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Synthesis of zeolite from multilayer food packing and 

sugar cane bagasse ash for CO2 adsorption 
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The X/A zeolite crystals mixtures were synthesized using sugar cane bagasse ash (SCBA) as a silicon 

source and multilayer food packing (MFP) as an aluminum source under hydrothermal conditions at 80 

°C for 79-296 hours. The silicon was extracted by alkaline fusion for 40 min at 550°C with an 

alkali/SCBA weight ratio of 1:1. The aluminum solution was obtained from MFP using NaOH 1M (3:1 

water/acetone) solution. The synthesized zeolites were analyzed by XRD, FTIR, SEM, and BET. In the 

XRD results, most of the signals were indexed to zeolite X, and some signals were indexed to zeolite A. 

The vibration bands at region 1200-400cm-1 suggested the presence of the double-six-ring (D6R) zeolite 

X structure. The crystal morphology is characteristic of the zeolite X, and the specific area found by the 

BET method was 810.47 m2/g. The zeolite with the higher specific area was applied in the CO2 

adsorption process until it reached 25 bar by the gravimetric method. The experimentally adsorbed 

amounts were adjusted with the Langmuir, Freundlich, and Toth models. 
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Introduction  

 Zeolites are aluminosilicates of the alkaline and alkaline-
earth metals with porous framework structures of corner-
sharing SiO4 and AlO4 tetrahedral. Many industries use these 
materials, and decreasing production costs are relevant. One of 
the promising strategies to prepare zeolites at a low cost is to 
replace commercial chemicals with waste products as the 
starting precursor.1 The disposal of large amounts of sugarcane 
bagasse ash and multilayer food packing has become a serious 
environmental problem. However, these solid wastes can be 
used in the zeolite synthesis process.  
 Sugar cane bagasse is a hazardous solid waste generated in 
large amounts in sugar mills. Combustion of sugar cane bagasse 
in boilers, used for steam and electricity generation, produces a 
great amount of another solid waste, denominated sugar cane 
bagasse ash (SCBA).2 Employing this quartz-abundant waste as 
a silicon source can avoid its accumulation.3 
 The food packaging industry needs to develop multilayer 
films containing different polymers. Multilayer films may be 
manufactured by lamination or co-extrusion. These physical 
processes combine polymers into a film with special chemical, 

physical, and mechanical properties.4,5 Another material that is 
used in these packages is aluminum, which protects food from 
the effects of sunlight and ultraviolet radiation.6 A single 
medium-sized food packaging factory, for instance, produces 
about 8 tons monthly of parings of multilayer films containing 
aluminum. These films are gathered in the factory or turned 
into waste. Thus, the future of multilayer packages has become 
a great environmental concern.  
 Many researchers have used waste as a low-cost source of 
silicon and aluminium to produce zeolites. Different types of 
zeolites such as X,7-9 ZSM-5,10 hydroxysodalite,7,11 Na-P1,12,13 
and zeolite A3,14 were synthesized through many methods. 
Considering this, zeolite synthesis using solid waste as 
aluminium and silicon sources is a promising technique to 
recycle these wastes. This green strategy has received extensive 
attention over the last decade. 
 On the other hand, greenhouse gases are considered the 
cause of the global temperature increase, and this has attracted 
attention to the need to develop strategies to decrease carbon 
dioxide (CO2) emissions.15 The most commonly used 
techniques for CO2 capture and separation from fuel gases 
include the ammonium absorption process,16 dual-alkali 
absorption,17 the membrane separation process,18,19 and 
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adsorption on solid adsorbents.20-24 Intense research is currently 
focused on the design of new and effective CO2 adsorbents. 
The main challenge for greenhouse gas adsorption is to find a 
way to decrease the cost of the process and to make it more 
attractive than other market technologies. Therefore, CO2 
capture based on cheap technology with great potential for 
reducing the global cost of the sorbents is a very promising 
alternative for the future.25,26 
 One of the promising strategies to prepare low-cost sorbents 
is the replacement of commercial chemicals with waste 
products as the starting precursor.27 Furthermore, the disposal 
of large amounts of sugar cane bagasse ash and multilayer food 
packing has become a serious environmental problem. 
Considering this, zeolite synthesis can be adopted as a 
promising technique for recycling these wastes and has 
received extensive attention over the last decade. 
 The purpose of this study was to synthesize zeolite using 
SCBA as a silicon source and MFP as an aluminum source and 
apply this green, low-cost zeolite in the CO2 adsorption process 
by the gravimetric method at high pressure. This research 
demonstrates the potential of SCBA and MFP extract to be used 
as a reliable silica and aluminum source for preparing zeolites 
for CO2 capture. 
 

Experimental 

 
Zeolite synthesis: The sugar cane bagasse ash (SCBA) was 
collected from the sugar cane industry located in the region of 
Maringá City, Paraná, Brazil. We placed the quartz material in 
a horizontal furnace and heated it in air at 20 oC/min from room 
temperature to 600°C and kept it for 4 h (SCBA600). Previous 
work has shown the characterization of these materials.3 The 
silicon solution from SCBA was obtained via alkaline fusion 
treatment with NaOH at 773 K and a molar ratio of 1:1.5 
(SCBA:NaOH) for 40 minutes. The solid resultant was diluted 
using distilled water (solution 1). The multilayer food packing 
was obtained from Inovaflex Rótulos e Etiquetas (Maringá, PR 
– Brazil). The parings of multilayer film containing 19±1.0 
wt% of PET, 47 ± 1.0 wt% of PE, and 34 ± 1.0 wt% of Al were 
cut to 20×30 mm. Treating MFP with NaOH yielded the 
aluminum solution 1 mol/L (3:1 water/acetone) after 24 hours. 
After silicon and aluminum extraction, both solutions were 
mixed in the molar ratio 1SiO2:0.4Al2O3:3.3Na2O:173.8H2O. 
We transferred the mixture (2.0 L) to 10 polypropylene reactors 
(0.2 L each) and kept them at 80 °C for different crystallization 
periods (79, 121, 149, 163, 212, 235, 247, 272, 284, and 296 
hours). Then, the solid was separated by filtration, washed with 
distilled water, and dried overnight at 100 °C. 
Characterization: The zeolites were characterized by Fourier 
transform infrared spectrometry (Bomem-Michelson MB-100 
with a resolution of 4 cm−1 using a KBr disc method). XRD 
analysis (Shimadzu, model XRD-6000 X-ray operated at 40 kV 
and 40mA, with Cu Kα (1,54Å) as the radiation source, 
diffraction angle - 2Ө - in the range 4o - 60o). The relative 
crystallinity was calculated using the area of diffraction signals 
localized in 2Ө = 6, 10 15, 23, 26, and 31o. Scanning electron 
microscopy (SEM) (Shimadzu SSX-550 Superscan) 
characterized the morphology and the N2 adsorption/desorption 
isotherm at 77 K (ASAP 2020 – Micromeritcs). 
CO2 adsorption: Adsorption equilibrium studies were 
performed with zeolite synthesized for 149 hours due to its 
higher specific surface area. The mass measurement was 
achieved using a magnetic suspension balance from Rubotherm 
(Bochum, Germany). The adsorbent was degassed in situ at 573 

K until no mass variation was observed. Soon after, the 
measuring chamber was cooled down to the experiment 
temperature (298 K), and the gas pressure (CO2) was increased 
stepwise (until 25 bar). The mass variation at equilibrium (m) 
was recorded for each pressure step. For the selected sample, a 
previous experiment with helium was carried out to determine 
the specific volume of the solid phase and the sample container 
volume, characteristic of the suspended parts inside the 
chamber. The sum of these volumes was used to account for the 
buoyancy effects on measurements with the adsorbed phase. 
 For a given gas pressure P, the adsorbed phase 
concentration may be calculated according to Equation 128-30: 
 
mex(P, T)=∆m(P,T)+[(Vb + Vs)ρ(P,T)]   (1) 
 
where mex is the adsorption excess uptake (g/g sample), ∆m is 
the mass difference sensed by the equipment (g/g sample), Vb is 
the volume of the balance-suspended components (cm3), Vs is 
the specific volume of the sample (cm3/g sample), ρ is the gas 
density (g/cm3), P is the pressure (bar), and T is the temperature 
(K). 
 To clearly describe the CO2 adsorption behavior on the 
synthesized zeolite, the Toth, Freundlich, and Langmuir models 
were used to fit the isotherm using the software Origin 7.0®. 
The description of adsorption models and equations was 
described in Supplementary Information. 
  

Results and Discussion 

Figure 1 displays the X-ray diffraction patterns of zeolite 
synthesis for each period of time. The diffraction peaks were 
indexed to zeolite type X and A as indicated in the figure. These 
zeolites exhibit Pm-3m and Fd-3 space groups, respectively 
(standard pattern number 71-0784 and 85-2064 - ICDD database and 
standard pattern of International Zeolite Association - IZA). After 79 
h, X/A zeolite crystals mixtures were detected. Following the 
crystallization time, zeolitization increases until 149 h. After 149 h, 
crystallinity decreases, indicating an alkaline attack due to high 
crystallization time. This can be observed in the main signals to 
zeolite X (localized in 6, 10 15, 23, 26, and 31o - 2 theta degrees). 
The materials with higher relative crystallinity were 149, 163, 212, 
and 247 h. However, the sample 247 h was ignorated to the 
adsorption test due to the long synthesis time. Available times verify 
Ostwald’s rule34: the crystalline phase did not change successively, 
indicating that increasing time would not obtain pure-phase zeolite 
X.  

Insert fig. 1 

Figure 2 presents the FTIR spectra of the zeolites as a function 
of the hydrothermal process period. Peaks in the lattice region of 
1200–400 cm-1 suggest the existence of zeolite X. The spectrum of X 
zeolite illustrates the presence of absorptions at 458, 559, 666, 746, 
and 974 cm.-1 The 974 cm-1 band is due to the Si–O–Al asymmetric 
stretching vibration mode of T–O bonds, (where T = Si or Al). The 
band at 746 cm-1 is due to the S4R T–O–T symmetric stretching, 
while the absorption at 559 cm-1 is attributed to D6R T–O–T 
symmetric stretching and is very close to the external vibration of 
double four-rings (D4R) in the zeolite A framework localized at 557 
cm.-1 The two bands at 666 and 458 cm-1are assigned to the Si–O–Al 
symmetric stretching and S4R symmetric bending modes, 
respectively. This band is slightly shifted and sharpens as the 
amorphous material transforms to crystalline zeolite. These results 
agree well with XRD and microscopy results. The OH band, related 
to deformational vibrations of adsorbed water molecules in zeolite 
channels, also appeared at about 1655 cm.-1 36 
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Insert fig. 2 

The SEM observations in Figure 3 surveyed the external 
morphology of synthesized zeolites in different periods. A well-
defined octahedral morphology is typical of zeolite X7-9 and 
appeared in hydrothermal synthesis at 79 hours. After 212 h, the 
corrosion surface set in, indicating an alkaline attack on the surface 
due to the high crystallization time. This evidence corroborates the 
XRD and FTIR results.  

Insert fig. 3 
The textural properties were determined using BET, t-plot, and 

Dubinin-Radushkevich methods.37 The specific surface area was 
used only for an internal comparison of the samples. The BET 
method obtained the total specific surface areas (we chose the linear 
region in the range of 0.004 < P/P0 < 0.04), which were 810.47 
m2/g, 767.38 m2/g, and 757.20 m2/g to materials 149 h, 163 h, and 
212 h, respectively, whereas the micropore areas determined by the 
t-plot method were 808.22 m2/g, 764.01 m2/g, and 755.41 m2/g, 
indicating that these materials are priority microporous. This fact is 
also clearly using an internal comparison between the micropore and 
the total pore volumes determined by the t-plot, Dubinin-
Radushkevich (DR), and BET methods (t-plot: 0.3062 cm3/g, 0.2870 
cm3/g, and 0.2840 cm3/g of micropores - DR: 0.3086 cm3/g, 0.2906 
cm3/g. 0.2869 cm3/g of micropores and total pore volume as 
determined by BET method were 0.3173 cm3/g, 0.3026 cm3/g, 
0.2915 cm3/g to materials 149 h, 163 h, and 212 h, respectively). The 
energy of nitrogen adsorption at 77 K was measured by the Dubinin-
Radushkevich method presenting ca. 38 KJ/mol, indicating a 
physisorption process. The zeolite at 149 h exhibits the higher 
specific area and micropore volume, corroborating with XRD results 
that indicate that the 149 h material presented higher relative 
crystallinity. This fact points to a potential application of this green 
material because zeolite X has a large pore size (7.3 Å) and a high 
cation exchange capacity (5 meqg-1), which make this zeolite an 
interesting molecular sieve and a high-cation exchange material.14 

Insert fig. 4 
Figure 5 shows the experimental CO2 adsorption isotherm and 

the adjustment with the three models on the zeolite prepared for 149 
h (Z-149) at 298 K at the pressures between 0 and 25 bar. It can be 
seen that the maximum adsorbed amounts of CO2 on the zeolite 
sample is close to 7 mmol/g. However, this amount is achieved up to 
3 bar pressure, indicating a fast saturation of the porous structure. 
This behavior at low pressure can be explained by the strong 
interaction between CO2 molecules and the Z-149 surface. In fact, 
the high-energy sites are first occupied by CO2 molecules [30]. The 
literature shows similar results for the amount of CO2 adsorbed in 
porous materials.38-44 Therefore, the results indicate that zeolite 
obtained from the sugar cane bagasse ash is a promising low-cost 
sorbent and has potential as an efficient gas-adsorption process. 

Insert fig. 5 
Table 1 shows the adjusted parameters of the Langmuir, Toth, 

and Freundlich models fitted on the CO2 adsorption isotherm at 293 
K. The CO2 adsorption can be better fitted by the Toth adsorption 
equation. The Toth isotherm assumes that adsorption occurs on a 
heterogeneous surface containing sites with different energy and 
availability for adsorption.28-30,32 In addition, when the affinity of the 
Toth constant b is larger, there is a stronger affinity of the adsorbate 
molecule toward the surface; in other words, the surface is covered 
by an organized layer of adsorbate molecules. 

Insert table 1 
In summary, the mechanism proposed for CO2 adsorption in 

zeolite from solid waste indicates that this process mostly occurs in 
the cavities because this 149 h is predominantly a microporous 
material, due to the demonstrated micropore-specific area of the 
808.22 m2/g (determined by the t-plot method), while the total area 

was 810.47 m2/g (determined by the BET method). Linear OCO-X+ 
complexes are formed (X+ is the cation) that also involve the 
perturbation of Si–O–Al bonds according to Coluccia S. et al. 
(1999)42 who obtained the formation of molecules linearly co-
ordinated to X+ cations (Lewis acidity) of the zeolitic supercages, 
and several different kinds of carbonate-like species form complex 
interactions, which was also reported by Martra, G. et al. (1999)43 
and Montanari, T. and Busca G. (2008).44 

Conclusions 

This work showed that sugar cane bagasse ash and multilayer 
food packing can be successfully used as raw material for the 
hydrothermal synthesis of green and low-cost zeolites, which have 
potential applications in the CO2 adsorption process. This research 
contributes to materials and environmental science, suggesting the 
recycling of contaminant solid wastes generated in large amounts 
around the world. In fact, this reveals a new green and low-cost 
material for CO2 adsorption, which is possibly doubly beneficial to 
environmental management because decreased contamination of 
hazardous solid wastes and greenhouse gas capture costs. 
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Figure 1. X-ray diffraction patterns of zeolite synthesis for each period of time.  
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Figure 2. FTIR spectra of the zeolites as a function of the hydrothermal process period.  
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Figure 3. SEM images of zeolites.  
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Figure 4. N2 adsorption–desorption isotherms at 77 K.  
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Figure 5.Experimental CO2 adsorption isotherm and the adjustment with the adsorption models on the 

zeolite prepared by 149h (Z-149) at 298 K.  
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Table 1. Langmuir, Toth and Freundlich adjustments parameters of CO2 isotherm at 293 K. 

Toth Freundlich Langmuir 

qm 

(mmol/g) 

b 

(bar
-1

) 
n r

2
 n k r

2
 

qm 

(mmol/g) 

b 

(bar
-1

) 
r

2
 

7.01345 6.97833 0.75255 0.97622 8.64597 5.0041 0.90026 6.79188 4.16527 0.94069 
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