RSC Advances

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This *Accepted Manuscript* will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms & Conditions and the Ethical quidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

ARTICLE TYPE

Molten salt synthesis of tin doped hematite nanodiscs and their enhanced electrochemical performance for Li-ion batteries

Rencheng Jin,^a * LiXia Yang,^a Guihua Li,^a and Gang Chen^b

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX ⁵**DOI: 10.1039/b000000x**

 Sn^{4+} doped Fe₂O₃ (hematite) nanodiscs have been synthesized by a facile mixed molten salt method. The structure, morphology and compositions of the products are characterized by X-ray diffraction (XRD), filed emission scanning electron microscope (FESEM), transmission electron microscopy (TEM), X-ray photoelectron spectrometer (XPS) and inductively coupled plasma (ICP). According to the time

- 10 dependent experimental results, the formation mechanism of the Sn^{4+} doped $Fe₂O₃$ nanodiscs is discussed. The electrochemical properties of the $Fe₂O₃$ nanodiscs as an anode material are investigated in terms of their reversible capacity, and cycling performance for lithium ion batteries. The Sn⁴⁺ doped Fe₂O₃ nanodiscs (5% Sn) exhibit a reversible capacity of 899 mAh g^{-1} at a current density of 100 mA g^{-1} after 100 cycles. Even at 1000 mA g^{-1} , the reversible capacity of the nanodiscs still remains 490 mAh g^{-1} . The
- ¹⁵improved electrochemical performance is ascribed to the introduction of Sn element, which decreases charge transfer resistance, enhances Li ion diffusion velocity, and thus improves its cycling and high-rate capability. These results suggest the promising application of the Sn^{4+} doped $Fe₂O₃$ nanodiscs in lithium ion batteries.

1. Introduction

- ²⁰Nowadays, Lithium-ion secondary batteries (LIBs) are widely required in industrial and civil applications. However, the graphite currently used as commercial LIBs has low theoretical capacity (372 mAh g-1) , which can not fully meet the requirement for batteries with high energy density. Therefore,
- ²⁵exploring new anode materials with high performance to replace graphite is of importance for the development of LIBs. Transition metal oxides such as $NiO² CoO^{3, 4} SnO⁵⁻⁷ FeO⁸ have attracted$ intense attention as promising anode materials for the next generation of LIBs due to their high capacities of 2-3 times
- ³⁰higher than that of graphite. Unfortunately, these anode materials generally suffer from a rapid capacity fading due to the large volume changes and stresses during the conversion reactions and/or the low electronic conductivity. To solve these problems, many strategies including morphology modification, $7-10$ doping
- 35 foreign ions, $11, 12$ formation carbon or graphene composites $13-16$ and surface engineering $17-19$ are carried out. Among them, doping foreign ions is more suitable and promising for the practical application of LIBs.

Among those transition metal oxides, iron oxides of $Fe₃O₄$ and $40 \text{ Fe}_2\text{O}_3$ are considered to be promising anode materials because of their advantages of low cost, abundant resource, environmental friendliness, high theoretical capacities.²⁰⁻²⁴ However, they are still hindered by their poor cycling performance. To improve the cycling stability of the iron oxide electrodes, different methods

45 such as forming composites with carbon materials, $25-27$ synthesizing nanostructured iron oxides (nanoparticles,²⁸) nanorods,²⁰ nanowires,²⁹ nanotubes,^{30, 31} nanoplates^{32, 33} and

nanodiscs 34) are performed. Although there are many reports on the synthesis and electrochemical properties of iron oxides, less ⁵⁰work has been focused on the synthesis and electrochemical properties of foreign ions doped iron oxides.³¹

Molten salt method, a one-pot, low cost, and envirmental benign method, has been widely used to prepare various metal oxides including Fe₂O₃,³⁵ CuO₂³⁶ Co₃O₄,³⁷ SnO₂,³⁸ TiO₂,³⁹ ZnCO₂O₄,⁴⁰ $55 \text{ CuCo}_2\text{O}_4{}^{41}$ and etc. Compared to other synthesis method, molten salt method is amenable to large-scale synthesis and the salt(s) can be recovered for re-use. In addition, no toxic reagent/surfactant was used in this method. Here in this work, we report a facile molten salt route to synthesize Sn^{4+} doped Fe₂O₃ 60 nanodiscs in a mixed salt of NaCl: KCl. As expected, the asprepared Sn^{4+} doped $Fe₂O₃$ nanodiscs exhibited high reversible capacity, good cycling stability, and high rate capability. In addition, the formation mechanism of $Sn^{4+}Fe₂O₃$ nanodiscs was proposed according to the time dependent experimental results.

⁶⁵**2. Experimental Section**

2.1. Preparation of Sn4+ doped Fe2O³ nanodiscs

All the chemicals were of analytical grade and used without further purification. In the typical procedure, 0.808 g of $Fe(NO₃)₃$, different amount of SnCl₄, and 10 g of mixed salts (the ⁷⁰mass ratio of NaCl/KCl is equal to 5/5, which is the ratio of its eutectic point) were added in the agate mortar and grinded for 45 min. Then the mixed precursor was placed in an alumina crucible and held in a box furnace at 550 $^{\circ}$ C for 8 h. After the molten salt reaction, the alumina crucible was cooled down naturally to room

temperature. Then the mixed salts were removed by washing with distilled water for several times. The brick red samples were collected and dried in a vacuum at 80° C for 12 h.

2.2. Characterization

- ⁵The obtained products were characterized by X-ray diffraction (XRD) on a Rigaku D/Max-2550pc powder diffractometer equipped with Cu Ka radiation (λ =1.54Å, scanning rate=4° min⁻ ¹). The morphology of the samples was detected by field emission scanning electron microscopy (FESEM, FEI Quanta 200F) and
- 10 transmission electron microscopy (TEM, FEI Tecnai G2 S-Twin). The X-ray photoelectron spectrometer (XPS) was performed on Axis Ultra Photoelectron Spectrometer with an excitation source of Mg-Al radiation. The composition of the product was characterized by inductively coupled plasma (ICP, NexION 300, ¹⁵America).

2.3. Electrochemical Measurement

 The electrochemical tests of the as-prepared samples were carried out using coin-type cells assembled in an argon-filled glove box. A composite electrode was prepared by mixing $Fe₂O₃$

- ²⁰nanodiscs, polyvinylidene fluoride (PVDF), and carbon black with weight ratio of 70:15:15 in n-methyl pyrrolidinone (NMP) solvent. After stirring the mixture for 6 h, the homogenous slurry was spread uniformly on copper foil substrates by the doctor blade technique and then the electrode was dried in a vacuum at
- 25 120 °C overnight. The metallic lithium was used as the counter/reference electrode, a mixture of 1 M LiPF6 in ethylene carbonate and dimethyl carbonate (1: 1 weight) as the electrolyte and the Celgard 2400 film as the separator. Charge-discharge measurements were performed on NEWWARE battery test ³⁰system at different current density over a voltage range of 0.01 to
- 3 V. The electrochemical impedance behavior of the electrodes was carried out on CHI660C electrochemical workstation (0.1V).

3. Results and discussion

Fig.1 XRD pattern of Sn^{4+} doped Fe₂O₃ nanodiscs obtained at 550 °C in the mixed molten salt.

The XRD pattern of the product obtained at 550 $^{\circ}$ C (mole 50 ration, Fe/Sn=1.9 mmol/0.1 mmol) is shown in Fig.1, all the diffraction peaks match well with rhombohedral $Fe₂O₃$ (JCPDS No. 33-0664). No other peaks such as $SnO₂$ can be detected, demonstrating that the prepared product is pure. The FESEM images of the as-synthesized Sn^{4+} doped $Fe₂O₃$ structure are

- ⁵⁵ presented in Fig. 2. The products consist of numerous nanodiscs, and some nanoparticles can be occasionally observed (Fig. 2a). The nanodiscs are about 400 nm in diameter and \sim 100 nm in thickness as illustrated in Fig. 2b. Energy dispersive X-ray spectrometer (EDS) measurement reveals that three elements Fe,
- ⁶⁰Sn, O with mole ratio of 52.1: 1.8: 42.4 exist in the products (Fig. S1). This indicates that Sn^{4+} ions can be doped in the Fe₂O₃ nanodiscs. The TEM analysis further reveals that the obtained products are composed of nanodiscks with the diameter of about 400 nm (Fig. 2c). The corresponding selected area electron
- ⁶⁵diffraction (SAED) pattern in the inset of Fig. 2d shows an array of spots with a sixfold rotational symmetry, which indicates the single crystalline of the Sn^{4+} doped nanodiscs. The high crystallinity of the present $Fe₂O₃$ can be obviously observed from the high resolution TEM (HRTEM) image in Fig. 2d. The lattice
- ⁷⁰fringes of nanocrystalline can be seen clearly from the HRTEM image with a spacing of about 0.251 nm, corresponding to the interplanar distance of (110) crystal planes of the Fe₂O₃. Considering the HRTEM and the SAED pattern of the $Fe₂O₃$ nanodiscs, the most exposed facet of the $Fe₂O₃$ nanodiscs is the ⁷⁵(001) facet.

- 95 Fig. 2 FESEM images at low (a) and high (b) magnification of the Sn^{4+} doped Fe₂O₃ nanodiscs obtained at 550^oC in the mixed molten salt, (c) TEM image of the obtained Sn^{4+} doped Fe₂O₃ nanodiscs, (d) HRTEM image from the edge of the Sn^{4+} doped Fe₂O₃ nanodiscs, inset: the corresponding SAED pattern of the single Sn^{4+} doped Fe₂O₃ nanodisc.
- 100 In order to reveal the surface chemical compositions and the valence states of various species of obtained samples, the XPS analysis was performed. The full XPS spectrum in Fig. 3a confirms that the obtained sample contains elements of Fe, O, Sn and adventitious C. Fig. 3b shows the high resolution spectra of 105 Fe 2p for Sn^{4+} doped Fe₂O₃. The binding energy peak at 710.8 eV corresponds well with Fe 2p3/2, and the binding energy peaks at 724.4 and 719.2 eV are in agreement with the Fe 2p1/2 and the shake-up satellite structure, respectively. The observed values for the binding energy are close to the reported value of $Fe³⁺$, which 110 matches well with previous literature.⁴² As presented in Fig. 3c, the peaks at binding energy of 487.1 eV and 495.5 eV can be

attributed to Sn 3d5/2 and Sn 3d3/2, respectively. The binding

energy for Sn 3d5/2 centered around 487.3 eV revealed that the tin was in the Sn^{4+} state.⁴³ This indicates that tin element can be doped in the $Fe₂O₃$ nanodiscs. In addition, the spectrum of O 1s in $Fe₂O₃$ shows three peaks with binding energies at 530.2 eV, 5532.2 eV, and 533.4 eV, respectively.⁴²

To further investigate Sn^{4+} doped $Fe₂O₃$, the XRD patterns of samples with different amount of Sn^{4+} were carried out. When no $SnCl₄$ was added in the reaction system, pure $Fe₂O₃$ was obtained (Fig. 4a). When the mole ratio of Sn/Fe was equal to 0.08, $SnO₂$

- 10 (JCPDS No. 41-1445) was fabricated except the Fe₂O₃. The enlarged XRD pattern shown in Fig. 4b demonstrated that the diffraction spectra for Fe₂O₃ crystals shift to smaller 2 θ angles compared to those for pure $Fe₂O₃$. The result further proved that the Sn^{4+} ions could be doped in $Fe₂O₃$ nanodiscs. It should point
- 15 out that the morphology of products was not changed when Sn^{4+} was added in the reaction system. The elemental contents of Fe and Sn of all the samples detected by inductively coupled plasma (ICP) are shown in Table 1. The atomic ratios of Fe to Sn are close to the rate of charge.

Fig. 3 XPS spectra for (a) survey, (b) Fe 2p, (c) Sn 3d, (d) O 1s of the Sn^{4+} doped $Fe₂O₃$ nanodiscs.

Fig. 4 XRD patterns of the products obtained with addition of different amount of Sn.

- ⁵⁰A series of time-dependent experiments were performed in order to understand the formation process of Sn^{4+} doped $Fe₂O₃$ nanodiscs. The samples collected at different time intervals were examined by FESEM. As shown in Fig. 5a and b, some irregular thinner nanodiscs with rough surfaces formed after reaction for 2
- ⁵⁵h. And some nanoparticles can be observed. After reaction for 4 h, the nanoparticles decreased individually and the nanodiscs became more regular. Simultaneously, the thickness of the

nanodiscs increased, as can be seen in Fig. 5c. When the reaction time was further prolonged to 6 h, almost all the irregular ⁶⁰nanoparticles disappeared with further increasing the thickness of the Sn^{4+} doped $Fe₂O₃$ nanodiscs (Fig. 5d). According to the above experimental results and analysis, the whole morphology evolution process of the Sn^{4+} doped $Fe₂O₃$ nanodiscs is proposed. Such a process involves a fast nucleation of primary particles

65 Table 1 Composition of the $Sn^{4+}Fe₂O₃$ nanodiscs obtained with addition of different amount of Sn.

Sample	Rate of charge (Fe:Sn, mmol)	Fe:Sn
А	2:0.04	1:0.021
В	1.9:0.1	1:0.046
\subset	1.8:0.15	1:0.081

accompanied by an oriented attachment and Ostwald ripening process. The hematite crystal has a rhombohedrally centered ⁷⁰hexagonal structure of the corundum type with a close-packed lattice in which two thirds of the octahedral sites are occupied by Fe3+ ions.³⁴ Compared with other planes of (100) , (110) , (012) , (104), the (001) planes of $Fe₂O₃$ have the larger packing density. As we know, the close-packed facets are considered as the most ⁷⁵stable facets for different types of crystals, and also tend to be the most exposed facets of the crystals in many cases. Therefore, the oriented growth of $Fe₂O₃$ nanodiscs is of thermodynamically preferred. And the Ostwald ripening can not be omitted. As the Ostwald ripening process proceeds, the smaller nanoparticles 80 adsorbed around the $Fe₂O₃$ nanodiscs are consumed and grew gradually to make the nanodiscs much thicker.

Fig. 5 Low- and high-magnified SEM images of the as-synthesized products collected at different time intervals (a, b) 2 h, (c) 4 h, (d) 6 h.

Fig. 6a shows the charge and discharge curves of the Sn^{4+} doped $Fe₂O₃$ nanodiscs (0.05% Sn) for the first, second, and five 105 cycles at 100 mA g^{-1} between 0.01 and 3.0 V (vs. Li/Li⁺). For the prepared Sn^{4+} doped $Fe₂O₃$ nanodiscs, the first voltage plateau at

approximately 0.9 V may be attributed to the consumption of 1.8 moles $Fe₂O₃$ in the Li-intercalated process. The second voltage plateau at about 0.75 V indicates the reduction of Fe ions to form nanometer-sized $Fe⁰$ and amorphous $Li₂O$, and the nanometers sized Fe⁰ can convert to Fe₂O₃ during charge process. Similar results can be observed in the previous reports.⁴⁴⁻⁴⁶ According to

the above discussion, the overall charge-discharge reaction of $Fe₂O₃$ may be explained in following way: $Fe₂O₃+Li⁺+e⁻ \leftrightarrow Li_xFe₂O₃ (x=1.8)$ (1)

 $\text{Li}_{1.8}\text{Fe}_2\text{O}_3 + 4.2\text{Li}^+ + 4.2\text{e} \leftrightarrow 2\text{Fe} + 3\text{Li}_2\text{O}$ (2) $2Fe + 3Li_2O \leftrightarrow Fe_2O_3 + 6Li^+ + 6e$ (3)

During the discharging process, a high specific capacity of 1390 mAh g-1 is delivered in the 1st Li intercalation process. In the second discharge, the discharge capacity of the electrode 15 decreases to 1005 mAh g-1, which may be attributed to the formation of solid electrolyte interface (SEI) film and further lithium consumption via interfacial reactions due to the charge separation at the metal/Li₂O phase boundary.⁴⁷ After 100th cycle, the $Fe₂O₃$ nanodiscs still deliver a reversible discharge capacity

²⁰as high as 899 mAh g-1 (Fig. 6b), demonstrating a superior

Fig. 6 (a) Charge-discharge voltage profiles of the Sn^{4+} doped Fe₂O₃ nanodiscs electrode for the first, second and fifth cycles at a current 40 density of 100 mA g-1, (b) Cycling performance of the Sn^{4+} doped $Fe₂O₃$ nanodiscs with different amount of Sn element at the current density of 100 mA g-1, (c) Cycling performance $Sn^{4+}Fe₂O₃$ electrode at different current rates, (d) Nyquist plots of the $Fe₂O₃$ nanodiscs.

charge/discharge cycling stability. It should point out that the ⁴⁵specific capacity of the electrode decreases slightly during the first 35 cycles and then increases to a constant value. Similar behavior arose from an activation process has been observed in other $Fe₂O₃$ electrodes.⁴⁸⁻⁵⁰ They demonstrate that the SEI layer formed during the charge and discharge process, such as ethylene

- ⁵⁰carbonate (EC) and dimethyl carbonate (DMC), and the polymeric gel-type layer. And the layer can alleviate the volume swing of the electrode. $48,51$ Due to the existence of the polymeric gel-type layer, the capacity of $Fe₂O₃$ nanodiscs increases. In addition, the surface can not be covered by the polymeric layer
- ⁵⁵during the initial cycling stage. That is, the polymeric surface layer builds up slowly during the Li insertion/extraction process. Thus, the discharge capacity of the Sn^{4+} doped $Fe₂O₃$ nanodiscs increases after 35 cycles. Fig. 6b compares the cycling stability of the Sn^{4+} doped $Fe₂O₃$ nanodiscs with different amount of Sn

 60 element at the current density of 100 mA g-1. As shown in Fig. 6b, the capacity of pure phase $Fe₂O₃$ electrode decreases slowly to 485 mAh g-1 after 100th cycles. While the Sn^{4+} doped $Fe₂O₃$ nanodiscs still retain a discharge capacity of over 730 mAh g-1 after 100th cycles. The improvement in cycling stability could be ⁶⁵attributed to the introduction of Sn element, which induces much higher conductivity for the electrode. The 5% Sn^{4+} doped Fe₂O₃ nanodiscs shows the highest discharge capacity and cycle stability at 100 mA g-1 among all the samples. Different discharge rates from 100-1000 mA g-1 are applied to investigate 70 the high-rate capability of the samples. The cycling performances of the Sn^{4+} doped $Fe₂O₃$ nanodiscs (5% Sn) at different current densities are shown in Fig. 6c. Clearly, the capacity gradually degrades with the increase of current density. But cycle specific capacity still remains 490 mAh g-1 at higher current density of

 751000 mAh g-1. The enhanced electrical conductivity of the electrodes was further verified by EIS measurements. All the electrodes' plots depict a semicircle at middle frequencies region and a straight sloping line in the low frequencies region. The semicircle represents charge-transfer impedance (Rct), while the

⁸⁰inclined line is assigned to the lithium-ion diffusion processes (Warburg impedance, W).⁵²⁻⁵⁴ The electrode with smaller the diameter of the semicircle represents the smaller charge transfer resistance. The results in Fig. 6d presents that the addition of Sn element increases the conductivity of the $Fe₂O₃$ nanodiscs and 85 also decreases the charge-transfer impedance.

4. Conclusions

In summary, Sn^{4+} doped $Fe₂O₃$ nanodiscs (400 nm in diameter and 100 nm in thickness) have been synthesized under a facile molten salt route. The mechanistic study unravels that the ⁹⁰oriented attachment mechanism and the Ostwald ripening process take turns to dominate the fabrication of all the products in different reaction time periods. The investigation of the battery performance shows that the Sn^{4+} doped $Fe₂O₃$ nanodiscs exhibit a reversible discharge capacity as high as 899 mAh g-1 after 100 ⁹⁵cycles at current density of 100 mA g-1, which is much higher than the pure phase $Fe₂O₃$ nanodiscs (485 mAh g-1). Even at 1000 mA g-1, the reversible capacity of the Sn^{4+} doped $Fe₂O₃$ nanodiscs could still keep at 490 mAh g-1. Therefore, the Sn doping is an effective approach to achieve excellent 100 electrochemical performance for the $Fe₂O₃$ anode material.

Acknowledgement

This work was supported by the Natural Science Foundation of China (Project no. 21301086 and 51102128), Natural Science Foundation of Shandong Province (Project no. ZR2013BQ008), 105 and Talent Introduction Fund of Ludong University (Project no. LY2013014).

Notes and references

a School of Chemistry & Materials Science, Ludong University, Yantai 264025, P. R. China. E-mail: jinrc427@126.com; Fax: +86 535 ¹¹⁰*6696162; Tel: +86 535 6696162*

b Department of Chemistry, Harbin Institute of Technology, Harbin 150001, P. R. China.

† Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/b000000x/

- ‡ Footnotes should appear here. These might include comments relevant ⁵to but not central to the matter under discussion, limited experimental and spectral data, and crystallographic data.
- 1 A. Name, B. Name and C. Name, *Journal Title*, 2000, **35**, 3523; A. Name, B. Name and C. Name, *Journal Title*, 2000, **35**, 3523.
- ¹⁰1. Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa and T. Miyasaka, *Science,* 1997, **276**, 1395-1397.
	- 2. W. Wen, J.-M. Wu and M.-H. Cao, *J. Mater. Chem. A*, 2013, **1**, 3881-3885.
- 3. G.-P. Kim, S. Park, I. Nam, J. Park and J. Yi, *J. Mater. Chem. A*, ¹⁵2013, **1**, 3872-3876.
- 4. X. Wang, X.-L. Wu, Y.-G. Guo, Y. Zhong, X. Cao, Y. Ma and J. Yao, *Adv. Funct. Mater.*, 2010, **20**, 1680-1686.
- 5. Y. Chen, J. Ma, Q. Li and T. Wang, *Nanoscale*, 2013, **5**, 3262-3265.
- 6. Q.-G. Shao, W.-M. Chen, Z.-H. Wang, L. Qie, L.-X. Yuan, W.-X.
- ²⁰Zhang, X.-L. Hu and Y.-H. Huang, *Electrochem. Commun.*, 2011, **13**, 1431-1434.
- 7. Y. J. Hong, M. Y. Son and Y. C. Kang, *Adv Mater*, 2013, **25**, 2279- 2283.
- 8. J. Ma, X. Zhang, K. Chen, G. Li and X. Han, *J. Mater. Chem. A*, ²⁵2013, **1**, 5545-5553
	- 9. M. Y. Son, Y. J. Hong and Y. C. Kang, *Chem. Commun.*, 2013, **49**, 5678-5680.
- 10. Z. Bai, N. Fan, C. Sun, Z. Ju, C. Guo, J. Yang and Y. Qian, *Nanoscale*, 2013, **5**, 2442-2447.
- ³⁰11. H. Yu, X. Rui, H. Tan, J. Chen, X. Huang, C. Xu, W. Liu, D. Y. W. Yu, H. H. Hng, H. E. Hoster and Q. Yan, *Nanoscale*, 2013, **5**, 4937-4943.
	- 12. X. Sun, Y. Xu, M. Jia, P. Ding, Y. Liu and K. Chen, *J. Mater. Chem. A*, 2013, **1**, 2501-2507.
- ³⁵13. C. Nethravathi, C. R. Rajamathi, M. Rajamathi, U. K. Gautam, X. Wang, D. Golberg and Y. Bando, *ACS Appl. Mater. Interfaces*, 2013, **5** 2708-2714.
- 14. S.-H. Yu, D. E. Conte, S. Baek, D.-C. Lee, S.-K. Park, K. J. Lee, Y. Piao, Y.-E. Sung and N. Pinna, *Adv. Funct. Mater.*, 2013, **23**, 4293-4305.
- 15. P. Wang, M. Gao, H. Pan, J. Zhang, C. Liang, J. Wang, P. Zhou and Y. Liu, *J. Power Sources*, 2013, **239**, 466-474.
- 16. A. Bhaskar, M. Deepa and T. N. Rao, *ACS Appl. Mater. Interfaces*, 2013, **5** 2555-2566.
- ⁴⁵17. L.-L. Xing, C.-X. Cui, P. Deng, Y.-X. Nie, Y.-Y. Zhao, B. He and X.-Y. Xue, *RSC Adv.*, 2013, **3**, 10379-10384.
	- 18. Q.-q. Xiong, J.-p. Tu, X.-h. Xia, X.-y. Zhao, C.-d. Gu and X.-l. Wang, *Nanoscale*, 2013, **5**, 7906-7912.
- 19. Y. Feng, R. Zou, D. Xia, L. Liu and X. Wang, *J. Mater. Chem. A*,
- ⁵⁰2013, **1**, 9654-9658.
- 20. C. Wu, P. Yin, X. Zhu, C. Ou Yang and Y. Xie, *J. Phys. Chem. B*, 2006, **110**, 17806-17812.
- 21. B. T. Hang, S. Okada and J. Yamaki, *J. Power Sources*, 2008, **178**, 402–408.
- ⁵⁵22. J. Chen, L. Xu, W. Li and X. Gou, *Adv. Mater.*, 2005, **17**, 582-586.
	- 23. Y. Jiang, D. Zhang, Y. Li, T. Yuan, N. Bahlawane, C. Liang, W. Sun, Y. Lu and M. Yan, *Nano Energy*, 2014, **4**, 23-30.
- 24. A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon and W. V. Schalkwijk, *Nat. Mater.* 2005, **4**, 366-377.
- ⁶⁰25. Y. G. Zhu, J. Xie, G. S. Cao, T. J. Zhu and X. B. Zhao, *RSC Adv.*, 2013, **3**, 6787-6793.
	- 26. F. Zhang, T. Zhang, X. Yang, L. Zhang, K. Leng, Y. Huang and Y. Chen, *Energy Environ. Sci.*, 2013, **6**, 1623-1632.
- 27. J. Balach, H. Wu, F. Polzer, H. Kirmse, Q. Zhao, Z. Wei and J. Yuan, ⁶⁵*RSC Adv.*, 2013, **3**, 7979-7986.
	- 28. W. Zhou, L. Lin, W. Wei, H. Jin, J. Li and L. Guo, *RSC Adv.*, 2013, **3**, 7933-7937.
	- 29. A. G. Nasibulin, S. Rackauskas, H. Jiang, Y. Tian, P. R. Mudimela, S. D. Shandakov, L. I. Nasibulina, J. Sainio and E. I. ⁷⁰Kauppinen, *Nano Res.*, 2009, **2**, 373-379.
	- 30. K. K. Lee, S. Deng, H. M. Fan, S. Mhaisalkar, H. R. Tan, E. S. Tok, K. P. Loh, W. S. Chin and C. H. Sow, *Nanoscale*, 2012, **4**, 2958-2961.
- 31. X. Qi, G. She, M. Wang, L. Mu and W. Shi, *Chem. Commun.*, 2013, ⁷⁵**49**, 5742-5744.
	- 32. J. Ma, T. Wang, X. Duan, J. Lian, Z. Liu and W. Zheng, *Nanoscale*, 2011, **3**, 4372-4375.
	- 33. L. Wang, J. Ma, L. Chen, Z. Xu and T. Wang, *Electrochim. Acta* 2013, **113**, 194-199.
- ⁸⁰34. J. Lu, Q. Peng, Z. Wang, C. Nan, L. Li and Y. Li, *J. Mater. Chem. A*, 2013, **1**, 5232-5237.
	- 35. M.V. Reddy, C. T. Cherian, K. Ramanathan, K. C. W. Jie, T. Y. W. Daryl, T. Y. Hao, A. S., K. P. Loh and B. V. R. Chowdari, *Electrochim. Acta*, 2014, **118**, 75-80.
- ⁸⁵36. M. V. Reddy, C. Yu, F. Jiahuan, K. P. Loh and B. V. R. Chowdari, *ACS Appl. Mater. Interfaces*, 2013, **5**, 4361-4366.
	- 37. M. V. Reddy, Z. Beichen, K. P. Loh and B. V. R. Chowdari, *CrystEngComm*, 2013, **15**, 3568-3574.
- 38. M. V. Reddy, L. Y. T. Andreea, A. Y. Ling, J. N. C. Hwee, C. A. 90 Lin, S. Admas, K. P. Loh, M. K. Mathe, K. I. Ozoemena and B. V. R. Chowdari, *Electrochim. Acta* 2013, **106**, 143- 148.
	- 39. M. V. Reddy, S. Adams, G. T. J. Liang, I. FooMingze, H. V. T. An and B. V. R. Chowdari, *Solid State Ionics*, 2014, **262** 120-123.
- 40. M. V. Reddy, K. Y. H. Kenrick, T. Y. Wei, G. Y. Chong, G. H. ⁹⁵Leong and B. V. R. Chowdari, *J. Electrochem. Soc.*, 2011, **158** A1423-A1430
	- 41. M. V. Reddy, C. Yu, F. Jiahuan, K. P. Loh and B. V. R. Chowdari, *RSC Adv.*, 2012, **2**, 9619-9625.
- 42. H. Lv, L. Ma, P. Zeng, D. Ke and T. Peng, *J. Mater. Chem.*, 2010, ¹⁰⁰**20**, 3665-3672.
	- 43. R. Liu, S. Yang, F. Wang, X. Lu, Z. Yang and B. Ding, *ACS Appl. Mater. Interfaces*, 2012, **4**, 1537-1542.
	- 44. M. V. Reddy, G. V. Subba Rao and B. V. R. Chowdari, Chem. Rev., **113**, 5364-5457.
- ¹⁰⁵45. M. V. Reddy, T. Yu, C.-H. Sow, Z. X. Shen, C. T. Lim, G. V. Subba Rao and B. V. R. Chowdari, *Adv. Funct. Mater.*, 2007, **17**, 2792-2799.
- 46. C. T. Cherian, J. Sundaramurthy, M. Kalaivani, P. Ragupathy, P. Suresh Kumar, V. Thavasi, M. V. Reddy, C. H. Sow, S. G. ¹¹⁰Mhaisalkar, S. Ramakrishna and B. V. R. Chowdari, *J Mater Chem.*, 2012, **22**, 12198-12204.
	- 47. G. Gao, Q. Zhang, K. Wang, H. Song, P. Qiu and D. Cui, *Nano Energy*, 2013, **2**, 1010-1018.

- 48. J. Zhu, Z. Yin, D. Yang, T. Sun, H. Yu, H. E. Hoster, H. H. Hng, H. Zhang and Q. Yan, *Energy Environ. Sci.*, 2013, **6**, 987-993.
- 49. J. Zhu, T. Zhu, X. Zhou, Y. Zhang, X. W. Lou, X. Chen, H. Zhang, H. H. Hng and Q. Yan, *Nanoscale*, 2011, **3**, 1084-1089
- ⁵50. Y.-M. Lin, P. R. Abel, A. Heller and C. B. Mullins, *J. Phys. Chem. Lett.* , 2011, **2**, 2885-2891.
- 51. X. Wang, X.-L. Wu, Y.-G. Guo, Y. Zhong, X. Cao, Y. Ma and J. Yao, *Adv. Funct. Mater.*, 2010, **20**, 1680-1686. .
- 52. N. Sharma, J. Plevert, G. V. Subba Rao, B. V. R. Chowdari and T. 10 **J. White,** *Chem. Mater.***, 2005, 17, 4700.**
- 53. M. S. Park, Y. M. Kang, G. X. Wang, S. X. Dou and H. K. Liu, *Adv. Funct. Mater.*, 2008, **18**, 455.
- 54. H. Shu, X. Wang, Q. Wu, B. Hu, X. Yang, Q. Wei, Q. Liang, Y. Bai, M. Zhou, C. Wu, M. Chen, A. Wang and L. Jiang, *J. Power* ¹⁵*Sources*, 2013, **237**, 149-155.

TOC

Sn⁴⁺ doped α -Fe₂O₃ nanodiscks with good lithium storage properties have been prepared by a melton salt method.

