, the yields and distributions of the products were highly dependent on the substituent on the benzaldehydes. The yields of benzoin products in the presence of 2 were moderate to excellent (48-96 %). The electronic and steric nature of the substituents did not affect the yield of the benzoins. The total yields of the benzoin and benzil in the presence of 2 were moderate to excellent (52-97 %). As expected, higher yields were observed in the presence of 2 in all the cases than 1. Strangely, when 4-methoxybenzaldehyde was used as the substrate, a poor yield (< 10%) was obtained. However, when the reaction temperature was raised to 80 °C, the expected reaction product was obtained in 77% yield and with 21% recovery of the reactant (entry 5). Notably, pyridine-3carboxaldehyde in the presence of 2 afforded a benzil derivative, 1,2-di(pyridine-3-yl)ethane-1,2-dione, as the only product in 93% yield (by <sup>1</sup>H NMR) (data not shown in Table 2). It has been reported that 2-pyridinecarboxaldehyde is easily oxidized to apyridil in methanol at room temperature in air.<sup>15</sup>



| En  | R            | Yield <sup>a</sup> by <b>1</b> |        |       | Yield <sup>a</sup> by <b>2</b> |        |       |
|-----|--------------|--------------------------------|--------|-------|--------------------------------|--------|-------|
| try |              | Benzoin                        | Benzil | Total | Benzoin                        | Benzil | Total |
| 1   | Н            | 69                             | 3      | 72    | 96                             | 1      | 97    |
| 2   | <i>m</i> -Br | 69                             | 11     | 80    | 81                             | 7      | 88    |
| 3   | <i>p</i> -Br | 40                             | 9      | 49    | 48                             | 4      | 52    |
| 4   | <i>p</i> -Me | 68                             | 5      | 73    | 72                             | 3      | 75    |
| 5   | p-MeO        | 75                             | 0      | 75    | 77 <sup>b</sup>                | 0      | 77    |
| 6   | $p-CF_3$     | 40                             | 5      | 45    | 71                             | 4      | 75    |
| 7   | <i>p</i> -Cl | 68                             | 8      | 76    | 80                             | 4      | 84    |
|     |              |                                |        |       |                                |        |       |

<sup>a</sup> Isolated yields. <sup>b</sup> Reaction temp. 80 °C

The reusability of **2** was also examined (Fig 1). The polymer catalyst was recovered by the addition of excess acetone into the reaction mixture. The precipitate was filtered and washed with acetone and dried. Because a small amount of **2** was used as the catalyst, the effect of loss during the separation seemed to be very significant. After seven reaction cycles, 15% of **2** was lost.



### Fig 1. Recycling of polymer catalyst in benzoin condensation reaction

As shown in Fig 1, the catalyst was successfully reused without loss of performance over seven cycles. Our excellent result is in contrast to that obtained for poly(1-vinylimidazolium)s.<sup>12</sup> In that study, poor recyclability with lower yields was observed even after the first and subsequent recycling catalytic reactions and a partial deactivation of poly(1-vinylNHC)s due to the trace impurities was proposed. The deactivation of *in situ* generated poly(1-vinylNHC)s is more likely to occur because of relatively high temperature (80 °C). However, we expected that the significant difference in the reusability between poly(1-vinylNHC)s and poly(4-vinylNHC)s might arise from the stability of poly(NHC)s under the reaction and workup conditions.

Zhai et al. reported<sup>16</sup> the one-step synthesis of  $\gamma$ -butyrolactones from benzoins/ benzaldehydes and methyl acrylate in the presence of a catalyst generated from the reaction of 1,3dimethylimidazolium with a base. We also investigated the tandem reaction of benzaldehyde and methyl acrylate catalyzed by **2** in the presence of DBU. After the reaction,  $\gamma$ -butyrolactone was isolated in 78% yield and with a concomitant formation of an allylic alcohol in 6% yield (eq 2).

DBU-catalyzed Baylis-Hillman reaction afforded allylic alcohol.<sup>17</sup> However, allylic alcohol was not obtained in the presence of 1,3dimethylimidazolium and a base (KO<sup>1</sup>Bu).<sup>16</sup> We investigated the substrate scope of this tandem reaction in the presence of **1** or **2** as the catalyst precursor (Table 3). In the presence of **2** and DBU, the yields of lactones were reasonable to high (44-78%). However, the yields in the presence of **1** and DBU were poor to moderate (26-60%). Thus, precatalyst **2** afforded lactones in higher yields than **1**. Allylic alcohols were obtained in better yields for benzaldehyde and *m*-bromobenzaldehyde than for other aldehydes (trace amounts). When *p*-methoxybenzaldehyde was used, a considerable amount of the reactant was recovered.




Table 3. Reaction of aromatic aldehydes with methyl acrylate<sup>*a,b*</sup>

|       |              | Yield (%) by 1 |                 | Yield (%) by 2 |                 |
|-------|--------------|----------------|-----------------|----------------|-----------------|
| Entry | R            | Lactone        | Ally<br>alcohol | Lactone        | Ally<br>alcohol |
| 1     | Н            | 60             | 8               | 60             | 8               |
| 2     | <i>m</i> -Br | 26             | 6               | 26             | 6               |
| 3     | <i>p</i> -Me | 60             | trace           | 60             | trace           |
| 4     | p-Cl         | 34             | trace           | 34             | trace           |
| 5     | p-MeO        | $50^{\circ}$   | trace           | $50^{c}$       | trace           |

<sup>*a*</sup> Reaction conditions: 1.8 mmol benzaldehyde, 7 mol% catalyst, 0.3 equiv DBU, 1 ml of DMF at 40°C for 24 h under N<sub>2</sub>/18 mmol methyl acrylate for 5 h. <sup>*b*</sup> Isolated yield. <sup>*c*</sup> 23% of reactant was recovered. <sup>*d*</sup> Reaction temp. 80 °C and 36% of reactant was recovered

Recently, Cowley et al. synthesized<sup>7</sup> poly(NHC)s, with a different backbone from our poly(NHC)s, and used in benzoin condensation reaction. They also observed higher catalytic activity of poly(NHC)s than the corresponding monomeric analog. Xie et al. investigated<sup>18</sup> di- and triimidazolium salts as the catalysts for benzoin condensation reaction. In contrast to our results, the catalytic activity of di- and triimidazolium salts was inferior to that of the catalyst with only one imidazolium moiety, probably because of the increase in the steric hindrance by adding of an imidazolium ring. The highly enhanced reactivity of **2** may be attributed to the synergistic effect between the catalytically active sites along the polymer backbone<sup>7,19</sup> or a higher density of active sites. In addition, the active sites linked to the polymer backbone in a pendant fashion may help to increase the reactivity.

### Conclusions

In conclusion, we developed a polymer-based organocatalytic system (2) that shows high catalytic activity in benzoin condensation reaction and the tandem formation of  $\gamma$ -butyrolactone from benzaldehyde and methyl acrylate. Precatalyst 2 showed higher catalytic activity than monomeric analog (1). Moreover, 2 showed higher catalytic activity and reusability in the benzoin condensation reaction compared to the polymerized precatalysts obtained from 1-vinylimidazolium. Organocatalytic system 2 synthesized in three steps from commercially available materials, has great potential for practical use and recovery of the polymerized catalysts in benzoin condensation reactions of the polymer based organocatalytic system to other reactions are ongoing in our laboratory.

### Notes and references

<sup>*a*</sup> Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-747, Korea; E-mail: ykchung@snu.ac.kr

<sup>†</sup> This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (2007-0093864). URS thanks the Brain Korea 21 Plus Fellowships

Electronic Supplementary Information (ESI) available: [All experimental procedures, characterization data, and the copies of the <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra are provided]. See DOI: 10.1039/c000000x/

- (a) D. Enders, O. Niemeier and A. Henseler, Chem. Rev., 2007, 107, 5606–5655; (b) P. H.-Y. Cheong, C. Y. Legault, J. M. Um, N. Çelebi-Ölçüm and K. N. Houk, Chem. Rev., 2011, 111, 5042–5137; (c) C. M. R. Volla, I. Atodiresei and M. Rueping, Chem. Rev., 2014, 114, 2390–2431; (d) N. Mase and C. F. Barbas, III, Org. Biomol. Chem., 2010, 8, 4043-4050; (e) R. C. Wende and P. R. Schreiner, Green Chem., 2012, 14, 1821-1849; (f) J.-F. Brière, S. Oudeyer, V. Dalla and V. Levacher, Chem. Soc. Rev., 2012, 41, 1696-1707; (g) D. J. Liu and E. Y.-X. Chen, Green Chem., 2014, 16, 964-981; (h) J. Alemán and S. Cabrera, Chem. Soc. Rev., 2013, 42, 774-793; (i) X. Bugaut and F. Glorius, Chem. Soc. Rev., 2012, 41, 3511-3522.
- (a) A. Grossmann and D. Enders, Angew. Chem., Int. Ed., 2012, 51, 314–325; (b) K. Hirano, I. Piel and F. Glorius, Chem. Lett., 2011, 40, 786–791; (c) T. Dröge and F. Glorius, Angew. Chem., Int. Ed., 2010, 49, 6940–6952; (d) H. Zhao, F. W. Foss, Jr. and R. Breslow,

J. Am. Chem. Soc., 2008, **130**, 12590–12591; (e) S. E. Denmark and L. B. Gregory, Angew. Chem., Int. Ed. 2008, **47**, 1560-1638; (f) N. Marion, S. Díez-González and S. P. Nolan, Angew. Chem., Int. Ed., 2007, **46**, 2988–3000; (g) B. Bantu, G. M. Pawar, K. Wurst, U. Decker, A. M. Schmidt, and M. R. Buchmeiser, *Eur. J. Inorg. Chem.* 2009, 1970–1976; (h) B. Bantu, G. M. Pawar, U. Decker, K. Wurst, A. M. Schmidt, and M. R. Buchmeiser, *Chem. Eur. J.* 2009, **15**, 3103 – 3109; (i) K.Thiel, R. Zehbe, J. Roeser, P. Strauch, S. Enthalerd, and A. Thomas, *Polym. Chem.*, 2013, **4**, 1848–1856, (j) K. Zeitlera, and I.Magera, Adv. Synth. Catal. 2007, **349**, 1851 – 1857. (k) A. B. Powell, C. W. Bielawski and A. H. Cowley, *Comments Inorg. Chem.* 2010, **31**, 75-82.

- (a) Z.-J. Jia, K. Jiang, Q.-Q. Zhou, L. Dong and Y.-C. Chen, *Chem. Commun.*, 2013, **49**, 5892-5894; (b) P. Dominguez de Maria and S. Shanmuganathan, *Curr. Org. Chem.* 2011, **15**, 2083-2097; (c) K. Thai, S. M. Langdon and F. Bilodeau, M. Gravel, *Org. Lett.* 2013, **15**, 2214-2217; (d) T. Ema, K. Akihara, R. Obayashi and T. Sakai, *Adv. Synth. Catal.* 2012, **354**, 3283-3290.
- C. Palomo, M. Oiarbide and J. M. García, *Chem. Soc. Rev.*, 2012, 41, 4150-4164 and references therein.
- (a) J. D. Storey and C. Williamson, *Tetrahedron Lett.*, 2005, 46, 7337-7339; (b) K. Thiel, R. Zehbe, J. Roeser, P. Strauch, S. Enthaler and A. Thomas, *Polym. Chem.* 2013, 4, 1848-1856; (c) K. Zeitler and I. Mager, *Adv. Synth. Catal.* 2007, 349, 1851-1857; (d) M. Tan, Y. Zhang and J. Y. Ying, *Adv. Synth. Catal.* 2009, 351, 1390-1394; (e) G. M. Pawar and M. R. Buchmeiser, *Adv. Synth. Catal.* 2010, 352, 917-928; (f) O. Bortolini, A. Cavazzini, P. Dambruoso, P. P. Giovannini, L. Caciolli, A. Massi, S. Pacifico and D. Ragno, *Green Chem.* 2013, 15, 2981-2992;
- (a) S. Shylesh, Z. Zhou, Q. Meng, A. Wagener, A. Seifert, S. Ernst and W. R. Thiel, *J. Mol. Catal. A: Chem.*, 2010, **332**, 65-69; (b) *Z.* Zhou, Q. Meng, A. Seifert, A. Wagner, Y. Sun, S. Emst and W. R. Thiel, *Micropor. Mesopor. Mater.*, 2009, **121**, 145-151.
- A. B. Powell, Y. Suzuki, M. Ueda, C. W. Bielawski and A. H. Cowley, J. Am. Chem. Soc., 2011, 133, 5218-5220.
- (a) J. Texter, Macromol. Rapid Commun. 2012, 33, 1996–2014. (b) J. Yuan, D. Mecerreyes and M. Antonietti, Prog. Polym. Sci., 2013, 38, 1009–1036. (c) D. Mecerreyes, Prog. Polym. Sci. 2011, 36, 1629– 1648.
- (a) H. G. Alt, J. Chem. Soc., Dalton Trans., 1999, 1703–1710; (b) J. Zhang, X. Wang and G.-X. Jin, Coord. Chem. Rev. 2006, 250, 95– 109 and references therein. (c) A. Zulauf, M. Mellah and E. Schulz, J. Org. Chem., 2009, 74, 2242-2245.
- 10. U.R. Seo and Y. K. Chung, Adv. Synth. Catal. 2014, 356, 1955-1961
- (a) J. Pinaud, J. Vignolle, Y. Gananou and D. Taton, *Macromolecules* 2011, 44, 1900-1908; (b) P. Coupillaud, J. Pinaud, N. Guidolin, J. Vignolle, M. Fèvre, E. Veaudecrenne, D. Mecerreyes and D. Taton, *J. Polym. Sci.: Part A: Polym. Chem.* 2013, 51, 4530-4540.
- 12. After the reaction was carried out, excess acetone was poured into the reaction flask to precipitate **2**. The precipitates were filtered off and the filtrate was added to a solution of 4 M HCl in dioxane. After the solution was filtered off, the filtrate was concentrated and chromatographed on a silica gel column.
- Y. Shimakawa, T. Morikawa and S. Sakaguchi, *Tetrahedron Lett.* 2010, **51**, 1786–1789.
- 14. After the reaction was carried out, a solution of 4 M HCl in dioxane was added to the reaction mixture. The resulting solution was stirred for 1 h. Excess acetone was poured into the reaction flask. After

precipitates were filtered off, the filtrate was concentrated and chromatographed on a silica gel column.

- 15. V. Hada, A. Tungler and L. Szepesy, J. Catal. 2002, 209, 472-479.
- W. Ye, G. Cai, Z. Zhuang, X. Jia and H. Zhai, Org. Lett., 2005, 7, 3769–3771.
- 17. V. K. Aggarwal and A. Mereu, Chem. Commun., 1999, 2311-2312.
- G. Gao, R. Xiao, Xiao, Y. Yuan, C.-H. Zhou, J. You and R.-G. Xie, J. Chem. Res. (S) 2002, 262–263.
- P. K. Dahl, B. B. De and S. Sivaram, J. Mol. Catal. A: Chem., 2001, 177, 71–87.