This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
The dielectric function tensor elements of an YMnO$_3$ single crystal yield M0 critical point like band-band absorption with discrete spectrally localized Lorentzian transitions within the band gaps.
Electronic transitions and dielectric function tensor of a YMnO₃ single crystal in the NIR–VUV spectral range

Rüdiger Schmidt-Grund,a* Steffen Richter,a Stefan G. Ebbinghaus,b Michael Lorenz,a Carsten Bundesmann,c and Marius Grundmanna

Received Xth XXXXXXXXXX 20XX, Accepted Xth XXXXXXXXXX 20XX
First published on the web Xth XXXXXXXXXX 20XX
DOI: 10.1039/b000000x

We present optical properties in the near-infrared to vacuum-ultraviolet spectral range of hexagonal YMnO₃. The high-quality dielectric function by means of Mueller matrix ellipsometry in the wide spectral range given previously. The experimental dielectric function of YMnO₃ agrees generally with theoretical calculations. We found the below 5.4 eV , we present much more precise data compared to previous reports. For higher energies no experimental reports were reported so far.

1 Introduction

Rare earth (“R”) manganites RMnO₃ (RMO) are in the focus of research since the last ten years because of their interesting ferroelectric, magnetic or even multiferroic properties at low temperatures (cf. the Reviews 1–6 and Refs. therein). Among these manganites, hexagonal YMnO₃ (YMO) is a special case because of its strong magneto-electric interaction, caused by the interplay between Mn ions and O ions in a distorted close-packed configuration.1,7 A connection between this property and a characteristic interband charge transfer transition from the hybridized oxygen - Mn states to Mn-3d states in the dielectric function spectra at ≈ 1.6 eV is proposed.8 This transition is also found for some other hexagonal RMO. Magnetic field dependence of the optical absorption and second order susceptibility indicates for some of them coupling of electronic charge distribution and magnetic ordering at low temperature.9,10 The optical properties11 of YMO at photon energies up to ≈ 5 eV have been experimentally and theoretically studied.8–10,12–14 Its dielectric function tensor has been theoretically derived for energies up to 15 eV,12 but experimental data are only available for the spectral range (0.7 – 5.4) eV.13 In the latter publication, the dielectric function tensor has been investigated by means of spectroscopic ellipsometry, but without Kramers-Kronig consistent modelling of the data. Thus, surface effects and sample alignment artefacts are possibly included in that data. For understanding the electronic structure of YMO, a precise knowledge of the properties of electronic transitions and their symmetry in a wide spectral range is very important, which can be derived e.g. from the material’s dielectric function tensor.

In the following we first describe shortly growth and structural properties of the sample, the experimental determination of the Mueller matrix and the model analysis procedure applied for determination of the dielectric function tensor in the NIR-VUV spectral range. Finally, we discuss the features observed in the dielectric function tensor and compare them with theoretical predictions.

2 Experimental Details

2.1 Growth and Structure Properties

The bulk YMO sample was grown by the optical floating zone technique. Stoichiometric amounts (0.025 mol) of pre-dried Y₂O₃ and Mn₂O₃ were thoroughly ground using agate mortar and pestle. The mixture was calcined in air at 1000°C for 12 h and 1200°C for 24 h with intermediate re-grinding. Rods of the polycrystalline material were sintered in air at 1600°C.
for 24 h on a platinum coated boat. Crystal growth in synthetic air (flow rate 100 ml/min) was carried out using a CSC optical floating zone furnace model FZ-T-10000-H-VPO-PC equipped with four 1500 W halogen lamps. The feed and seed rods were counter-rotated with 30 rpm. The resulting crystal of about 5 mm diameter and 50 mm length was cut perpendicular to the growth direction. The surfaces of the crystal slices (∼1 mm thick) were polished with 1 µm diamond suspension. Therefore, the surface exhibits some scratches, but the flat surface in between shows a roughness of about R_{rms} ∼ 1 nm as determined by atomic force microscopy.

The crystal structure was investigated by means of single crystal X-ray diffraction (XRD) using a STOE IPDS-2T diffractometer operating with Mo-K radiation. A very good structure refinement (R_1 = 0.0176, wR_2 = 0.0398) was achieved, indicating a high crystal quality. Details of the crystal structure investigations may be obtained from the Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen (Germany), on quoting the depository number CSD-427158. The results are in accordance with earlier single crystal X-ray investigations. Our crystals were found to be racemic (inversion) twins with 50 % contribution of both domains within experimental uncertainties as already described for other samples.

The orientation and mosaicity of the YMO single crystal was determined by high-resolution X-ray diffraction (HR-XRD) using a PANalitical X’pert PRO MRD diffractometer with incident Cu Kα parallel beam. The rocking curve of the (110) reflection of the YMO single crystal was measured with X-ray mirror with 1/32° divergence slit, 4 × Ge(220) monochromator and (1.5 × 1.5) mm² cross slit, i.e. Cu Kα1 radiation with 12 arcsec primary divergence. The detector was a PIXcel³D array operated in 1D scanning mode (2θ − θ scans) or in 0D open mode (rocking curves), respectively. (110) orientation (so-called a-plane) with ∼10° cut-off was found and the full-width-at-half-maximum (FWHM) of the (110) omega scan (rocking curve) is 100 arcsec which indicates a low mosaicity of the YMO sample (Fig. 1).

2.2 Spectroscopic Ellipsometry

The dielectric function tensor was determined by means of Mueller matrix spectroscopic ellipsometry in a wide spectral range from 0.5 eV to 9.15 eV at room temperature using two commercial spectroscopic ellipsometers, namely of dual rotating compensator type for measuring the full 4 × 4 Mueller matrix for photon energies (0.75 – 6.4) eV and of rotating analyser type equipped with one compensator in the whole spectral range (by the latter, only the first three rows of the Mueller matrix are measured). Measurements were performed at 16 different in-plane orientations φ = 0° to 360° of the crystal c-axis, which coincides with the optical axis, with respect to the plane of incidence in the full range φ = (0 – 360°), covering also the special cases parallel (φ = 0°, 180°) and perpendicular (φ = 90°, 270°) at which no energy conversion between the p- and s-polarized eigenmodes of the probe beam takes place, and in a wide range of angles of incidence between Φ = 45° and 75° with respect to the sample surface normal. The Φ − φ-evolution of the Mueller matrix spectra clearly reveals optical uniaxiality with the optical axis within the sample’s surface plane (θ = (91.9 ± 1)°). The symmetry of the full Mueller matrix (Fig. 2) proofs optical reciprocity as expected because for the room temperature paramagnetic phase of YMO no magneto-optical effects should occur.

The experimental data were analysed using a transfer-matrix technique considering a three-phase model consisting of the half-infinite YMO single crystal and a thin surface layer, found to be effectively ∼6 nm thick, bounded by the ambient. The surface was assumed to show some roughness without any chemical modification, thus a standard Bruggeman-type effective-medium approximation was applied by mixing the dielectric functions of YMO (∼65%) and void (∼35%), and with a depolarization factor of about one, in order to account for the mentioned scratches. These scratches do not significantly influence the ellipsometric measurements because they basically cause scattering of light which then is not collected by the detector. A weak depolarization in the experimental Mueller matrix spectra is caused which was modelled assuming a patterned surface layer (∼1/4 is not cov-
ered). For a hexagonal crystal structure, the complex dielectric function tensor in the principle axis representation has only elements $\tilde{\varepsilon}_{ij}$ different from zero at the main diagonal, where $\tilde{\varepsilon}_\perp = \tilde{\varepsilon}_{11} = \tilde{\varepsilon}_{22} \neq \tilde{\varepsilon}_{33} = \tilde{\varepsilon}_\parallel$. The complex dielectric functions $\tilde{\varepsilon}_{\perp\parallel} = \varepsilon_{\perp\parallel} + i\varepsilon_{\perp\parallel}$ of YMO were determined by Kramers-Kronig-consistent mathematical inversion25 simultaneously invoking the whole experimental data set using a regression analysis with a Levenburg-Marquardt algorithm. The model calculated Mueller matrix elements are included in the figures 2a–2c.

3 Results and Discussion

The spectra of the elements $\varepsilon_{\perp\perp}$ and $\varepsilon_{\perp\parallel}$ of the complex dielectric function tensor are shown in Fig. 3a and the spectra of the derived absorption coefficients in Fig. 4a. Spectra of the linear birefringence $\Delta n = n_\perp - n_\parallel$ and linear dichroism $\Delta \varepsilon = \varepsilon_\perp - \varepsilon_\parallel$ are shown in Fig. 4b. In the NIR-UV spectral range features of electronic transitions observed previously in YMO13,14 and related hexagonal manganites5,8–10 are basically reflected. At energies above 5 eV, two more pronounced features occur in the dielectric function spectra presented here. Also theoretically predicted transitions shown in Ref. 12 are basically reflected in the entire spectral range. Figure 3b shows a comparison of both, the experimental and theoretical (Ref. 12) data set for ε_2.

In the following we will discuss properties of the dielectric function spectra which have been observed for the first time in the data presented here with regard to knowledge from literature. Table 1 summarizes parameters of the most important observations.

(1) The pronounced absorption feature due to interband charge transfer transitions from the hybridized oxygen - Mn states to Mn-3d states8 at the onset of the absorption has been observed in the literature experimentally and was predicted theoretically.8,9,12–14 Its energetic position was found in the here presented data at 1.612 eV ($\varepsilon_2\perp$) and 1.686 eV ($\varepsilon_2\parallel$), roughly in the range of other experimental observations. It should be noted that the anisotropic properties of this transition has been reported experimentally in Ref. 13 only. In the theoretical dielectric function spectra, it is predicted for $\varepsilon_{2s,\perp}$ at ≈ 0.65 eV but does not appear in $\varepsilon_{2s,\parallel}$ at all (cf. also VII and the note27).12 Differently to previous observations and also to the theoretical prediction, we found that these transitions are spectrally discrete, i.e. they are each followed at higher energies by a vanishing absorption or rather ε_2 (cf. (II)). Also we have found that their lineshape is Lorentzian and their broadening is purely homogeneous with the same value for both of ≈ 0.26 eV. This is demonstrated by the match of Lorentzians functions with the lineshape (blue lines in Fig. 3b). Thus disorder effects on the lineshape can be excluded and the involved electronic states should be well defined with molecule-like characteristics. Regarding excitonic polarizabilities to be the nature of these transitions please see also (IV).

(II) We observe quasi-transparent points (i.e. $\varepsilon_2 \rightarrow 0$) in $\varepsilon_{2s,\perp}$ at ≈ 2.5 eV and in $\varepsilon_{2s,\parallel}$ at ≈ 1.9 eV, which is in both cases at the high energy side of the transitions discussed in (I) (please note the comment 26 regarding the data uncertainty). Such a behaviour was not observed previously.

(III) These quasi-transparent points are followed at higher energies by the onset of M0 critical point-like direct band-band absorption at 1.97 eV in $\varepsilon_{2s,\parallel}$ (orange line in Fig. 3b) and, less pronounced, at ≈ 2.6 eV in $\varepsilon_{2s,\perp}$ which was not observed experimentally before. In Ref. 12, a direct band gap is theoretically proposed with 0.48 eV width at the Γ-point of the Brillouin zone and another with 2.5 eV between the M and K point. If one would consider the general difference in the energetic positions and the assignment of the structures observed in experiment to that in theory (VII and Fig. 3b) the band gap absorption predicted at 2.5 eV could be assigned to the M0-like transition found here in $\varepsilon_{2s,\perp}$ at ≈ 2 eV and possibly also to that at ≈ 2.6 eV in $\varepsilon_{2s,\perp}$. In contrast, the band gap predicted at 0.48 eV cannot be assigned to one of the M0-like transitions observed here but it rather fits, also in view of its lineshape in the dielectric function, to the transition discussed in (I).

(IV) The amplitude ratios for the Lorentzian (I) and M0-like (III) transitions between \perp and \parallel are found to behave inversely like $A^\text{Lorentz}(\varepsilon_{2s,\perp})/A^\text{Lorentz}(\varepsilon_{2s,\parallel}) \approx A^\text{M0}(\varepsilon_{2s,\parallel})/A^\text{M0}(\varepsilon_{2s,\perp}) \approx 5$.27 This indicates some correlation between both types of transitions. Solely excitonic effects can be excluded because, apart from the fact that these Lorentzian transitions are well-known and assigned to the above mentioned transitions in literature,8,9,13,14 amplitudes of excitonic polarizabilities and the band-band transitions they are related to should be proportional to each other via the transfer matrix elements.

As some general remarks regarding the shape of the dielectric function spectra we want to point out:

(V) In comparison to the dielectric function shown in Ref. 13, the data presented here are Kramers-Kronig consistent, by far less noisy and also the absolute values and the lineshape differ considerably. This is especially the case for the real part, where for $\varepsilon_{1\parallel}$ features present in the imaginary part are not reflected, probably caused by lack of Kramers-Kronig consistency of the data shown in Ref. 13. Thus, the data presented here provide a more reliable basis for electronic structure calculations.

(VI) The Lorentzian transitions (I) and the strong transitions observed in ε_2 at $\approx (3–6)$ eV show a pronounced dichroism (cf. Fig. 4b). In the VUV spectral range the spectral weight is almost equally distributed within the directions \perp and \parallel. The small linear birefringence at high energies suggests that electronic transitions at energies above the spectral range investigated here are more pronounced for ε_\parallel. Further,
the relatively small absolute values of ε_1 which are only twice that of the vacuum dielectric constant ($\varepsilon_{1,\infty} = 1, \varepsilon = \varepsilon_0$) and its smooth lineshape in this spectral range further suggest that the overall spectral weight of those transitions can be assumed to be not very high, which confirms theoretical predictions for YMnO$_3$ and is similar to other manganites. The transitions observed in the dielectric function spectra presented here compared to the theoretically predicted (Ref. 12) are energetically shifted against each other and differently spectrally broadened (Fig. 3b). Also, more features are predicted in the theoretical dielectric functions. According to the spectral broadening, based on the homogeneous lineshape found for the Lorentzian transitions (c.f. (I)), all experimentally observed transitions are assumed to be homogeneously broadened and to be not affected by disorder effects. Thus it can be concluded that theory overestimates the number of different electronic transitions, even if lifetime effects would be included in the theoretical spectra. Temperature effects induced by electron-phonon interaction to be responsible for the large broadening observed in the experimental spectra and the different energies of the observed and theoretically predicted transitions can be assumed to be negligible. Besides general limitations of first principle calculations, the energy shift found between the experimental and theoretical dielectric function spectra (Fig. 3b) could, at least partially, be related to neglecting excitonic effects in the theory. Thus, comparing the general lineshape, one can choose the assignment of transitions observed in the experimental dielectric function to those predicted theoretically as indicated by the arrows in Figure 3b.

4 Conclusions

We have determined Kramers-Kronig consistently the dielectric function tensor of a hexagonal YMnO$_3$ bulk single crystal with high precision by means of Mueller matrix spectroscopic ellipsometry in the wide spectral range (0.5 – 9.15) eV at room temperature. The symmetry of the 4×4 Mueller matrices proves the optical linear uniaxial behaviour. The experimental dielectric function tensor compares generally well to a theoretically predicted one. For the first time, we have observed a M0 critical point-like band-band transition in each of the tensor components $\hat{\varepsilon}_\parallel$ and $\hat{\varepsilon}_\perp$ and pseudo-transparent points between them and the pronounced discrete transitions involving Mn-3d states which we have found to be purely Lorentzian with a homogeneous broadening.

Acknowledgements

We acknowledge L. Fricke for AFM measurements as well as H. Franke and C. Sturm for reading the manuscript and valuable discussions. This work was supported by Deutsche Forschungsgemeinschaft (DFG) within Sonderforschungsbereich 762 - “Functionality of Oxide Interfaces” (INST271/240-2, A8 and B3). The optical floating zone furnace was supported by the DFG through grant INST 271/258-1 FUGG.

Notes and references

11 We restrict the discussion here only to the near-infrared to vacuum-ultraviolet spectral range.

Table 1 Parameters of the most important features observed in the dielectric function spectra. The uncertainty is in the order of the last digit.

| energy (eV) | broadening (eV) | amplitude ratio $A^\parallel(\varepsilon_{2,\perp})/A^\parallel(\varepsilon_{2,||})$ |
|-------------|----------------|----------------------------------|
| $\varepsilon_{2,\perp}$ | $\varepsilon_{2,||}$ | $\varepsilon_{2,\perp}$ |
| (I) Lorentzian absorption | 1.612 | 1.686 | 0.26 | 5 |
| (II) quasi-transparent points | 2.5 | 1.90 | – | – |
| (III) M0-like band gap | 2.6 | 1.97 | 0.02 | 1/5 |
The absolute values of the dielectric function tensor elements are hard to determine with great precision because they are strongly correlated with the exact treatment of the surface layer and the exact value of θ. Thus $\varepsilon_2 \to 0$ is not exactly determined. An average uncertainty for all $\delta \varepsilon$ of approximately $+0.2/-0.05$ can be estimated. In the VUV spectral range $\delta \varepsilon$ is somewhat smaller but larger in the range $1 - 5$ eV (up to $+0.5/-0.05$). It should be noted that $\delta \varepsilon$ is almost isotropic, that means the linear birefringence and dichroism are not affected too much.

Please note that in our data the appearance of the Lorentzian peak in the ε_1 tensor element cannot be caused in a sample misalignment during the ellipsometry experiments. Based on the large experimental data set, the sample orientation and Euler angles are determined very precisely and thus also the contribution to each of the dielectric function tensor elements are well defined in energy and amplitude and separated well from each other.26

31 It shall be mentioned that the calculations in Ref. 12 have been done for zero Kelvin and for the antiferromagnetic ordered phase. First results regarding low temperature dielectric function spectra indicate a basically similar line-shape as the room temperature data presented here. This is especially true for the linewidth, thus it can be assumed that the interaction of the electronic system with phonons does not dominantly contribute to the observed broadening.

Fig. 2 Experimental (symbols) and model calculated (lines) spectra of the Mueller matrix elements. (a,b) In the entire spectral range (first three rows of the Mueller matrix): (a) diagonal elements for in-plane orientation $\phi = 0^\circ$ (upper part) and 90° (lower part), the off-diagonal elements are zero and $M_{22} = 1$; (b) off-diagonal elements and M_{22} for in-plane orientation $\phi = 30^\circ$. (c) Mueller matrix elements which are sensitive to optical non-reciprocity and circular birefringence for in-plane orientation $\phi = 45^\circ$. It is found $M_{43} = -M_{34}$ with a standard deviation of ≈ 0.002 which is within the accuracy of the Mueller matrix elements, the other pairs M_{4i}/M_{4i} and M_{33}/M_{44} differ slightly from each other due to the linear birefringence which is nicely reproduced by the model. (d) Colour coded images of the $\Phi - \phi$-evolution of the experimental M_{43} at photon energies 1.6 eV and 1.7 eV. (a-d) The uncertainty in the experimental Mueller matrix elements is below 0.003 for photon energies < 6.5 eV and increases to ≈ 0.01 for 9.15 eV.
Fig. 3 (a) Spectra of the dielectric function tensor elements $\varepsilon_1 \perp$ (blue symbols, \perp: filled, \parallel: open) and $\varepsilon_2 \perp$ (red symbols, \perp: filled, \parallel: open). Lines are guides for the eye, only. (please note comment 26 regarding the data uncertainty) (b) Comparison of the experimental $\varepsilon_2 \perp$ spectra (red symbols, \perp: filled, \parallel: open) with theoretical calculated ones reproduced from Ref. 12 (green lines, \perp: solid, \parallel: dashed). The arrows indicate the assignment of the peaks observed in experiment to that in theory (solid lines: $\varepsilon_2 \perp$, dashed lines: $\varepsilon_2 \parallel$). Please note the different scale of the ε_2-axes for experiment (left) and theory (right). The blue lines show Lorentzian lineshape approximations of the sharp peaks at 1.612 eV ($\varepsilon_2 \perp$) and 1.686 eV ($\varepsilon_2 \parallel$). The orange line represents the M0 critical point-like onset of the band-band absorption of $\varepsilon_2 \parallel$ at 1.97 eV. Please note that here only the contribution of the M0 transition is plotted. If neighboured transitions are also considered, the model matches precisely the experimental data.

Fig. 4 Spectra of (a) the absorption coefficients $\alpha \perp$ (symbols, \perp: filled, \parallel: open) and (b) of the linear birefringence Δn (blue symbols) and dichroism $\Delta \kappa$ (red symbols). Lines are guides for the eye, only. (please note comment 26 regarding the data uncertainty)