RSC Advances

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

Cite this: DOI: 10.1039/c4ra00000x

www.rsc.org/RSC Advances

ARTICLE

Syntheses, Structures, and Luminescence Properties of Four Metal-Organic Polymers With Undocumented Topologies Constructed From 3,5-Bis((4'carboxylbenzyl)oxy)benzoate Ligand

Xiutang Zhang,*^{a,b} Liming Fan,^{a,b} Weikuo Song,^a Weiliu Fan,^b Liming Sun,^b Xian Zhao*^b

s Received (in XXX, XXX) Xth XXXXXXXX 2014, Accepted Xth XXXXXXXX 2014 First published on the web Xth XXXXXXXX 2014 DOI: 10.1039/c4ra00000x

ABSTRACT: Solvothermal reactions of one semirigid tricarboxylic acid and transitional metal cations in the absence or presence of 1,4bis(1H-imidazol-4-yl)benzene (1,4-bib) afford four coordination polymers, namely, $[Cd(Hbcb)]_n$ (1), and $[M(Hbcb)(1,4-bib)]_n$ (M = Cd $_{10}$ (2), Mn (3), Fe(4)) (H₃bcb = 3.5-bis((4'-carboxylbenzyl)oxy)benzoic acid). Their structures have been determined by single-crystal X-ray diffraction analyses and further characterized by elemental analyses, IR spectra, powder X-ray diffraction (PXRD), and thermogravimetric (TG) analyses. Strucural analysis revealed complex 1 exhibits an intriguing $[Cd(COO)_2]_n$ tube-like chain based 3D framework with unprecedented 6-connected $(4^{8} \cdot 6^{7})$ topology. Complexes 2-4 are isomorphism and show new 3D (3,5)-connected framework with the Point Schläfli symbol of $(4.6.8)(4.6^4.8^5)$ based on the $[M(COO)]_n$ chain. Moreover, photoluminescent properties of

15 1 and 2 have been investigated in the solid state at room temperature.

Introduction

The rational design and construction of functional materials based on organic ligands has been a subject of growing interest in the past two decades due to their exceptionally artistic topologies 20 and tremendous potential applications, such as gas adsorption and separation, ion exchange, nonlinear optics, heterogeneous catalysis, and luminescence.¹⁻⁴ These intriguing properties and

- excellent applications are mostly attributed to the distinct architecture and composition of the metal-organic polymers.⁵ It is 25 well-known that the experimental conditions during the self-
- assembly process play a vital role on the growth of the single crystals, such as temperature, metal ions, template, pH value, counteranion, reaction period, concentrations of the raw materials, and so on.^{6,7} Among these factors, tactical design or selection of 30 the characteristic organic ligands according to their length,
- rigidly, and functional groups was proved to be one efficient route for achieving expected MOFs.8,9

However, it is still one tremendous challenge to design and synthesize such crystal materials for coordination chemistry 35 researchers, although considerable progress in the practical and theoretic approaches have been achieved.^{10,11} The most common strategy is one-pot reaction of metal ions and selected organic

ligands by serendipitous self-assembly although it is impossible

RSC Advances Accepted Manuscript

 $(4 \cdot 6 \cdot 8)(4 \cdot 6^4 \cdot 8^5)$ for **2–4**.

^a Advanced Material Institute of Research, College of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, 250013, China. E-mail: xiutangzhang@163.com.

State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 China

E-mail: zhaoxian@icm.sdu.edu.cn.

[†] Electronic Supplementary Information (ESI) available: Additional Figures, powder X-ray diffraction (PXRD) patterns, thermogravimetric analysis (TGA) and IR spectra for 1-4. X-ray crystallographic data, CCDC 986465-986468 for 1-4. See DOI:10.1039/c4ra00000x.

Experimental Section

Materials and Physical Measurements. All chemicals were purchased from Jinan Henghua Sci. & Tec. Co. Ltd. without further purification. IR spectra were measured on a NEXUS

- s 670 FTIR spectrometer at the range of 600-4000 cm⁻¹. Elemental analyses were carried out on a CE instruments EA 1110 elemental analyzer. X-ray powder diffractions were measured on a Panalytical X-Pert pro diffractometer with Cu-Kα radiation. Thermogravimetric analyses (TGA) were
- ¹⁰ performed under air condition from room temperature to 800 °C with a heating rate of 10 °C min⁻¹ on Perkin-Elmer TGA-7 thermogravimetric analyzer. Fluorescence spectra were performed on a Hitachi F-4500 fluorescence spectrophotometer at room temperature.
- 15 Synthesis of 3,5-bis((4'-carboxylbenzyl)oxy)benzoic acid (H₃bcb) (Scheme 1).

Synthesis of ethyl 3,5-dihydroxybenzoate (II). The mixture of 3,5-dihydroxybenzoic acid (0.1 mol, 15.4 g) and 10 mL concentrated H_2SO_4 in 500 mL ethanol was refluxed for 12 hours,

- ²⁰ and then poured into 500 mL H₂O. White solid was filtrated and recrystallized from methanol with the yield of 85%. Anal. (%) calcd. for C₉H₁₀O₄: C, 59.34; H, 5.53. Found: C, 59.16; H, 5.40.
- Synthesis of ethyl 4-bromomethylbenzoate (III). The mixture of 4-(bromomethyl)benzonitrile (0.1 mol, 19.6 g) and 10 $_{25}$ mL concentrated H₂SO₄ in 500 mL ethanol was refluxed for 3 days, and then poured into 500 mL H₂O. Ethyl acetate was used to extract for three times. White solid was obtained after vacuum concentration with the yield of 56%. Anal. (%) calcd. for C₁₀H₁₁BrO₂: C, 49.41; H, 4.56. Found: C, 49.32; H, 4.43.
- ³⁰ Synthesis of ethyl 3,5-bi(4-cyanophenoxy)benzoate (IV). The mixture of II (0.05 mol, 9.1 g), III (0.10 mol, 24.2 g), and potassium carbonate (0.1 mmol, 13.8 g) in 500 mL DMSO was refluxed at 120 °C for one week and then poured into 2000 mL H_2O . The obtained solid was recrystallized from methanol and
- ³⁵ purified by Silica gel chromatography with a eluting mixture of chloroform and acetone (2:1, v/v), with 36% yield. Anal. (%) calcd. for C₂₉H₃₀O₈: C, 68.76; H, 5.97. Found: C, 68.58; H, 5.79.

Scheme 1. The scheme for the synthesis of H₃bcb.

⁴⁰ Synthesis of 3,5-bis((4'-carboxylbenzyl)oxy)benzoic acid (H₃bcb) (V). The mixture of IV (0.05 mol, 25.3 g) and NaOH (0.2 mol, 8.0 g) in the mixed solvent of EtOH (500 mL) and H₂O (500 mL) was refluxed at 75 °C for one day and filtrated. The filtrated solution was adjusted to pH = 3 to result in white solid. ⁴⁵ Recrystallization was applied in DMSO with the yield of 72%.

EI-MS: m/z [M-H]⁻, 421.1 (calcd for $C_{23}H_{18}O_8$, 422.1). Anal. (%) calcd. for $C_{23}H_{18}O_8$: C, 65.40; H, 4.30. Found: C, 65.21; H, 4.13.

Synthesis of $[Cd(Hbcb)]_n$ (1). A mixture of H₃bcb (0.20 mmol, 0.083 g), 3CdSO₄ 8H₂O (0.13 mmol, 0.103 g), NaOH ⁵⁰ (0.10 mmol, 0.004 g) and 12 mL H₂O was placed in a Teflonlined stainless steel vessel, heated to 170 °C for 3 days, followed by slow cooling (a descent rate of 10 °C/h) to room temperature. Light yellow block crystals of 1 were obtained. Yield of 37% (based on Cd). Anal. (%) calcd. for C₂₃H₁₆CdO₈: C, 51.85; H,

⁵⁵ 3.03. Found: C, 52.17; H, 3.12. IR (KBr pellet, cm⁻¹): 3039 (m), 2642 (w), 1683 (s), 1592 (vs), 1549 (vs), 1360 (vs), 1247 (s), 1060 (m), 824 (m), 770 (m), 720 (w).

Synthesis of $[Cd(Hbcb)(1,4-bib)]_n$ (2). A mixture of H₃bcb (0.2 mmol, 0.083 g), 1,4-bib (0.20 mmol, 0.042 g), ⁶⁰ 3CdSO₄·8H₂O (0.13 mmol, 0.103 g), NaOH (0.10 mmol, 0.004 g), and 12 mL H₂O was placed in a Teflon-lined stainless steel vessel, heated to 170 °C for 3 days, followed by slow cooling (a descent rate of 10 °C/h) to room temperature. Colourless block crystals of **2** were obtained. Yield of 57% (based on Cd). Anal. ⁶⁵ (%) calcd. for C₃₅H₂₆CdN₄O₈: C, 56.59; H, 3.53; N, 7.54. Found: C, 56.30; H, 3.69; N, 7.82. IR (KBr pellet, cm⁻¹): 3134 (m), 2596 (m), 1692 (s), 1593 (vs), 1527 (vs), 1371 (s), 1154 (s), 1049 (m), 834 (m), 753 (m).

Synthesis of [Mn(Hbcb)(1,4-bib)]_n **(3).** The same synthetic ⁷⁰ procedure as for **2** was used except that $3CdSO_4 \cdot 8H_2O$ was replaced by MnSO₄·H₂O (0.40 mmol, 0.068 g), giving colourless block crystals. Yield of 53% (based on Mn). Anal. (%) calcd. for $C_{35}H_{26}MnN_4O_8$: C, 61.32; H, 3.82; N, 8.17. Found: C, 61.30; H, 4.03; N, 8.02. IR (KBr pellet, cm⁻¹): 3125 (m), 2876 (w), 1691 (s), 75 1595 (vs), 1442 (vs), 1371 (vs), 1237 (m), 1062 (s), 834 (m), 756 (m).

Synthesis of $[Fe(Hbcb)(1,4-bib)]_n$ (4). The same synthetic procedure as for 2 was used except that $3CdSO_4 \cdot 8H_2O$ was replaced by FeSO₄ · 7H₂O (0.40 mmol, 0.112 g), giving orange ⁸⁰ block crystals. Yield of 62% (based on Fe). Anal. (%) calcd. for $C_{35}H_{26}FeN_4O_8$: C, 61.24; H, 3.82; N, 8.16. Found: C, 61.37; H, 3.96; N, 8.45. IR (KBr pellet, cm⁻¹): 3145 (m), 2877 (m), 1692 (s), 1595 (vs), 1406 (vs), 1371 (vs), 1248 (s), 1050 (s), 835 (m), 754 (m).

X-ray Crystallography. Intensity data collection was carried out on a Siemens SMART diffractometer equipped with a CCD detector using Mo-Kα monochromatized radiation (λ = 0.71073 Å). The absorption correction was based on multiple and symmetry-equivalent reflections in the data set using the SADABS
program based on the method of Blessing. The structures were solved by direct methods and refined by full-matrix least-squares using the SHELXTL package.¹⁴ All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were generated geometrically with fixed isotropic thermal parameters.
S Crystallographic data for complexes 1–4 are given in Table 1. Selected bond lengths and angles for 1–4 are listed in Table 2. For complexes of 1–4, further details on the crystal structure

investigations may be obtained from the Cambridge Crystallographic Data Centre, CCDC, 12 Union Road, CAMBRIDGE CB2 1EZ, UK, [Telephone:+44-(0)1223-762-910, Fax: +44-(0)1223-336-033; Email: deposit@ccdc.cam.ac.uk, 5 http://www.ccdc.cam.ac.uk/ deposit], on quoting the depository

number CCDC-986465 for **1**, 986466 for **2**, 986467 for **3**, and 986468 for **4**. Topological analysis of the coordination networks of **1**–4 was performed with the program package TOPOS.¹⁵

¹⁰ Scheme 2. The coordinaion modes of H₃bcb in complexes 1–4.

Table	1	Crysta	l data	for	1 - 4
1 ant		Crysta	i uutu	101	

Compound	1		2	3		4		
Empirical formula	$C_{23}H_1$	16CdO ₈	C35H26CdN4O8	$C_{35}H_{26}$	MnN ₄ O ₈	C ₃₅ H ₂₆ FeN ₄ O ₈		
Formula weight	532.7	6	743.00	685.54		686.45		
Crystal system	Ortho	orhombic	Orthorhombic	Orthor	hombic	Orthorhombic		
Space group	Pna2	1	Pbcn	Pbcn		Pbcn		
a(Å)	19.00	64(19)	27.0432(17)	26.780	(2)	26.4977(19)		
$b(\dot{A})$	24.51	7(2)	8.0754(5)	8.1675	(7)	8.1948(6)		
$c(\dot{A})$	4.695	6(5)	27.1949(17)	26.928	(2)	26.8556(6)		
α (°)	90.00		90.00	90.00		90.00		
$\beta(\circ)$	90.00		90.00	90.00		90.00		
γ (°)	90.00		90.00	90.00		90.00		
$V(Å^3)$	2188.	.0(4)	5938.9(6)	5889.9	(9)	5831.5(6)		
Z	4		8	8		8		
D_{calcd} (Mg/m ³)	1.617		1.662	1.546		1.564		
$\mu(\mathrm{mm}^{-1})$	1.045		0.800	0.513		0.583		
θ range	1.36-	25.00	1.68-25.00	1.69-2	5.00	1.70-25.10		
Reflections collected	11049	9	29097 28793			28865		
Data/Parameters	3730/	/290	5239/434	5188/4	-34	5139/434		
F(000)	1064		3008	2824		2832		
$T(\mathbf{K})$	293(2	2)	296(2)	293(2)		296(2)		
R _{int}	0.036	4	0.0573	0.1282		0.0668		
$R_1(wR_2)[I > 2\sigma(I)]$	$R_1 = 0$	0.0680	$R_1 = 0.0309$	$R_1 = 0.$	0488	$R_1 = 0.0406$		
	$wR_2 =$	= 0.2271	$wR_2 = 0.0538$	$wR_2 =$	0.0987	$wR_2 = 0.0905$		
R_1 (wR_2) (all data)	$R_1 = 0$	0.0778	$R_1 = 0.0507$	$R_1 = 0.$	0972	$R_1 = 0.0731$		
	$wR_2 =$	= 0.2400	$wR_2 = 0.0577$	$wR_2 =$	0.1088	$wR_2 = 0.0984$		
Gof	1.002		1.001	1.007		1.007		
$R_1 = \Sigma F_0 - F_c / \Sigma F_0 ,$	$wR_2 = \sum w(R_2)$	$F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma w (F_{o}^{2})^{2}]^{1/2}$						
Table 2 Selected bond	lengths (Å) a	nd angles (°) for 1 – 4.						
Complex 1								
$Cd(1)-O(5)^{\#1}$	2.207(8)	$Cd(1)-O(6)^{\#2}$	2.257(6)	Cd(1)-O(2)	2.28(2)	$Cd(1)-O(1)^{\#3}$	2.305(7)	
$Cd(1)-O(7)^{\#4}$	2.341(7)	$Cd(1)-O(6)^{\#5}$	2.375(8)	$O(5)^{\#1}$ -Cd(1)-O(6)^{\#2}	103.1(3)	$O(5)^{\#1}$ -Cd(1)-O(2)	165.8(5)	
$O(6)^{\#2}$ -Cd(1)-O(2)	90.2(6)	$O(5)^{\#1}$ -Cd(1)-O(1)^{\#3}	95.8(3)	$O(6)^{\#2}$ -Cd(1)-O(1)^{\#3}	98.8(3)	$O(2)-Cd(1)-O(1)^{\#3}$	86.9(5)	
$O(5)^{\#1}$ -Cd(1)-O(7) ^{\#4}	81.2(3)	$O(6)^{\#2}$ -Cd(1)-O(7) ^{\#4}	174.9(3)	$O(2)-Cd(1)-O(7)^{#4}$	85.3(6)	$O(1)^{\#3}$ -Cd(1)-O(7) ^{#4}	83.3(3)	
$O(5)^{\#1}$ -Cd(1)-O(6)^{\#5}	87.4(3)	$O(6)^{\#2}$ -Cd(1)-O(6)^{\#5}	92.92(18)	$O(2)-Cd(1)-O(6)^{\#5}$	86.9(5)	$O(1)^{\#3}$ -Cd(1)-O(6)^{\#5}	166.8(3)	
$O(7)^{#4}$ -Cd(1)-O(6) ^{#5}	84 6(2)			() = -() - (-)			(-)	

Symmetry code: #1 -*x*+1/2, *y*-1/2, *z*+3/2; #2 *x*+1/2, -*y*+3/2, *z*+1; #3 *x*, *y*, *z*+1; #4 *x*-1/2, -*y*+3/2, *z*-1; #5 -*x*+1/2, *y*-1/2, *z*+1/2.

Complex 2							
Cd(1)-O(8) ^{#3}	2.186(2)	Cd(1)-N(1)	2.250(2)	Cd(1)-O(1)	2.282(2)	Cd(1)-N(3)	2.305(2)
$Cd(1)-O(2)^{\#4}$	2.323(2)	$O(8)^{\#3}-Cd(1)-N(1)$	98.11(9)	$O(8)^{\#3}$ -Cd(1)-O(1)	108.76(8)	N(1)-Cd(1)-O(1)	94.34(8)
$O(8)^{#3}$ -Cd(1)-N(3)	88.68(9)	N(1)-Cd(1)-N(3)	171.49(9)	O(1)-Cd(1)-N(3)	88.26(8)	$O(8)^{\#3}$ -Cd(1)-O(2) ^{#4}	154.40(8)
$N(1)-Cd(1)-O(2)^{#4}$	93.59(9)	$O(1)-Cd(1)-O(2)^{#4}$	92.87(7)	$N(3)-Cd(1)-O(2)^{\#4}$	78.17(8)		
Symmetry code: $#3 - x + $	1, -y-1, -z+2; #	4 - <i>x</i> +3/2, <i>y</i> -1/2, <i>z</i> .					
Complex 3							
$Mn(1)-O(4)^{\#3}$	2.069(3)	$Mn(1)-O(8)^{\#4}$	2.107(2)	Mn(1)-O(7)	2.180(2)	Mn(1)-N(1)	2.193(3)
Mn(1)-N(3)	2.237(3)	$O(4)^{\#3}$ -Mn(1)-O(8) ^{#4}	108.68(11)	$O(4)^{\#3}$ -Mn(1)-O(7)	151.04(11)	$O(8)^{#4}$ -Mn(1)-O(7)	98.19(10)
$O(4)^{\#3}$ -Mn(1)-N(1)	95.76(11)	$O(8)^{#4}$ -Mn(1)-N(1)	95.68(11)	O(7)-Mn(1)-N(1)	92.04(11)	$O(4)^{\#3}$ -Mn(1)-N(3)	89.13(11)
$O(8)^{#4}$ -Mn(1)-N(3)	90.45(10)	O(7)-Mn(1)-N(3)	79.86(10)	N(1)-Mn(1)-N(3)	170.49(12)		
Symmetry codes: #3 x+	1/2, -y+1/2, -z-	+1; #4 - x +1/2, y +1/2, z .					
Complex 4							
$Fe(1)-O(8)^{\#3}$	1.996(2)	Fe(1)-O(2)	2.0788(19)	$Fe(1)-O(1)^{\#4}$	2.095(2)	Fe(1)-N(3)	2.153(2)
Fe(1)-N(1)	2.199(2)	$O(8)^{#3}$ -Fe(1)-O(2)	151.13(9)	$O(8)^{#3}$ -Fe(1)-O(1) ^{#4}	109.85(9)	O(2)-Fe(1)-O(1) ^{#4}	97.44(8)
$O(8)^{\#3}$ -Fe(1)-N(3)	95.50(9)	O(2)-Fe(1)-N(3)	92.38(9)	$O(1)^{#4}$ -Fe(1)-N(3)	92.68(9)	$O(8)^{\#3}$ -Fe(1)-N(1)	89.94(9)
O(2)-Fe(1)-N(1)	80.90(8)	$O(1)^{#4}$ -Fe(1)-N(1)	89.30(8)	N(3)-Fe(1)-N(1)	173.19(9)		
Symmetry codes: #3 x+	1/2, -y+3/2, -z-	+2; #4 - <i>x</i> +1/2, <i>y</i> -1/2, <i>z</i> .					

Result and Discussion

Synthesis and Characterization. Complexes 1-4 were prepared from the solvothermal reaction of H₃bcb and related transitional metal salts in similar reaction conditions. Other 5 transition metal salts also were used to react with H₃bcb under similar reaction condition of complex 1, unfortunately we just obtained some unknown powder substance in the end. The ancillary co-ligands were introduced to adjust the final structure with mixed ligands strategy. The linear 1,4-bib (1,4-10 bis(1H-imidazol-4-yl)benzene) as well as some other bridging imidazole linkers (V-shaped 1,3-bis(1H-imidazol-4-

- yl)benzene ligand, the flexible 1,3-bis(imidazol-1vlmethyl)benzene 1,4-bis(imidazol-1ligand, ylmethyl)benzene ligand, and longer 4,4'-bis(imidazol-1-
- 15 yl)biphenyl ligand) have been selected as co-ligands to modify the network, but only three 1,4-bib based complexes were constructed, which might attribute to the coordination preference of H₃bcb. Besides, the 1,4-bib ligand can separated the neighbouring cations with a proper distance. The solid state 20 of 1-4 are stable upon exposure to air.

Structural Description of [Cd(Hbcb)]_n (1). Single-crystal Xray diffraction analysis revealed that complex 1 crystallizes in the orthorhombic Pna2₁ space group. As shown in Fig. 1, the asymmetric unit of 1 contains one crystallographically 25 independent Cd^{II} anion and one partly depronated Hbcb²⁻ ligand. Each Cd^{II} ion is hexa-coordinated and surrounded by six carboxyl oxygen atoms from six individual Hbcb2- ligands, forming octahedral coordination geometry. The Cd-O bond distances

range from 2.199(6) to 2.371(3) Å, and the dihedral angles ³⁰ around Cd^{II} are in the range of $80.90(9)-174.85(9)^{\circ}$.

The ligand of Hbcb^{2-} acts as one μ_6 node to coordinate with six Cd^{II} ions, in which the protonated carboxyl group adopts monodentate $\mu_I - \eta^1 : \eta^0$ coordination mode and the two deprotonated carboxyl groups adopt bridging μ_2 - η^1 : η^1 and μ_3 -

- $_{35} \eta^2$: η^1 modes, respectively (Mode I, Scheme 2). It is noteworthy that the Cd^{II} ions are linked by the carboxyl groups to form an unprecedented 1D tube-like [Cd(COO)₂]_n chain, with the diameter being ca. 2.04 Å. The nearest Cd…Cd distances are 3.824 and 4.696 Å, respectively (Fig. 2). Furthermore, three
- 40 parallel $[Cd(COO)_2]_n$ chains are connected by three carboxyl groups of one Hbcbb²⁻ linker, leaving one 3D [Cd(Hbcb)]_n framework (Fig. 3). The dihedral angles between two phenyl rings and central phenyl ring in one Hbcb²⁻ are 27.5(3), and 82.5(3)°, respectively. And the one between two phenyl rings is
- 45 66.6(6)°. Those dihedral angles indicate that the Hbcbb²⁻ is extremely unsymmetrical and distorted during the self-assembly process. Besides, the void volume in 1 is 14.7% of the crystal volume (321.3 out of the 2188.1 Å³ unit cell volume), calculated by PLATON.16
- To better understand the structure of 1, the topological analysis approach is employed. From the topological point of view, both Hbcb²⁻ ligands and Cd^{II} act as 6-connected nodes, giving rise to an unprecedented 6-connected net with the Schläfli symbol of $(4^{8} \cdot 6^{7})$, shown in Fig. 4. To our knowledge, this topology has

Figure 1. ORTEP representation of 1 showing the local coordination environment around Cd^{II} center. (Symmetry codes: (A) 0.5-x, -0.5+y, 1.5+z; (B) 0.5+x, 1.5-y, 1+z; (D) -0.5+x, 1.5-y, -1+z; (E) 0.5-x, -0.5+y, 60 1.5+z.).

Figure 2. The intriguing 1D [Cd(COO)₂]_n tube-like chain in complex 1.

Figure 3. The 3D frameworks view along c axis in complex 1.

Figure 4. Schematic view of the novel 6-connected $(4^8 \cdot 6^7)$ topology of 1.

Structural Description of $[M(Hbcb)(1,4-bib)]_n$ (M = Cd (2), Mn (3), Fe(4)). With the ancially ligand of 1,4-bib being employed in the reaction, part of coordiantion geometry around 70 metal center were occupied by nitrogen atoms from imidazole rings in 1,4-bib ligand. The stereospecific blockade of 1,4-bib

resulted in distorted trigonal bipyramidal coordination geometries around metal cations in **2-4**.

- The single-crystal X-ray diffraction analyses reveal that complexes **2–4** are isomorphous and crystallize in the ⁵ orthorhombic *P*bcn space group, herein only the structure of **2** will be discussed as a representation. As shown in Fig. 5, there are one crystallographically independent Cd^{II} ion, one Hbcb²-ligand, and one 1,4-bib ligand in the asymmetric unit. Each Cd^{II} center is penta-coordinated by two nitrogen atoms from two 1,4-
- ¹⁰ bib ligands [Cd(1)-N(1) = 2.250(2), and Cd(1)-N(3) = 2.305(2) Å] and three oxygen atoms from three Hbcb²⁻ ligands [Cd(1)-O(1) = 2.282(2), Cd(1)-O(2) = 2.323(2), and Cd(1)-O(8) = 2.186(2) Å], forming a distorted trigonal bipyramidal coordination geometry.

Figure 5. ORTEP representation of 2 showing the local coordination environment around Cd^{II} center. (Symmetry codes: (A) x, -y, -0.5+z; (C) 1-x, -1-y, 2-z; (D) 1.5-x, -0.5+y, z.).

20 Figure 6. View of the 3D frameworks in complex 2.

Figure 7. Schematic view of the novel binodal (3,5)-connected $(4 \cdot 6 \cdot 8)(4 \cdot 6^4 \cdot 8^5)$ topology of complex **2**.

Although the ligand of H₃bcb is also partly deprotonated, ²⁵ Hbcb²⁻ in complex **2** act as one μ_3 node to coordinate with three Cd^{II} ions, in which two deprotonated carboxyl groups adopt μ_2 - η^2 : η^1 and μ_1 - η^1 : η^0 coordination modes (Mode II), respectively, shown in Scheme 2. The dihedral angles between the two benzyl rings and central phenyl ring in Hbcbb²⁻ are 62.6(5) and 89.9(3)°, ³⁰ respectively, and the one between two phenyl rings is 62.7(8)°. The dihedral angles are slightly different for compounds **2-4**: 63.2(6), 88.5(9), and 63.2(2)° for complex **3**; and 64.3(7), 87.1(9), and 63.3(6)° for complex **4**.

Each Cd^{II} ions are linked by μ_2 - η^2 : η^1 carboxyl groups to form a ³⁵ 1D [Cd(COO)]_n chain, with the Cd···Cd distance being 4.298 Å (Fig. S1). And then the Hbcbb²⁻ anions act as bridging pillars, further expanded the 1D [Cd(COO)]_n chains to a 2D [Cd(Hbcb)]_n sheet along the *ab* plane (Fig. S2). Besides, the ancillary 1,4-bib as bridging linkers connected with the metal centres, successfully ⁴⁰ constructed a linear [Cd(1,4-bib)]_n chain along *c* direaction. The linear [Cd(1,4-bib)]_n chains pulling the neighbouring 2D [Cd(Hbcb)]_n sheets together, finally generated a 3D framework (Fig. 6).

From the viewpoint of structural topology, the overall ⁴⁵ frameworks of complex **2** can be defined as a new binodal (3,5)-connected nets with the Schläfli symbol of $(4 \cdot 6 \cdot 8)(4 \cdot 6^4 \cdot 8^5)$ by denoting Cd^{II} and Hbcb²⁻ as five- and three-connected nodes, the bridging 1,4-bib ligands as linkers, respectively (Fig. 7).

Structural Comparisons. As shown in the Scheme 2, the 50 H₃bcb exhibits two different coordination modes. Although both two coordination modes are partly deprotonated, the one in complex 1 adopts $\mu_6 - \eta^1 : \eta^0 - \eta^1 : \eta^1 - \eta^1 : \eta^2$ coordination mode (Mode I), act as a trifunctional ligand, compared with bifunctional bridging Hbcb²⁻ linker with μ_3 - η^1 : η^2 - η^0 : η^1 coordination mode (Mode II). ⁵⁵ The three carboxyl groups of trifunctional Hbcb²⁻ ligated with Cd^{II} ions with monodentate μ_1 - η^1 : η^0 , bridging μ_2 - η^1 : η^1 , and bridging μ_3 - η^1 : η^2 carboxyl groups, obtained an interestingly 1D $[Cd(COO)_2]_n$ tube-like chain, which further expanded to the 6connected $(4^8 \cdot 6^7)$ network. For complex 2, the coordination mode ⁶⁰ is simple, the bridging bifunctional Hbcb²⁻ interact with Cd^{II} ions fromed a 2D [Cd(Hbcb)]_n layer, and the neighbouring 2D layers are further interact with each other though the hydrogen bonds between protonated carboxyl groups and the deprotonated ones of different sheets. Then, the 2D [Cd(Hbcb)]_n layers are further $_{65}$ expanded along the 1D [Cd(1,4-bib)]_n chains direction, given a 3D (3,5)-connected framework finally. The 1,4-bib ligand in complex 2 was thought act as a pillar to support adjacent [Cd(Hbcb)]_n layers. The structural differences indicated the coligand of 1.4-bib has great influences on the coordination modes 70 of H₃bcb and the packing structure due to that the stereospecific blockade of 1,4-bib make Hbcbb²⁻ extremely unsymmetrical and distorted during the self-assembly process. Thence, when the 1,4bib ancillary ligand were added in construction of CPs, the polycarboxylates tend to connect with fewer metal ions (the 75 change of coordination modes), and adjust themselves to satisfy the needs of lowest system energy by twisting, rotating, and folding, further effect the final structure. It is also noteworthy that the protonated carboxyl group on the benzyl ring in complexes 1-4 shows that three carboxyl groups in H₃bcb have different 80 acidity

X-ray Podwer Diffraction Analyses and Thermal Analyses.

Powder X-ray diffraction (XRD) has been used to check the phase purity of the bulky samples in the solid state. For complexes 1–4, the measured XRD patterns are closely identical to the simulated patterns generated from the results of

- s single-crystal diffraction data by Mercury program,¹⁷ indicative of pure products (Figure S4, Supporting Information). The thermogravimetric (TG) analyses on polycrystalline samples of complexes 1–4 were performed in N₂ atmosphere and the TG curves are shown in Figure S5. For complex 1, the whole
- ¹⁰ structure is stable below 425 °C, and then the framework collapses with a result of thermal decomposition. For complexes 2–4, the water-free networks are stable below 350°C, 370°C, and 340°C, respectively.
- **Photoluminescent Investigation.** The photoluminescent 15 properties of H₃bcb and complexes 1 and 2 have been investigated under 300 nm wavelength excitation at room temperature, and the normalised photoluminescent spectres were shown in Fig. 8. For the ligand H₃bcb, the main peak at 383 nm can be attributed to the $\pi^* \rightarrow n$ or $\pi^* \rightarrow \pi$ transitions. The emission
- ²⁰ spectra for **1** and **2** exhibit emission peaks of 334 and 361 nm, respectively, which may be assigned to the intraligandemission $(\pi^* \rightarrow n \text{ or } \pi^* \rightarrow \pi)$. These emissions are neither metal-to-ligand charge transfer (MLCT) nor ligand-to-metal transfer (LMCT) in nature since the Cd^{II} ion is difficult to oxidize or reduce due to its
- ²⁵ d¹⁰ configuration.¹⁸ The blue-shifted results of the Cd^{II}-containing complexes can be attributed to the H₃bcb ligand conformational change after dehydrogenation, which make the conjugated system reduced.¹⁹ The difference of the emission behaviours for complexes 1 and 2 probably derive from the differences of solid-³⁰ state crystal packing.

Figure 8. Solid-state emission spectra of H_3 bcb ligand and the complexes 1 and 2 at room temperature.

Conclusions

- In summary, with the elaboratly designed flexible and longer ligand of 3,5-bis((4'-carboxylbenzyl)oxy)benzoic acid (H₃bcb), four new complexes with undocumented topologies were obtained. When the 1,4-bib ancillary ligand was introduced into the reaction, a structural transformation from 40 6-connected ($4^8 \cdot 6^7$) to (3,5)-connected ($4 \cdot 6 \cdot 8$)($4 \cdot 6^4 \cdot 8^5$) took
- place. The result demonstrated that the employment of the

anciallry 1,4-bib linker in the assembly of metalpolycarboxylates coordination polymers could lead to structural changes and unprecedented topologies since the 45 stereospecific blockade of 1,4-bib make Hbcbb²⁻ extremely unsymmetrical and distorted during the self-assembly process. This will be the subject of future studies in our lab.

Acknowledgements. The work was supported by financial support from the Natural Science Foundation of China (Grant

⁵⁰ Nos. 21101097, 91022034 and 51172127), the Excellent Youth Foundation of Shandong Scientific Committee (Grant JQ201015).

Notes

60

80

95

100

105

The authors declare no competing financial interest.

55 References

- (a) G. Férey and C. Serre, *Chem. Soc. Rev.*, 2009, **38**, 1380; (b) H.
 Fei, J. F. Cahill, K. A. Prather and S. M. Cohen, *Inorg. Chem.*, 2013, **52**, 4011; (c) M. O'Keeffe and O. M. Yaghi, *Chem. Rev.*, 2011, **112**, 675; (d) M. D. Allendorf, C. A. Bauer, R. K. Bhakata and R. J. T. Houk, *Chem. Soc. Rev.*, 2009, **38**, 1330.
- (a) J. Duan, M. Higuchi, R. Krishna, T. Kiyonaga, Y. Tsutsumi, Y. Sato, Y. Kubota, M. Takata and S. Kitagawa, *Chem. Sci.*, 2014, **5**, 660; (b) M. Zhang, W. Lu, J. R. Li, M. Bosch, Y. P. Chen, T. F. Liu, Y. Liu and H. C. Zhou, *Inong. Chem. Front.*, 2014, **1**, 159; (c) B. L. Chen, N. W. Ockwig, A. R. Millward, D. S. Contreras and O. M. Yaghi, *Angew. Chem. Int. Ed.*, 2005, **44**, 4745; (d) A. B. Canaj, L. F. Nodaraki, K. Slepokura, M. Siczek, D. I. Tzimopoulos, T. Lis and C. J. Milios, *RSC Adv.*, 2014, **4**, 23068.
- (a) E. D. Bloch, W. L. Queen, R. Krishna, J. M. Zadrozny, C. M. Brown and J. R. Long, *Science*, 2012, 335, 1606; (b) T. B. Saust and D. M. D'Alessandro, *RSC Adv.*, 2014, 4, 17498; (c) L. J. Murray, M. Dincâ and J. R. Long, *Chem. Soc. Rev.*, 2009, 38, 1294; (d) X. Zhang, L. Fan, W. Zhang, Y. Ding, W. Fan and X. Zhao, *Dalton. Trans.*, 2013, 42, 16562; (e) M. H. Weston, A. A. Delaquil, A. A. Sarjeant, O. K. Farha, J. T. Hupp and S. T. Nguyen, *Cryst. Growth Des.*, 2013, 13, 2938.
 - (4) (a) P. V. Dau and S. M. Cohen, *Chem. Commun.*, 2013, 49, 6128;
 (b) X. T. Zhang, D. Sun, B. Li, L. M. Fan, B. Li and P. H. Wei, *Cryst. Growth Des.*, 2012, 12, 3845; (c) T. Ishimoto, T. Ogura, M. Koyama, L. F. Yang, S. Kinoshita, T. Yamada, M. Tokunaga and H. Kitagawa, *J. Phys. Chem. C*, 2013, 117, 10607; (d) J. Y. Zou, W. Shi, H. L. Gao, J. Z. Cui and P. Cheng, *Inong. Chem. Front.*, 2014, 1, 242.
- (5) (a) S. Chen, R. Shang, K. L. Hu, Z. M. Wang and S. Gao, *Inong. Chem. Front.*, 2014, 1, 83; (b) S. Kennedy, I. E. Dodgson, C. M. Beavers, S. J. Teat and S. J. Dalgarno, *Cryst. Growth Des.*, 2012, 12, 688; (c) T. Devic, P. Horcajada, C. Serre, F. Salles, G. Maurin, B. Moulin, D. Heurtaux, G. Clet, A. Vimont, J. M. Grenèche, B. LeOuay, F. Moreau, E. Magnier, Y. Filinchuk, J. Marrot, J. C. Lavalley, M. Daturi and G. Férey, *J. Am. Chem. Soc.*, 2010, 132, 1127; (d) X. T. Zhang, L. M. Fan, X. Zhao, D. Sun, D. C. Li and J. M. Dou, *CrystEngComm*, 2012, 14, 2053.
 - (6) (a) R. Krishna and J. M. van Baten, J. Phys. Chem. C, 2010, 114, 18017; (b) D. X. Xue, A. J. Cairns, Y. Belmabkhout, L. Wojtas, Y. L. Liu, M. H. Alkordi and M. Eddaoudi, J. Am. Chem. Soc., 2013, 135, 7660; (c) D. Sun, L. L. Han, S. Yuan, Y. K. Deng, M. Z. Xu and D. F. Sun, Cryst. Growth Des., 2013, 13, 377; (d) X. Zhang, L. Fan, Z. Sun, W. Zhang, W. Fan, L. Sun and X. Zhao, CrystEngComm, 2013, 15, 4910.
 - (7) (a) X. H. Chang, J. H. Qin, M. L. Han, L. F. Ma and L. Y. Han, *CrystEngComm*, 2014, 16, 870; (b) G. A. Senchyk, A. B. Lysenko, H. Krautscheid, E. B. Rusanov, A. N. Chernega, K. W. Krämer, S. X. Liu, S. Decurtins and K. V. Domasevitch, *Inorg. Chem.*, 2013, 52, 863; (c) V. Kulikov and G. Meyer, *Cryst.*

50

Growth Des., 2013, **13**, 2916; (d) L. Fan, X. Zhang, D. Li, D. Sun, W. Zhang and J. Dou, *CrystEngComm*, 2013, **15**, 349.

- (8) (a) M. Kim, J. F. Cahill, H. Fei, K. A. Prather and S. M. Cohen, J. Am. Chem. Soc., 2012, 134, 18082; (b) Y. B. Wang, Y. L. Lei,
- S. H. Chi and Y. J. Luo, *Dalton Trans.*, 2013, 42, 1862; (c) O. K. Farha, A. M. Shultz, A. A. Sarjeant, S. T. Nguyen and J. T. Hupp, *J. Am. Chem. Soc.*, 2011, 133, 5652; (d) X. Zhang, L. Fan, Z. Sun, W. Zhang, D. Li, J. Dou and L. Han, *Cryst. Growth Des.*, 2013, 13, 792.
- (9) (a) D. L. Long, R. Tsunashima and L. Cronin, *Angew. Chem., Int. Ed.*, 2010, **49**, 1736; (b) M. W. Schneider, H. J. S. Hauswald, R. Stoll and M. Mastalerz, *Chem. Commun.*, 2012, **48**, 9861; (c) L. Fan, Y. Gao, G. Liu, W. Fan, W. Song, L. Sun, X. Zhao and X. Zhang, *CrystEngComm*, 2014, DOI: 10.1039/C4CE00760C.
- (10) (a) T. Hasell, M. Schmidtmann, C. A. Stone, M. W. Smith and A. I. Cooper, *Chem. Commun.*, 2012, **48**, 4689; (b) Q. L, Zhang, G. W. Feng, Y. Q. Zhang and B. X. Zhu, *RSC Advances*, 2014, **4**, 11384; (c) R. P. Davies, R. Less, P. D. Lickiss, K. Robertson and A. J. P. White, *Cryst. Growth Des.*, 2010, **10**, 4571; (d) Q. L. Zhang, B. Liu, Y. Zhang, G. W. Forng, Y. Q. Zhang, B. W. Strang, Y. Q. Zhang, G. W. Forng, Y. Q. Zhang, G. W. Forng, Y. Chang, G. Y. Chang, G. Y. Chang, G. W. Forng, Y. Chang, G. Y. Chang, Y. Chang,
- Zhang, P. Hu, Y. Zhao, G. W. Feng, Y. Q. Zhang, B. X. Zhu and Z. Tao, *J. Solid State Chem.*, 2014, 210, 178.
 (1) C. T. The Mark and The Chem. 2014, 210, 178.
- ²⁵ Zhang, W. Zhang, Y. Ding, W. Fan, L. Sun, Y. Pang and X. Zhao, *Dalton Trans.*, 2014, **43**, 6701; (d) B. Liu, L. Wei, N. N. Li, W. P. Wu, H. Miao, Y. Y. Wang and Q. Z. Shi, *Cryst. Growth Des.*, 2014, **14**, 1110.
- (12) (a) P. Lama, J. Mrozinski and P. K. Bharadwaj, *Cryst. Growth Des.*, 2012, **12**, 3158; (b) Y. Zhang, J. Yang, Y. Yang, J. Guo, and J. F. Ma, *Cryst. Growth Des.* 2012, **12**, 4060; (c) M. Ahmad, R. Das, P. Lama, P. Poddar and P. K. Bharadwaj, *Cryst. Growth Des.* 2012, **12**, 4624.
- (13) (a) L. Fan, X. Zhang, Z. Sun, W. Zhang, Y. Ding, W. Fan, L. Sun, X. Zhao and H. Lei, *Cryst. Growth Des.*, 2013, 13, 2462; (b) F. Guo, B. Zhu, M. Liu, X. Zhang, J. Zhang and J. Zhao, *CrystEngComm*, 2013, 15, 6191; (c) X. Zhang, L. Fan, W. Zhang, W. Fan, L. Sun and X. Zhao, *CrystEngComm*, 2014, 16, 3203.
- (14) (a) G. M. Sheldrick, *SHELXTL*, version 5.1; Bruker Analytical
 X-ray Instruments Inc.: Madison, WI, 1998. (b) G. M. Sheldrick, *SHELX-97*, PC Version; University of Gottingen: Gottingen, Germany, 1997.
 - (15) (a) V. A. Blatov, A. P. Shevchenko and V. N. Serezhkin, J. Appl. Crystallogr., 2000, 33, 1193; (b) The network topology was
- 45 evaluated by the program "TOPOS-4.0", see: http://www.topos.ssu.samara.ru. (c) V. A. Blatov, M. O'Keeffe and D. M. Proserpio, *CrystEngComm*, 2010, **12**, 44.
 - (16) (a) A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7; (b) A. L. Spek, PLATON, A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands, 2002.
- (17) C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler and J. V. D. Streek, *J. Appl. Cryst.*, 2006, **39**, 453.
- (18) (a) L. Zhu, Z, Yuan, J. T. Simmons and K. Sreenath, *RSC Adv.*, 2014, 4, 20398; (b) J. Liu, H. B. Zhang, Y. X. Tan, F. Wang, Y.
- Kang and J. Zhang, *Inorg. Chem.*, 2014, **53**, 1500; (c) Y. Cui, Y. Yue, G. Qian and B. Chen, *Chem. Rev.* 2012, **112**, 1126.
 - (19) (a) V. Kumar, V. Singh, A. N. Gupta, K. K. Manar, G. B. Drew and N. Singh, *CrystEngComm*, 2014, DOI: DOI:
- ⁶⁰ 10.1039/C4CE00510D; (b) P. C. Cheng, P. T. Kuo, Y. H. Liao, M. Y. Xie, W. Hsu and J. D. Chen, *Cryst. Growth Des.*, 2013, 13, 623; (c) D. Sun, S. Yuan, H. Wang, H. F. Lu, S. Y. Feng and D. F. Sun, *Chem. Commun.*, 2013, 49, 6152.

RSC Advances

For Table of Contents Use Only

Table of Contents Graphic and Synopsis

Syntheses, Structures, and Luminescence Properties of Four Metal-Organic Polymers With Undocumented Topologies Constructed From 3,5-Bis((4'carboxylbenzyl)oxy)benzoate Ligand

Xiutang Zhang, Liming Fan, Weikuo Song, Weiliu Fan, Liming Sun, Xian Zhao

¹⁰ Four 3D coordination architectures were obtained based on a new flexible ligand of 3,5-bis((4'-carboxylbenzyl)oxy)benzoic acid (H₃bcb) under hydrothermal conditions. With the modulation of ancillary ligand 1,4-bib, intriguing structural transformation from 6-connected ($4^{8} \cdot 6^{7}$) to (3,5)-connected ($4 \cdot 6 \cdot 8$)($4 \cdot 6^{4} \cdot 8^{5}$) took place.

15