RSC Advances

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

www.rsc.org/advacnes

Synthetic Mimics of Carbohydrate-Based Anticancer Vaccines: Preparation of Carbohydrate Polymers Bearing Unimolecular Trivalent Carbohydrate Ligands by Controlled Living Radical Polymerization

Teng-Yuan Kuo, Li-An Chien, Ya-Chi Chang, Shuang-Yu Liou, Che-Chien Chang*

s Received (in XXX, XXX) Xth XXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

Synthetic methods for preparation of three different styrene-type carbohydrate monomers, containing mannose, sialic acid and *N*-acetyllactosamine were successfully developed. Diethylene glycol was used as the spacer between the styrene and carbohydrate moieties. Under the conditions of nitroxide-mediated

¹⁰ polymerizations, controlled living radical polymerizations could be accomplished, affording well defined carbohydrate polymers with different sugar compositions. The PDIs were increased and conversions were decreased upon increasing concentrations of carbohydrate monomers. The resulting carbohydrate polymers were characterized by NMR. Novel carbohydrate polymers bearing unimolecular trivalent carbohydrate ligands could also be achieved through the living radical process used in this study.

15 Introduction

Cell surface carbohydrates are involved in a variety of biological and medical functions, including cellular recognition, adhesion, cell growth regulation, cancer cell metastasis, and inflammation.¹ They also serve as recognition sites for infectious bacteria,

- ²⁰ viruses, toxins, and hormones that result in the development of a wide variety of diseases.² Studies of their biological and medical functions are limited because of the unavailability of sufficient amounts from natural sources or difficulties associated with preparing these complex oligosaccharides. Although the great
- ²⁵ improvements have been achieved in the chemical and enzymatic synthesis of oligosaccharides, practical and efficient synthetic methods for the preparation of these complex structures are still highly demanded.³

Carbohydrate polymers are synthetic polymers with a non-³⁰ carbohydrate main chain, containing carbohydrate moieties as the terminals.⁴ Carbohydrate polymers can be considered as alternative structures to oligosaccharides, which have been shown to mimic oligosaccharides in interactions between carbohydrates and lectins.⁵ The interaction between carbohydrates and lectins is

- ³⁵ usually weak and binding ability can be enhanced via the use of multivalent ligands. Carbohydrate polymers with multiple carbohydrates ligands are capable of exhibiting a cluster effect, thus increasing their binding ability.⁶ Due to the increasing interest in artificial materials for a variety of biomedical uses,
- ⁴⁰ scientific reports have been published on their use as macromolecular drugs, drug delivery systems, a stationary phase for the separation of carbohydrates binding proteins, bioassays, surface modifiers, artificial tissues.⁷

Several methods have been developed for preparing carbohydrate polymers, such as atom transfer radical polymerization (ATRP),⁸ reversible addition-fragmentation chain transfer (RAFT),9 and nitroxide-mediated polymerization ⁵⁰ (NMP).¹⁰ NMP techniques have attracted a great deal of attention from biomedical chemists, since NMP is a method that can be used to prepare metal-free or sulfur-free carbohydrate polymers. Carbohydrate polymers prepared by NMP are much more compatible with biological and physiological conditions.¹¹ 55 Several synthetic methods have been reported for preparing carbohydrate polymers containing cell surface carbohydrates, along with their biomedical applications.¹² However, the main limitation and disadvantages of current synthetic methods are that the polymerization processes or efficient ligation methods 60 between polymers and carbohydrates moieties cannot be easily controlled. Therefore, the successful preparation of well-defined carbohydrate polymers containing cell surface carbohydrates with different compositions of carbohydrates moieties, desired molecular weights and defined PDI is still a challenge for

- ⁶⁵ biomedical chemists. Fully synthetic carbohydrate antigens with defined compositions of carbohydrate ligands showed promising results in cancer immunotherapy.¹³ Synthesis of a pentavalent carbohydrate vaccine bearing five different tumor-associated carbohydrates antigens (TACAs) has been reported.¹⁴ Installation
- ⁷⁰ of an appropriate linker, conjugation to a carrier protein, Keyhole Limpet Hemocyanin (KLH, an immunoenhancer), and a ratio of glycopeptides:KLH (228:1) were determined to be an appropriate structure for an efficient vaccine in the treatment of breast and ovarian cancer.^{14a}

PAPER

⁴⁵

This journal is © The Royal Society of Chemistry [year]

Scheme 1. Synthetic mimics of unimolecular trivalent carbohydrate-based anticancer vaccines.

- Herein, we report on a practical and synthetic method for the 5 preparation of carbohydrate polymers containing different cell surface carbohydrates using nitroxide-mediated polymerization (Scheme 1). Three different cell surface carbohydrates, i.e., mannose (Man), sialic acid (Sia), and N-acetyllactosamine
- 10 (LacNAc) were attached to the polymer backbone. Carbohydrate polymers containing mannose have been used to investigate interactions between human dendritic cells associated with lectins and HIV envelop glycoproteins.¹⁵ Carbohydrate polymers containing sialic acid have been shown to inhibit the spread of
- ¹⁵ influenza virus infections.¹⁶ Carbohydrate polymers bearing Nacetyllactosamine have been prepared to inhibit hemagglutination by Erythrina corallodendron and the specific binding ability of lectins.¹⁷ However, only a few of these carbohydrate polymers could be prepared in a well-controlled manner in polymerization
- 20 reactions or with different sugar compositions.¹⁸ Furthermore, to be eventually used for potential administration in animals or in human testing, an ideal polymerization method that is both metalfree and sulfur-free will be needed. Our approach involved the use of nitroxide-mediated polymerization for preparing well-
- 25 controlled carbohydrate polymers with defined molecular weights and PDIs. The living character of controlled radical polymerization could be further explored to prepare novel carbohydrate polymers containing multivalent carbohydrate ligands. With a suitable spacer between the carbohydrate and the
- 30 polymer backbone, carbohydrate polymers bearing unimolecular trivalent carbohydrate ligands that mimic unimolecular trivalent carbohydrates-based anticancer vaccines were designed¹⁴.

Experimental section

35

Materials.

Styrene was distilled from CaH2 under reduced pressure to remove the stabilizer and was stored at 4 °C under an argon 40 atmosphere. THF were distilled by refluxing over traces of sodium metal using benzophenone as indicator under N2. Benzene, dichloromethane, pyridine, N,N-dimethylformamide (DMF), and 1,8-diazavicyclo[5.4.0]undec-7-ene (DBU) were dried over CaH₂ and then distilled before use. Acetic anhydride,

45 acetyl chloride, and borotrifluoride diethylethrate (BF₃OEt₂)

were directly distilled before use. 2,2,6,6-Tetramethyl-1piperidinyloxy free radical (TEMPO), 4-chloromethylstyrene, diethylene glycol, mannose, sialic acid, galatose, and Nacetylglucosamine were used as received.

General.

¹H NMR (800, 500, and 300 MHz) and ¹³C NMR (200, 125, and 75 MHz) spectra were recorded on a Bruker AVIII-800 MHz, a 55 Bruker AVIII-500 MHz, and a Bruker Advance-300 MHz. The NMR spectra were recorded in CDCl₃ or CD₃OD. Chloroform (δ = 7.26 ppm in ¹H NMR; δ = 77.0 ppm in ¹³C NMR) and methanol $(\delta = 3.31 \text{ ppm in} ^{1}\text{H NMR}; \delta = 49.00 \text{ ppm in} ^{13}\text{C NMR})$ were used as internal standard, respectively. Splitting patterns were 60 reported as following: s: singlet, d: doublet, t: triplet, q: quartet, m: multiplet. Coupling constant (J) was reported in Hz. IR were recorded on a Perkin Elmer Spectrum 100 FT-IR spectrometer and reported in cm⁻¹. High resolution mass spectrometry (HRMS) were recorded on a Shimadzu LCMS-IT-TOF spectrometer (ESI-65 MS). Optical rotations were measured on a Horiba SEPA-300 Digital polarimeter. TLC (Merck Art. 60 F₂₅₄, 0.25 mm) precoated sheet was used. The reaction products were isolated by flash chromatography performed on Merck Art. Geduran Si 60 (0.040-0.063 mm) silica gel. Yields of products refer to 70 chromatographically purified products unless otherwise stated. The benzene used for radical cyclizations was deoxygenated by passing a gentle stream of argon through for 30 min before use. All reactions were performed under a blanket of N₂ or Ar. The carbohydrate polymers were collected by centrifugal 75 sedimentation on Eppendorf Centrifuge 5810 R as a rotation rate of 8000 rpm for 10 min and further dried in a vacuum-drying cabinet at 60 °C for 12 h. Size exclusion chromatography (SEC) was carried out with THF as eluent at a flow rate of 1.0 mL/min at room temperature on a system consisting of a PU-1580

80 isocratic pump (Jasco), a KF-804L column (Shodex), and a RI-71 refractometer detector (Shodex). Data were analyzed with Elite EC2000 software based upon calibration curves built upon polystyrene standards (Polymer Standards Service) with peak molecular weights ranging from 1800 to 56 000 g/mol. 85

2 | RSC Adv., [year], [vol], 00-00

Typical procedure for polymerization of carbohydrate polymers

- A Schlenk-tube (thick = 1.6 mm) was charged with styryl-⁵ TEMPO (1%), carbohydrate monomer, styrene, and *N*,*N*dimethylformamide (40 wt%). The tube was subjected to three freeze-thaw cycles and sealed off under argon. The polymerization was carried out under argon at 125 °C for an indicated period (please see table 1). The resulting mixtures were
- ¹⁰ cooled to room temperature and precipitated in methanol, diethyl ether or hexane. The carbohydrate polymers were collected by centrifugal sedimentation and dried in a vacuum-drying cabinet at 60 °C for 12 h. Conversion was evaluated gravimetrically. Molecular weight and polydispersity index (PDI) were
- 15 determined by size exclusion chromatography (SEC).

2-[2-(4-Vinylbenzyloxy)ethoxy]ethanol (1)

- ²⁰ To a solution of diethylene glycol (76.0 mL, 795 mmol) was added a solution of 4-vinylbenzyl chloride (4.70 mL, 30.00 mmol), NaOH (1.20 g, 30.00 mmol), and water (0.54 mL, 30.00 mmol). The reaction mixture was stirred at 60 °C for 24 h. After cooling to room temperature, H₂O (100 mL) was added and the
- ²⁵ resulting mixture was extracted with Et₂O (3×250 mL). The organic layers were dried over MgSO₄, filtered, and concentrated in vacuum. The crude product was purified by silica gel chromatography (EtOAc:hexane = 7:3) to give the product as a colorless oil (6.37 g, 95%). IR (neat) 3420 (OH), 3087, 3006,
- ³⁰ 2868, 1629, 1512, 1454, 1406, 1351, 1319, 1288, 1243, 1212, 1093, 1067, 1016, 991, 907, 845, 827, 764, 729, 719, 628 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.39 (d, J = 8.1 Hz, 2H, *para*-), 7.39 (d, J = 8.1 Hz, 2H, *para*-), 6.70 (dd, J = 17.7, 10.8 Hz, 1H, ArC<u>H</u>=CH₂), 5.74 (d, J = 17.7 Hz, 1H, ArCH=C<u>H₂</u>), 5.23 (d, J =
- ³⁵ 10.8 Hz, 1H, ArCH=C<u>H</u>₂), 4.55 (s, 2H, ArC<u>H</u>₂O), 3.78–3.58 (m, 8H, CH₂×4), 2.79 (br s, 1H, OH); ¹³C NMR (75 MHz, CDCl₃) δ 137.5 (s), 137.0 (s), 136.4 (d), 127.9 (d×2), 126.2 (d×2), 72.9 (t), 72.4 (t), 70.3 (t), 69.3 (t), 61.7 (t); HRMS (ESI⁺): m/z calcd for C₁₃H₁₈O₃ [M+H]⁺: 223.1334; found: 223.1325.
- 40

2-[2-(4-Vinylbenzyloxy)ethoxy]ethyl 2,3,4,6-tetra-*O*-acetyl-α-D-glucopyranoside (3)

To a solution of compound 2^{19} (6.16 g, 11.82 mmol) and freshly activated 4Å molecular sieves (9 g) in CH₂Cl₂ (136 mL) was added a solution of compound 1 (3.15 g, 14.17 mmol) in CH₂Cl₂ (100 mL) at -10 °C. After being stirred for another 30 minutes, BF₃ · OEt₂ (0.30 mL, 2.36 mmol) was added dropwise at -10 °C. The reaction mixture was stirred for another 3.5 h at the same

- ⁵⁰ temperature, then the reaction was quenched by slow addition of MeOH (100 mL). The resulting mixture was filtrated and the residue was washed carefully with CH₂Cl₂ and MeOH. The combined organic phases were washed with concentrated NaHCO₃ solution (150 mL), brine (150 mL), dried over MgSO₄,
- ⁵⁵ filtered, and concentrated in vacuum. The crude product was purified by silica gel chromatography (hexane:EtOAc = 1:1) to give the product as a colorless oil (4.47 g, 69%). $[\alpha]_{D}^{26}$ +13.23 (c=1.45, CHCl₃); IR (neat) 2893, 1746 (C=O), 1630, 1513, 1434,

1407, 1369, 1219, 1173, 1135, 1083, 1045, 1017, 979, 912, 847, 60 829, 793, 735, 689, 638 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.38 (d, *J* = 8.1 Hz, 2H, *para*-), 7.29 (d, *J* = 8.1 Hz, 2H, *para*-), 6.70 (dd, *J* = 17.4, 10.8 Hz, 1H, RC<u>H</u>=CH₂), 5.73 (d, *J* = 17.7 Hz, 1H, RCH=C<u>H₂</u>), 5.36 (dd, *J* = 9.9, 3.3 Hz, 1H), 5.19–5.32 (m, 3H, RCH=C<u>H₂</u>), 4.87 (d, *J* = 1.5 Hz, 1H, H₁), 4.55 (s, 2H, ArC<u>H₂</u>O),

- ⁶⁵ 4.28 (dd, J = 12.9, 5.7 Hz, 1H, H₆), 4.04–4.12 (m, 2H), 3.77–3.87 (m, 1H), 3.63–3.72 (m, 2H), 2.14 (s, 3H, Ac), 2.09 (s, 3H, Ac), 1.99 (s, 3H, Ac), 1.98 (s, 3H, Ac); ¹³C NMR (75 MHz, CDCl₃) δ 170.6 (s), 170.0 (s), 169.8 (s), 169.7 (s), 137.8 (s), 136.9 (s), 136.5 (d), 127.9 (dx2), 126.2 (dx2), 113.7 (t), 97.7 (d), 72.9 (t),
- ⁷⁰ 70.7 (t), 70.0 (t), 69.5 (d), 69.4 (t), 69.1 (d), 68.3 (d), 67.4 (t), 66.1 (d), 62.4 (t), 20.8 (q), 20.7 (q), 20.6 (qx2); HRMS (ESI⁺): m/z calcd for $C_{27}H_{36}O_{12}[M+H]^+$: 575.2105; found: 575.2112.

Methyl 5-acetamido-4,7,8,9-tetra-*O*-acetyl-2,3,5-trideoxy-2-75 {2-[2-(4-vinylbenzyloxy)ethoxy] ethyl}-D-*glycero-α*-D-*galacto*-2-nonulopyranosonate (5)

To a solution of compound 4^{20} (0.95 g, 1.86 mmol), compound 1 (4.15 g, 18.60 mmol) and 4 Å molecular sieve (2 g) in acetonitrile 80 (1.9 mL) was added zinc bromide (0.84 g, 3.74 mmol) at room temperature. The reaction mixture was stirred at same temperature for 19 h. The precipitation was filtered off on celite and washed with CH₂Cl₂. The filtrate was washed with water, 50% aqueous NaHCO3, dried over MgSO4, and concentrated in 85 vacuum. The crude product was purified by silica gel chromatography (hexane:EtOAc = 1:9) to give the product as a colorless solid (0.96 g, 75%, α : β = 91:9). However, only α anomer was successfully characterized. IR (neat) 3264 (NH), 3010, 2957, 1743 (C=O), 1659 (C=O), 1546, 1445, 1407, 1369, 90 1303, 1220, 1199, 1177, 1130, 1095, 1074, 1039, 995, 942, 912 (CH₂=CHR), 855, 828, 787, 754, 733, 666, 648 cm⁻¹; ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3) \delta 7.37 \text{ (d, } J = 8.1 \text{ Hz}, 2\text{H}, para-), 7.28 \text{ (d, } J =$ 8.1 Hz, 2H, para-), 6.69 (dd, J = 17.7, 11.0 Hz, 1H, ArCH=CH₂), 5.72 (d, J = 17.7 Hz, 1H, ArCH=CH₂), 5.42–5.27 (m, overlapped 95 with one dd at 5.30, J = 8.3, 1.4 Hz, 3H, H₈, H₇, N<u>H</u>Ac), 5.21 (d, J = 11.0 Hz, 1H, ArCH=CH₂), 4.91–4.77 (m, 1H, H₄), 4.53 (s, 2H, $ArCH_2O$, 4.29 (dd, J = 12.5, 2.6 Hz, 1H, H_{9a}), 4.12–4.01 (m, 3H, H₅, H₆, H_{9b}), 3.94–3.83 (m, 1H, H_{1"a}), 3.75 (s, 3H, CO₂CH₃), 3.69-3.56 (m, 6H, CH₂×3), 3.51-3.40 (m, 1H, H_{1"b}), 2.60 (dd, J 100 = 12.8, 4.7 Hz, 1H, H_{3-eq}), 2.15–1.89 (m, 13H, overlapped with four s at 2.12, 2.11, 2.01, 2.00, Ac×4 and H_{3-ax}), 1.86 (s, 3H, Ac); ¹³C NMR (75 MHz, CDCl₃) δ 170.9 (s), 170.6 (s), 170.2 (s), 170.1 (s×2), 168.2 (s), 137.8 (s), 136.9 (s), 136.5 (d), 127.9 (d×2), 126.2 (dx2), 113.7 (t), 98.8 (s), 72.9 (t), 72.4 (d), 70.5 (t), 70.1 (t), 105 69.3 (t), 69.1 (d), 68.6 (d), 67.3 (d), 64.4 (t), 62.3 (t), 52.7 (q), 49.3 (d), 37.9 (t), 23.1 (q), 21.0 (q), 20.8 (q×2), 20.7 (q); HRMS (ESI^{+}) : m/z calcd for C₃₃H₄₅NO₁₅ [M+H]⁺: 696.2867; found:

110 2-[2-(4-Vinylbenzyloxy)ethoxy]ethyl-2-acetamido-2-deoxy-β-D-glucopyranoside (7)

696.2885, [M+Na]⁺: 718.2687; found: 718.2681.

To a solution of compound 1 (0.40g, 1.81 mmol), compound 6^{21} (0.82 g, 2.26 mmol), and 4 Å molecular sieve (0.5 g) in dry DCM ¹¹⁵ (3.3 mL) was allowed to stirred for 30 minutes at room

This journal is © The Royal Society of Chemistry [year]

65

temperature. The reaction mixture was then added mercuric cyanide (0.66 g, 4.75 mmol) and stirred at same temperature for 30 h. The precipitation was filtered off on celite and diluted with CH_2Cl_2 (150 mL). The filtrate was washed with aqueous 10%

- $_{\rm 5}$ NaHCO₃, brine, dried over MgSO₄, and concentrated in vacuum. The crude product was pure enough and directly used for the next step without further purification. To a solution of 2-[2-(4-vinylbenzyloxy)ethoxy]ethyl 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy- β -D-glucopyranoside (obtained from previous step) (0.12 g,
- 10 0.22 mmol) in MeOH (4.40 mL) was added sodium methoxide (0.006 g, 0.110 mmol). The reaction mixture was stirred at room temperature for 6 h. The solution was then neutralized with Amberlite IR 120 (H⁺) ion-exchange resin, the resin filtered off and washed with MeOH. The resulting solution was concentrated
- ¹⁵ under reduced pressure, and then purified by silica gel chromatography (DCM:MeOH = 7.5:1) to give the product as a colorless and viscous liquid (0.06 g, 85%, over two steps from compound **6**. $[\alpha]^{25}_{D}$ -69.78 (c = 0.33, CH₃OH); IR (neat) 3340, 2945, 2835, 1650 (C=O), 1566, 1450, 1408, 1378, 1318, 1258,
- ²⁰ 1211, 1078, 1022, 942, 829 cm⁻¹; ¹H NMR (300 MHz, CD₃OD) δ 7.37 (d, *J* = 8.3 Hz, 2H, *para*-), 7.27 (d, *J* = 8.3 Hz, 2H, *para*-), 6.68 (dd, *J* = 17.7, 11.0 Hz, 1H, ArC<u>H</u>=CH₂), 5.73 (dd, *J* = 17.7, 0.8 Hz, 1H, ArCH=C<u>H₂</u>), 5.17 (d, *J* = 11.0 Hz, 1H, ArCH=C<u>H₂</u>), 4.49 (s, 2H, ArC<u>H₂</u>O), 4.42 (d, *J* = 8.4 Hz, 1H, H₁, β–form), 3.92
- ²⁵ (m, 1H, H_{1'a}), 3.82 (dd, J = 11.9, 1.7 Hz, 1H, H_{6a}), 3.70–3.52 (m, 9H), 3.40–3.32 (m, 1H), 3.30–3.19 (m, 2H), 1.89 (s, 3H, NH<u>Ac</u>); ¹³C NMR (75 MHz, CD₃OD) δ 174.0 (s), 139.2 (s), 138.7 (s), 138.0 (d), 129.4 (dx2), 127.4 (dx2), 114.2 (t), 102.9 (d), 78.2 (d), 76.5 (d), 74.0 (t), 72.2 (d), 71.8 (tx2), 70.8 (t), 70.1 (t), 62.9 (t), ³⁰ 57.5 (d), 23.2 (q); HRMS (ESI⁺): m/z calcd for C₂₁H₃₁NO₈
- [M+H]⁺: 426.2128; found: 426.2138.

2-[2-(4-Vinylbenzyloxy)ethoxy]ethyl 2-acetamido-6-*O-tert*butyldiphenylsilyl-2-deoxy-β-D-glucopyranoside (8)

35

- To a solution of compound 7 (1.49 g, 3.50 mmol) and imidazole (0.72 g, 10.50 mmol) in dry DMF (17.5 mL) was added TBDPSCI (1.82 mL, 7.00 mmol) dropwise. The reaction mixture was stirred at room temperature for 5 h. The excess TBDPSCI ⁴⁰ was quenched by addition of MeOH (1 mL). The resulting mixture was allowed to stir for another 30 minutes, and then concentrated under reduced pressure to give a crude product, which was then purified by silica gel chromatography
- (DCM:MeOH = 15:1) to afford the product as a pale yellow oil $_{45}$ (1.75 g, 76%). $[\alpha]^{25}{}_{\rm D}$ -46.51 (c = 2.66, CHCl₃); IR (neat) 3311 (OH), 3072, 3010, 2930, 2858, 1907, 1826, 1652 (C=O), 1513, 1472, 1462, 1428, 1406, 1374, 1361, 1312, 1238, 1216, 1110, 1061, 998 (RCH=CH₂), 938, 908 (RCH=CH₂), 850, 824, 750, 702, 666, 622, 604 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ
- ⁵⁰ 7.76–7.66 (m, 4H, Ph), 7.45–7.33 (m, 8H, Ph, *para-*), 7.29 (d, J = 8.1 Hz, 2H, *para-*), 6.94 (d, J = 5.7 Hz, 1H, NH), 6.70 (dd, J = 17.7, 11.1 Hz, 1H, ArC<u>H</u>=CH₂), 5.75 (dd, J = 17.7, 0.5 Hz, 1H, ArCH=C<u>H₂</u>), 5.25 (dd, J = 11.1, 0.5 Hz, 1H, ArCH=C<u>H₂</u>), 4.57 (d,

J = 12.0 Hz, 1H, ArC<u>H</u>₂O), 4.53–4.48 (m, overlapping with one d ⁵⁵ at 4.50, *J* = 8.4 Hz, 2H, H₁ and ArC<u>H</u>₂O), 3.99 (dd, *J* = 11.0, 3.2 Hz, 1H), 3.95–3.83 (m, 2H), 3.77 (dd, *J* = 8.9, 2.3 Hz, 1H), 3.73–3.49 (m, 10H), 3.46–3.33 (m, 3H), 1.94 (s, 3H, NH<u>Ac</u>), 1.05 (s, 9H, *t*–Bu); ¹³C NMR (75 MHz, CDCl₃) δ 173.1 (s), 137.4 (s), 136.8 (s), 136.2 (d), 135.6 (dx4), 133.3 (s), 133.2 (s), 129.6 (d ⁶⁰ ×2), 128.3 (dx2), 127.6 (dx4), 126.3 (dx2), 114.2 (t), 101.2 (d), 76.7 (d), 75.6 (d), 73.1 (t), 72.0 (d), 70.9 (t), 69.3 (t), 68.5 (t), 64.1 (t), 57.4 (d), 26.7 (qx3), 22.9 (q), 19.2 (s); HRMS (ESI⁺): m/z calcd for C₃₇H₄₉NO₈Si [M+H]⁺: 664.3305; found: 664.3328; [M+Na]⁺: 686.3125; found: 686.3102.

2-[2-(4-Vinylbenzyloxy)ethoxy]ethyl-O-(2,3,4,6-tetra-O-acetyl-D-galactopyranosyl)-(1 \rightarrow 4)-2-acetamido-6-O-tert-butyldiphenylsilyl-2-de-oxy- β -D-glucopyranoside (10a and 10b)

- ⁷⁰ To a solution of compound 9²² (1.17 g, 2.25 mmol), compound 8 (0.99 g, 1.50 mmol), and 4 Å molecular sieve (2.20 g) in anhydrous DCM (25 mL) was cooled to -40 °C. The reaction mixture was allowed to stir for 20 minutes. Borontrifluoride
 ⁷⁵ diethyletherate (0.38 mL, 3.00 mmol) was added into the solution. The resulting mixture was allowed to stir at the same temperature for 5 h. The reaction mixture was added aqueous NaHCO₃ and stirred for 10 minutes. The organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated under reduced ⁸⁰ pressure. The crude residue was purified by silica gel chromatography (EtOAc:hexane = 9:1) to afford the minor
- chromatography (EtOAc:hexane = 9:1) to afford the minor isomer (α -form) **10a** as a white solid and the major isomer (β form) **10b** as a colorless oil (1.75 g, 66%, α : β = 26% : 40%): α -isomer **10a**: mp 158.2–161.1 °C; [α]²⁵_D +38.52 (c = 1.01,
- ⁸⁵ CHCl₃); IR (neat) 3519 (OH), 3273, 2860, 1743, (C=O), 1653 (C=O), 1568, 1428, 1372, 1259, 1226, 1111, 1086, 1030, 959, 909, 880, 853, 825, 810, 765, 743, 705 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.67–7.63 (two overlapping d at 7.66, *J* = 6.5 Hz, 7.64, *J* = 6.6 Hz, 4H, Ph), 7.43–7.31 (m, 8H, Ph, *para*-), 7.28 (d, *J* =
- ⁹⁰ 8.0 Hz, 2H, *para*-), 6.70–6.62 (dd at 6.68, *J* = 17.6, 10.9 Hz, 1H, ArC<u>H</u>=CH₂, overlapped with one d at 6.62, *J* = 8.15 Hz, 1H, N<u>H</u>Ac), 5.71 (d, *J* = 17.6 Hz, 1H, ArCH=C<u>H</u>₂), 5.33 (d, *J* = 4.5 Hz, 1H H₄·), 5.22 (d, *J* = 10.9 Hz, 1H, ArCH=C<u>H</u>₂), 4.99–4.89 (m, overlapped with one d at 4.91, *J* = 3.9 Hz, 3H, H₃·, H₁·, α–form),
- 95 4.86 (d, J = 8.3 Hz, 1H, H₁, β-form), 4.57 (s, 2H, ArC<u>H</u>₂O), 4.16 (dd, J = 8.1, 5.7 Hz, 1H, H_{6'a}), 4.09–3.93 (m, overlapped with one dd at 3.97, J = 10.9, 5.4 Hz, 3H, H_{5'}, H_{6'b}), 3.89 (dt, J = 11.9, 3.4 Hz, 1H), 3.81 (td, J = 11.0, 3.7 Hz, 1H), 3.77–3.71 (m, 1H), 3.71–3.58 (m, overlapped with one dd at 3.68, J = 11.6, 6.0 Hz,
- ¹⁰⁰ 8H), 3.52 (dd, J = 17.7, 8.5 Hz, 1H, H₂), 3.46–3.39 (m, 1H, H₂·), 2.06 (s, 3H, Ac), 2.01 (s, 3H, Ac), 1.98 (s, 3H, Ac), 1.97 (s, 3H, Ac), 1.87 (s, 3H, Ac), 1.02 (s, 9H, *t*–Bu); ¹³C NMR (125 MHz, CDCl₃) δ 171.1 (s), 170.6 (s), 170.5 (s), 170.4 (s), 170.0 (s), 137.4 (s), 137.2 (s), 136.4 (d), 135.6 (dx2), 135.5 (dx2), 133.3 (s),

4 | *RSC Adv.*, [year], **[vol]**, 00–00

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/advacnes

133.2 (s), 129.6 (d), 129.6 (d), 127.9 (dx2), 127.6 (dx2), 127.6 (d x2), 126.3 (dx2), 114.0 (t), 100.8 (d), 100.4 (d), 80.3 (d), 74.4 (d), 72.9 (t), 71.3 (d), 70.9 (t), 70.3 (t), 70.1 (d), 69.5 (t), 68.4 (t), 67.7 (d), 66.9 (d), 66.6 (d), 63.1 (t), 61.0 (t), 56.6 (d), 26.7 (qx3), 23.4 ⁵ (q), 20.8 (q), 20.7 (q), 20.6 (q), 20.5 (q), 19.2 (s); HRMS (ESI⁺): m/z calcd for $C_{51}H_{67}NO_{17}Si [M+H]^+$: 994.4256; found: 994.4268. β -isomer **10b**: $[\alpha]_{D}^{31}$ -19.41 (c = 1.88, CHCl₃); IR (neat) 3395 (OH), 3007, 2933, 2859, 1755 (C=O), 1737 (C=O), 1677 (NHCO), 1540, 1429, 1367 (t-Bu), 1297, 1248, 1218, 1141, 1110, 10 1060, 1039, 954, 911, 853, 826, 794, 761, 745, 706, 665, 606 cm^{-1} : ¹H NMR (500 MHz, CDCl₃) δ 7.73–7.65 (m. 4H, Ph). 7.42-7.31 (m, 8H, Ph), 7.26 (d, J = 8.1 Hz, 2H, para-), 6.69 (dd, J = 17.6, 11.0 Hz, 1H, ArC<u>H</u>=CH₂), 6.20 (d, J = 8.4 Hz, 1H, NHAc), 5.73 (d, J = 17.6 Hz, 1H, ArCH=CH₂), 5.33 (d, J = 3.415 Hz, 1H, H₄), 5.22 (d, J = 11.0 Hz, 1H, ArCH=CH₂), 5.17 (dd, J =10.5, 8.1 Hz, 1H, $H_{2'}$), 4.94 (dd, J = 10.5, 3.4 Hz, 1H, $H_{3'}$), 4.68 $(d, J = 8.1 \text{ Hz}, 1\text{H}, \text{H}_{1'}, \beta$ -form), 4.65 $(d, J = 8.3 \text{ Hz}, 1\text{H}, \text{H}_{1}, \beta$ β -form), 4.54 (d, J = 12.0 Hz, 1H, ArCH₂O, AB), 4.50 (d, J =12.0 Hz, 1H, ArCH₂O, AB), 4.15-4.07 (two overlapping dd at $_{20}$ 4.13, J = 11.3, 6.3 Hz, and 4.10, J = 11.3, 7.0 Hz, 2H, H_{6'a, 6'b}), 3.92-3.82 (m, 3H, $H_{1"a}$, H_{6a} , $H_{5"}$), 3.81-3.65 (m, 5H, H_{6b} , H_4 , $H_{2"a}$, H_2), 3.64–3.57 (m, 6H, $CH_2 \times 2$, $H_{2"b}$, $H_{1"b}$), 3.52 (t, J = 9.2Hz, 1H, H₃), 3.30 (d, J = 8.1 Hz, 1H, H₅), 2.12 (s, 3H, Ac), 2.02 (s, 3H, Ac), 1.95 (s, 3H, Ac), 1.94 (s, 3H, Ac), 1.69 (s, 3H, Ac), 25 1.04 (s, 9H, t-Bu); ¹³C NMR (125 MHz, CDCl₃) δ 170.6 (s), 170.3 (s), 170.0 (s), 170.0 (s), 169.0 (s), 137.3 (s), 137.0 (s), 136.3 (d), 135.9 (dx2), 135.4 (dx2), 133.5 (s), 132.5 (s), 129.7 (dx 2), 128.2 (dx2), 127.7 (dx2), 127.5 (dx2), 126.3 (dx2), 114.0 (t), 101.0 (d), 100.9 (d), 79.9 (d), 74.5 (d), 73.1 (t), 72.7 (d), 71.1 (t),

³⁰ 71.1 (d), 70.8 (d), 70.5 (t), 69.5 (t), 68.8 (d), 68.0 (t), 66.8 (d), 61.8 (t), 61.0 (t), 55.8 (d), 26.7 (qx3), 23.2 (q), 20.5 (q×2), 20.4 (q), 20.2 (q), 19.2 (s); HRMS (ESI⁺): m/z calcd for $C_{51}H_{67}NO_{17}Si$ [M+H]⁺: 994.4256; found: 994.4280, [M+Na]⁺: 1016.4076; found: 1016.4069.

35

Results and discussion

Synthesis of styrene derivative 1 and carbohydrate monomer 40 3, 5, and 10

To fundamentally study the controlled living radical polymerization of carbohydrate polymers containing cell surface carbohydrates, we used polystyrene as the backbone. To avoid ⁴⁵ steric hindrance during the polymerization and gain more hydrophilic interactions in aqueous solution as biomaterials, diethylene glycol was used as a spacer between the styrene and carbohydrate moieties.²³ The reaction of 4-chloromethylstyrene with diethylene glycol afforded the styrene derivative **1** in 71%

⁵⁰ yield (Scheme 2).²⁴ To prepare the mannose-containing carbohydrate monomer, a glycosylation reaction between the mannosyl donor 2^{19} and the styrene derivative 1 was carried out

PAPER

using borontrifluoride-diethyletherate²⁵ to complete the synthesis of the carbohydrate monomer 3 containing mannose as its s5 terminal in 69% yield (only α -form). The synthesis of a carbohydrate monomer containing sialic acid has been intensively studied.²⁶ Eventually, zinc bromide (ZnBr₂)²⁷ was found to be an efficient catalyst for the glycosylation between the sialyl donor 4^{20} and the styrene derivative 1. Under optimized conditions, a 60 partial separable mixture of carbohydrate monomers 5 in a ratio of 91:9 (α : β) was produced in 78% yield. More synthetic steps were needed for the synthesis of carbohydrate monomers 10 containing the disaccharide *N*-acetvllactosamine. The glycosylation reaction between the glycosyl donor $\mathbf{6}^{21}$ and 65 compound 1 was catalyzed by mercury cyanide [Hg(CN)₂].²⁸ Deacetylation using sodium methoxide²⁹ afforded the carbohydrate monomer 7, which contained an Nacetylglucosamine (GluNAc) unit. To complete the synthesis of the LacNAc-derived carbohydrate monomer, selective silvlation 70 at the 6-position of GluNAc moiety³⁰ on the compound 7 gave the glycosyl acceptor 8. A second glycosylation reaction between the donor 9^{22} and the acceptor 8 was successfully carried out to give the disaccharide LacNAc carbohydrate monomers 10 in 66% yield (α -form: 26%; β -form: 40%).³¹ It is fortunate that the major 75 product (the β -isomer) functions as an efficient substrate for many cell surface recognition processes. Three carbohydrate monomers containing mannose, sialic acid, N-acetyllactosamine were successfully prepared. The methods presented herein permit the efficient preparation of carbohydrate monomers on a gram 80 scale.

Polymerization studies

The polymerizations were conducted in sealed tubes using 1 85 mol% of alkoxyamine and 40 wt % of dimethylforamide (DMF) as the co-solvent with different ratios of carbohydrate monomers and styrene. The results are presented in Table 1. In some experiments (entries 1-15), styryl-TEMPO was used as the regulator. In other experiments (entries 16-17), polymeric 90 alkoxyamines were used as regulators in the living radical polymerizations. The carbohydrate polymers were collected by centrifugation and dried in a vacuum-drying cabinet at 60 °C for 12 h. Conversions were evaluated gravimetrically. Molecular weights and polydispersity indices (PDI) were determined by size 95 exclusion chromatography (SEC). Five different ratios (20/80, 40/60, 60/40, 80/20, 100/0; ratio to styrene) of monomer compositions in polymerizations were studied in the cases of a series of carbohydrate monomers 3 and 5, in which a mannose and a sialic acid are attached to its terminals, respectively. 100 Because the synthesis of carbohydrate monomer 10b bearing an N-acetyllactosamine was laborious, only two different ratios (25/75 and 75/25) were examined.

The copolymerization reactions of the carbohydrate monomer **3** and styrene using a ratio of 20/80 were studied first (entry 1–4) ¹⁰⁵ at 125 °C. As expected, the conversion was increased (from 6%

This journal is © The Royal Society of Chemistry [year]

to 72%) upon extending reaction time (from 24 h to 42 h) while the PDIs remained narrow (1.10~1.14). The optimized reaction time (42 h), a conversion of 72% and a narrow PDI of 1.12 were obtained (entry 4). The polymerization behavior of different 5 concentrations in the reactions of carbohydrate monomer **3** with styrene (entry 4–8) was studied next. When the concentration of carbohydrate monomer **3** in the styrene polymerization was increased, fluctuations in conversions between 58 and 80 % and in PDIs between 1.12 and 1.37 were observed. Surprisingly, a ¹⁰ polymerization reaction using 100% of the carbohydrate monomer **3**, resulted in the formation of mannosyl-glycopolymers

Entry	Carbohydrate	Ratio of carbohydrate	Time Conversion		$M_{ m n}$	PDI
	monomer	monomer/styrene	(h)	(%)	(g/mol)	
1	3	20/80	24	6	6237	1.11
2	3	20/80	30	36	7267	1.10
3	3	20/80	36	70	11961	1.14
4	3	20/80	42	72	14301	1.12
5	3	40/60	42	74	25738	1.21
6	3	60/40	42	59	20302	1.19
7	3	80/20	42	80	39818	1.37
8	3	100/0	42	58	20831	1.30
9	5	20/80	48	31	11115	1.13
10	5	40/60	48	19	8363	1.55
11	5	60/40	48	16	10835	1.68
12	5	80/20	48	22	11997	1.74
13	5	100/0	48	9	4497	1.22
14	10b	25/75	48	65	27348	1.15
15	10b	75/25	48	19	28692	1.38
16 ^b	5	20/80	42	33	15082	1.24
17 ^c	10b	20/80	42	65	24045	1.52

	Table	1. Co	polyn	nerizatio	1 of	carboł	nydrate	monomers	and	styrene.
--	-------	-------	-------	-----------	------	--------	---------	----------	-----	----------

^a The ratio of styryl-TEMPO to total monomers is 1/100, ratios of different monomers in polymerization are indicated as table, and DMF was used as co-solvent (40 wt%). ^b The polymerization was initiated by the polymeric alkoxyamine **I**, obtained from entry 4 under radical living conditions. ^c The polymerization was initiated by the polymeric alkoxyamine **II**, obtained from entry 16 under radical living conditions.

- ¹⁵ with a conversion of 58% and a PDI of 1.30 (entry 8). At this stage, we can confirm that, using commercially available styryl-TEMPO, controlled radical polymerizations can be achieved to produce carbohydrate polymers with different compositions, reasonable conversions and defined PDIs.
- ²⁰ We then continued our studies on polymerization of carbohydrate monomer **5** at 125 °C for 48 h. Compared to the polymerization of carbohydrate monomer **3**, relatively low conversions were obtained. Increasing the concentration of carbohydrate monomer **5** in the styrene polymerization resulted in
- ²⁵ a decrease in conversion, from 31% to 9 % and an increase in the PDI from 1.13 to 1.74 (entry 9–13). The reasons for the low conversion can be attributed to the bulky effect of the carbohydrate itself (sialic acid) in polymerizations or ineffective precipitation caused by the highly polar protecting groups (six
- ³⁰ acetyl groups and one ester group) on the sialic acid molecule. It should be noted that a low conversion (9%) and a narrow PDI (1.22) were observed in the polymerization, when 100% of the carbohydrate monomer **5** was used (entry 13).
- The next series of experiments involved the use of the ³⁵ carbohydrate monomer **10b** (β -isomer) since it is considerably more useful than compound **10a** (α -isomer) in cell surface recognition interactions. Polymerizations at two different concentrations were studied (entry 14–15). A low concentration

(25/75, ratio to styrene) of carbohydrate monomer 10b led to a

- ⁴⁰ good conversion of 65% and a low PDI of 1.15 (entry 14). This good conversion can be attributed to the effect of the hydrophobic *tert*-butyldiphenylsiyl group, which enhanced the yield of precipitated product. A high concentration (75/25, ratio to styrene) of carbohydrate monomer **10b** in the polymerization resulted in
- ⁴⁵ decreased conversion (19%), and a larger PDI of 1.38 (entry 15). In general, the results showed that increasing the concentration of carbohydrate monomers in the reaction resulted in a decrease in conversion and an increase in PDIs.

The final polymerization reactions were intended to produce ⁵⁰ novel carbohydrate polymers bearing unimolecular multivalent ligands (Scheme 3). To show the living character of controlled radical polymerization, the polymerizations of the carbohydrate monomer **5** and styrene were initiated and regulated by the polymeric alkoxyamine **I** (obtained from entry 4) to delivery ⁵⁵ polymeric alkoxyamine **II** bearing a unimolecular divalent carbohydrate ligand (entry 16). The polymer weight was indeed increased and the PDI remained low (1.12 \rightarrow 1.24). This carbohydrate polymeric alkoxyamine **II** could be further polymerized in the presence of the carbohydrate monomer **10b** ⁶⁰ and styrene to provide a novel polymeric alkoxyamine **III** bearing a unimolecular trivalent carbohydrate ligand with a molecular weight of 24K and PDI of 1.52 (entry 17). This is the first report of an application of TEMPO-mediated polymerization to produce novel carbohydrate polymers bearing unimolecular trivalent cell surface carbohydrate ligands with desired molecular weights and PDIs. This synthetic approach provided an *s* alternative method for the rapid synthesis of carbohydrate polymers with multivalent carbohydrate ligands in one single polymerization sequence. Furthermore, these novel carbohydrate polymers carrying a TEMPO as its terminal, which constitutes a living radical site for further polymerization reactions. One might imagine that using this approach, block copolymerization in the

e 3. Preparation of novel carbohydrate polymers bearing unimolecular trivalent carbohydrate ligands.

80

85

- ⁴⁰ presence of three carbohydrate monomers in a one-pot polymerization reaction could be used to produce a variety of novel carbohydrate polymers with desired sugar compositions. Since multivalent carbohydrate vaccines were recently used in clinical trials for cancer therapy, these results provided an 45 alternative and practical approach for the generation of
- are independent of the generation of carbohydrate polymers with desired molecular weights and controlled PDIs. Different sugar compositions of carbohydrate polymers could also be achieved to mimic tumor-associated carbohydrate antigens.

Characterization of Carbohydrate Polymers by NMR

50

¹H NMR measurements were also carried out to verify that the carbohydrate moieties were, in fact, attached to the polystyrene ⁵⁵ backbone, shown in Figure 1. In spectrum 2a, the characteristic peaks of the polymer obtained from polymerization with 20% carbohydrate monomer **3** appear at around 4.8 ppm, and are assigned to the anomeric proton (H₁ of mannose), and four acetyl groups (OAc) at around 2.0~2.2 ppm . Characteristic peaks of ⁶⁰ carbohydrate polymers containing sialic acid (20% with styrene)

in spectrum 2b appear at 3.7 and 2.6 ppm, and are assigned to the methyl ester (OMe) and the equatorial proton (H_3) of the sialic acid moiety, respectively. In spectrum 2c, the peaks at 7.4 and 7.7

This journal is © The Royal Society of Chemistry [year]

ppm of diphenyl group, 4.7 ppm of two anomeric protons, and 65 1.0 ppm of *tert*-butylsilyl group clearly are present, thus verifying that carbohydrate polymers containing *N*-acetyllactosamine were successfully produced. The polymeric alkoxyamines containing divalent and trivalent ligands (**II** and **III**) are also shown in spectra 2d and 2e, respectively. The relatively low intensity of the 70 characteristic peaks corresponding to sialic acid are shown in spectrum 2d, consistent with the relatively low extent of polymerization in the series of carbohydrate polymer **5**. Peaks for carbohydrate polymers obtained from the polymerization in entry 17 are shown in spectrum 2e, indicating that a polymer bearing a 75 unimolecular trivalent carbohydrate ligand was successfully produced.

^{8 |} RSC Adv., [year], [vol], 00–00

(a) carbohydrate polymers contained mannose (from entry 4)

(b) carbohydrate polymers containing sialic acid (from entry 9)

(c) carbohydrate polymers containing LacNAc (from entry 14)

(d) Polymeric alkoxyamine **II** with divalent carbohydrate ligand (from entry 16)

(e) Polymeric alkoxyamine **III** with trivalent carbohydrate ligand (from entry 17)

- ¹⁵ Figure 1. ¹H NMR Spectra of carbohydrate polymers in CDCl₃ (a) polymer from entry 4. (b) polymer from entry 9. (c) polymer from entry 14. (d) polymer from entry 16. (e) polymer from entry 17
 - This journal is © The Royal Society of Chemistry [year]

Conclusions

20

Three different styrene-type monomers containing cell surface carbohydrates were successfully prepared for the studies of nitroxide-mediated polymerization. Diethylene glycol was used as the spacer. These new synthetic methods could be used to 25 synthesize carbohydrate monomers on a gram scale. Under the conditions of TEMPO-mediated polymerization, controlled living radical polymerization could be achieved to produce carbohydrate polymers with defined molecular weights and PDIs. Carbohydrate polymers with different sugar compositions could 30 also be produced through this approach. The PDIs were increased and conversions were decreased when increasing concentrations of carbohydrate monomers in polymerizations were used. Meanwhile, a radical "living" character could be exhibited to produce three different carbohydrates moieties attached to the 35 polymers chains. To the best of our knowledge, this is the first report of the preparation of carbohydrate polymers bearing unimolecular trivalent carbohydrate ligands with defined molecular weights and PDIs. The approach presented here provides a platform to show that controlled living radical 40 polymerization is a powerful method for preparing novel carbohydrate polymers with specific carbohydrate ligands. Polymer and sugar compositions could be adjusted through polymerization with different concentrations of initiators and carbohydrate monomers. These preliminary results provide an 45 alternative synthetic approach for the rapid synthesis of multiple tumor-associated carbohydrates antigens in one single living polymerization sequence. Since multivalent carbohydrate vaccines are currently used in clinical trials for cancer therapy,¹³⁻ ¹⁴ the preparation of carbohydrate polymers containing tumor-50 associated carbohydrate antigens using well-established nitroxides techniques³² is currently underway. Our approaches should provide a potentially rewarding concept that can be applied to research related to cancer immunotherapy.

⁵⁵ This work was generously supported by the Ministry of Science and Technology, Taiwan and the Department of Chemistry, Fu Jen Catholic University. CCC thanks to Professor Armido Studer (Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster) for preliminary discussions and valuable ⁶⁰ suggestions.

Notes and references

Department of Chemistry, Fu Jen Catholic University.; 510, Zhongzheng 65 Rd., Xinzhuang Dist., New Taipei City, 24205 Taiwan, R.O.C.; Fax: 886-2-29023209; Tel:886-2-29053562; E-mail:080686@mail.fju.edu.tw

† Electronic Supplementary Information (ESI) available: Experimental procedures; characterization data; ¹H, ¹³C/DEPT/2D NMR spectra. See 70 DOI: 10.1039/b000000x/

 (a) T. K. Dam, and C. F. Brewer, *Adv. Carbohyd. Chem. Bi.* 2010, 63, 139–164. (b) B. Ernst, G. W. Hart, and P. Sinaÿ, *Carbohydrates in Chemistry and Biology*, Wiley-VCH, Weinheim, 2000, Vol. 3 and 4. (c) A. Varki, *Essentials of Glycobiology*, Cold Spring Harbor 80

125

130

135

Laboratory Press, New York, 2008. (d) H.-J. Gabius, H.-C. Siebert, S. André, J. Jimébez-Barbero, and H. Rüdiger, *ChemBioChem* 2004, **5**, 740–746. (e) R. A. Dwek, *Chem. Rev.* 1996, **96**, 683–720.

- (a) H.-J. Gabius, S. André, H. Kaltner, and H.-C. Siebert, *Biochim. Biophys. Acta.* 2002, **1572**, 165–177. (b) A. Varki, *Glycobiology*
- 1993, **3**, 97–130.
- (a) B. Ernst, G. W. Hart, and P. Sinay, *Carbohydrates in Chemistry and Biology*, Wiley-VCH, Weinheim, 2000, Vol. 1 and 2. (b) M. L. Sinnott, *Carbohydrate Chemistry and Biochemistry*, Royal Society
- of Chemistry Publishing, Cambridge, 2007. (c) P. G. Wang, and C. R. Bertozzi, *Glycochemistry*, Marcel Dekker, New York, 2001. (d) D. E. Levy, and P. Fügedi, *The Organic Chemistry of Sugars*, CRC Press Taylor & Francis, Boca Raton, 2006.
- (a) L. L. Kiessling, and C. R. Bertozzi, *Science* 2001, 291, 2357–2364.
 (b) L. L. Kiessling, J. E. Gestwicki, and L. E. Strong, *Angew. Chem. Int. Ed.* 2006, 45, 2348–2368.
- For reviews, please see: (a) V. Ladmiral, E. Melia, and D. M. Haddleton, *Eur. Polym. J.* 2004, 40, 431–449. (b) C. R. Becar, *Macromol. Rapid Commun.* 2012, 33, 742–752. (c) V. Vázquez-
- Dorbatt, J. Lee, E.-W. Lin, and H. D. Maynard, *ChemBioChem* 2012, 13, 2478–2487. (d) C. Schatz, and S. Lecommandoux, *Macromol. Rapid Commun.* 2010, 31, 1664–1684. (e) Q. Wang, J. S. Dordick, and R. J. Linhardt, *Chem. Mater.* 2002, 14, 3232–3244.
- 6. S. R. S. Ting, G. Chen, and M. H. Stenzel, *Polym. Chem.* 2010, 1, 1392–1412.
- 7. (a) S. G. Spain, and N. R. Cameron, *Polym. Chem.* 2011, 2, 60–68.
 (b) E. De Clercq, *Nat. Rev. Drug. Discov.* 2006, 5, 1015–1025. (c) A. David, *Isr. J. Chem.* 2010, 50, 204–219.
- 8. (a) V. Ladmiral, G. Mantovani, G. J. Clarkson, S. Cauet,; J. L. Irwin,
- and D. M. Haddleton, J. Am. Chem. Soc. 2006, 128, 4823–4830. (b)
 N. Vinson, Y. Gou, C. R. Becer, D. M. Haddleton, and M. I. Gibson, Polym. Chem. 2011, 2, 107–113. (c) T. Tanaka, H. Nagai, M. Noguchi, A. Kobayashi, and S.-I. Shoda, Chem. Commun. 2009, 3378–3379.
- (a) J. Bernard, X. J. Hao, T. P. Davis, C. Barner-Kowollik, and M. H. Stenzel, *Biomacromolecules* 2006, 7, 232–238. (b) T. P. Davis, and C. Boyer, *Chem. Commun.* 2009, 6029–6031.
- (a) K. Ohno, Y. Tsujii, T. Miyamoto, T. Fukuda, M. Goto, K. Kobayashi, and T. Akaike, *Macromolecules* 1998, **31**, 1064–1069.
- (b) H. Gotz, E. Harth, S. M. Schiller, C. W. Frank, W. Knoll, and C. J. Hawker, J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 3379–3391.
 (c) A. Narumi, T. Satoh, H. Kaga, and T. Kakuchi, Macromolecules 2002, 35, 699–705.
 (d) Y. Chen, and G. Wulff, Macromol. Chem. Phys. 2001, 202, 3426–3431.
 (e) C. R. Becer, K.
- Babiuch, D. Pilz, S. Hornig, T. Heinze, M. Gottschaldt, and U. S. Schubert, *Macromolecules* 2009, 42, 2387–2394. (f) S. R. S. Ting, E. H. Min, P. Escaé, M. Save, L. Billon, and M. H. Stenzel, *Macromolecules* 2009, 42, 9422–9434.
- (a) B. Charleux, and J. Nicolas, *Polymer* 2007, 48, 5813–5833. (b)
 C. R. Becer, R. M. Paulus, R. Hoogenboom, and U. S. Schubert, *J. Polym. Sci. Part A: Polym. Chem.* 2006, 44, 6202–6213.
- (a) K. Godula, and C. R. Bertozzi, J. Am. Chem. Soc. 2010, 132, 9963–9965. (b) S. N. Narla, and X.-L. Sun, Biomarcomolecules 2012, 13, 1675–1682. (c) R. Šardzik, R. Sharma, S. Kallo, J.
- Voglmeir, P. R. Crocker, and S. L. Flitsch, *Chem. Commun.* 2011, 47, 5425–5427.
- 13. L. Morelli, L. Poletti, and L. Lay, Eur. J. Org. Chem. 2011, 5723–5777.
- (a) R. M. Wilson, and S. J. Danishefsky, J. Am. Chem. Soc. 2013,
 135, 14468–14472. (b) J. R. Allen, C. R. Harris, and S. J. Daniskefsky, J. Am. Chem. Soc. 2001, 123, 1890–1897.
- (a) Z. Qiang, J. Collins, A. Anastasaki, R. Wallis, D. A. Mitchell, C.
 R. Becer, and D. M. Haddleton, *Angew. Chem. Int. Ed.* 2013, **52**, 4435–4439. (b) C. R. Becer, M. I. Gibson, J. Geng, R. IIya, R.
- ⁶⁵ Wallis, D. A. Mitchell, and D. M. Haddleton, *J. Am. Chem. Soc.* 2010, **132**, 15130–15132. (c) K.-H. Park, W. J. Sung, S. Kim, D. H. Kim, T. Akaike, and H.-M. Chung, *J. Biosci. Bioeng.* 2005, **99**, 285–289.
 - 16. (a) K. Totani, T. Kubota, T. Kuroda, T. Murata, K. I.-P. J. Hidari, T.

10 | RSC Adv., [year], [vol], 00-00

- Suzuki, Y. Suzuki, K. Kobayashi, H. Ashida, K. Yamamoto, and T. Usui, *Glycobiology* 2003, 13, 315–326. (b) G. B. Sigal, M. Mammen, G. Dahmann, and G. M. Whitesides, *J. Am. Chem. Soc.* 1996, 118, 3789–3800.
- (a) T. Furuike, N. Nishi, S. Tokura, and S.-I. Nishimura, *Macromolecules* 1995, 28, 7241–7247. (b) K. Matsuoka, and S.-I. Nishimura, *Macromolecules* 1995, 28, 2961–2968. (c) S.-I. Nishimura, K. Matsuika, T. Furuike, S. Ishii, and K. Jurita, *Macromolecules* 1991, 24, 4236–4241.
 - Y. Gou, S. Slavin, J. Geng, L. Voorhaar, D. M. Haddleton, and C. R. Becer, ACS Macro Lett. 2012, 1, 180–183.
 - P. Cuarcuabal, I. Hunig, D. P. Gamblin, B. Liu, R. A. Jockusch, R. T. Kroemer, L. C. Snoek, A. J. Fairbanks, B. G. Davis, and J. P. Simons, J. Am. Chem. Soc. 2006, 128, 1976–1981.
- S. V. Shelke, B. Cutting, X. Jiang, H. Loliwer-Brandl, D. S. Strasser,
 O. Schwardt, S. Kelm, and B. Ernst, *Angew. Chem. Int. Ed.* 2010, 49, 5721–5725.
 - 21. R. Orth, M. Pirscheider, and S. A. Sieber, *Synthesis* 2010, **13**, 2201–2206.
- S. A. Allman, H. H. Jensen, B. Vijayakrishnan, J. A. Garnett, E. Leon, Y. Liu, D. C. Anthony, N. R. Sibson, T. Feizi, S. Matthews, and B. G. Davis, *ChemBioChem* 2009, 10, 2522–2529.
- 23. Unpublished results. Ethylene glycol used as the spacer resulted in inefficient polymerization in our cases.
- 24. M. Fillippini, I. Pianetti, D. Pasini, and M. Prengnolate, *Adv. Synth.* ⁹⁵ *Catal.* 2007, **349**, 971–978.
 - 25. K. M. Gericke, C. Guntner, and L. F. Tietze, *Eur. J. Org. Chem.* 2006, 4910–4915.
- 26. (a) Using NIS/TfOH, please see: W. Li, and D. Crich, *J. Org. Chem.* 2007, **72**, 2387–2391. (b) Using chlorophosphate as substrates, please see: T. J. Martin, R. Brescello, A. Toepfer, and R. R. Schmidt, *Glycoconjugate J.* 1993, **10**, 16–25. (c) Using AgOTf, please see: K. P. R. Kartha, M. Aloui, and R. A. Field, *Tetrahedron Lett.* 1996, **37**, 8807–8810.
- (a) J. Deng, Z. Sheng, K. Zhou, M. Duan, C. Y. Yu, and L. Jiang, Bioconjugate Chem. 2009, 20, 533–537. (b) V. L. Campo, R. Sesti-Costa, Z. A. Carneiro, J. S. Silva, S. Schenkman, and I. Carvalho, Bioorg. Med. Chem. 2012, 20, 145–156.
 - P. H. Amvam-Zollo, and P. Sinaÿ, Carbohydr. Res. 1986, 150, 199–212.
- 110 29. R. Schwörer, and R. R. Schmidt, J. Am. Chem. Soc. 2002, 124, 1632–1637.
- 30. (a) Z. Gan, S. Cao, Q. Wu, and R. Roy, *J. Carbohydr. Chem.* 1999, 18, 755–773. (b) O. M. Saavedra, V. Mascitti, W. Marterer, R. Oehrlein, C.-P. Mak, and S. Hanessian, *Tetrahedron* 2001, 57, 3267–3280.
- 31. Determination of α and β -isomer (10a and 10b) were carried out by acetylation of compound 10a and 10b to afford corresponding acetylated products, which were further characterized by NMR experiments (¹H, ¹³C/DEPT, COSY, HSQC, NOESY, and ROESY), please see supplementary materials for detail.
 - a) C.-C. Chang, and A. Studer, *Macromolecules*, 2006, **39**, 4062–4068. b) C.-C. Chang, K. O. Siegenthaler, and A. Studer, *Helv. Chim. Acta.* 2006, **89**, 2200–2210.

This journal is © The Royal Society of Chemistry [year]