This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Benzylic-Type Couplings Provide an Important Asymmetric Entry to Functionalized, Non-Racemic Helicenes

Vincent Terrasson, Myriam Roy, Stéphane Moutard, Marie-Pier Lafontaine, Gérard Pêpe, Guy 5 Félix, and Marc Gingras

Received (in XXX, XXX) Xth XXXXXXX 20XX, Accepted Xth XXXXXXX 20XX
DOI: 10.1039/b000000x

Benzylic-type couplings are key reactions to make non-racemic helicenes. Their simplicity contributes to a short, 10 efficient, and scalable asymmetric route to functionalized \( [7] \)helicenes. It widens the scope and uses of enantiopure helicenes, which are unequivocally needed for new chiroptical-electronic materials. A mechanistic proposal featuring an electrocyclization is based on experiments, X-ray crystallography and calculations.

Helicenes are known for over 100 years, but their importance is growing because of their attractive chiroptical, photophysical, physico-chemical, and electronic properties.\(^1\) Those features are highly desirable for further developments in materials science and in other fields.\(^2\) Today, a real challenge is the convenient preparations of enantiopure, tailor-made, non-racemic helicenes (including the longest ones) from the simplest scalable methods. One of the solutions to these problems is disclosed here in the non-racemic synthesis of a series of \( [7] \)helicenes, and a tentative mechanistic rationale of the benzylic couplings.

For nearly five decades, the preferred synthetic method to make racemic helicenes has been the oxidative photocyclodehydrogenation.\(^3\) A well-known drawback is the high dilution in solvents (100 mg/L; 10\(^{-3}\)M) for producing a modest amount of helicenes in yields averaging 50-60\%. To circumvent those issues, some elegant, thermal methods have been reported.\(^1,2\) However, only a few provide short, scalable and general entries to helicene chemistry, but more rarely from non-racemic, stereoselective routes.\(^4\)

Racemic benzylic-type couplings have combined easy functionalization, high yields, cheap reagents and simple equipments for producing \( [5] \)helicenes,\(^5,6\) which allowed further applications in nanoscience.\(^7\) All results focussed on racemic, configurationally labile, short helicenes.

This work is distinct from the previous ones because stereoselective benzylic couplings to enantiopure, long helicenes, were never reported by us or by others in helicene chemistry (schemes 1,3). Additionally, functionalization of non-racemic (scheme 3) and racemic (scheme 4) heptahelicenes are reported, after an optimization of a biphenanthrol synthesis (scheme 2). A direct access to either enantiomers of helicenes \( 1 \) (disubstituted) and \( 2 \) (monosubstituted), in only three steps from the known bis(triflate) (\( \pm \)), (\( - \)) or (\( + \)) \( 6 \), is a key feature.\(^8\) Those couplings also prompted us to propose a mechanistic rationale based on calculations (scheme 5) and X-ray crystallography (scheme 1).

Toward a non-racemic entry to \([7]\)helicenes, we first efficiently produced \((\pm)\)-biphenanthrol \( 5 \), as shown in scheme 2. The oxidative coupling of 3-phenanthrol with a molar excess of a Cu(NO\( \text{3} \))\(_2\)\( (\pm)\)-1,2-diphenylethylamine complex under an inert atmosphere yielded \((\pm)\)\( 5 \) in 77\% yield (previously: 20\%).\(^9\) For a better convenience, we optimized a catalytic method\(^8,10\) in air with Cu(TMEDA)ClOH \((15-20 \text{ mol\%})\) to provide \((\pm)\)\( 5 \) in a 90\% yield, \((\pm)\)\( 5 \) (previously: 68\%\(^\circ\)). Racemic \((\pm)\)\( 5 \) was easily resolved to \((\pm)\)\( 5 \) (85\% e.e.) and to \((\pm)\)\( 5 \) (92\% e.e.) on a gram scale.\(^8,11\) The stereochemistry of helicenes was thus set from the start from non-racemic \((\pm)\)- or \((\pm)\)-biphenanthrol \( 5 \) with a full retention of configuration.

Having \( 5 \) in hand, a triflation with pyridine in DCM, afforded bis(triflate) \( 6 \) (scheme 3) in a racemic (98\%yield)
or in a non-racemic form ((-)94% or (+)-96% yield). From (-)-6, a Ni-catalyzed methylation produced (±)-7 in a 86% yield (scheme 3).12 Similarly, non-racemic (±)-7 (85% yield, 97% e.e.) or (-)-7 (79% yield, 85% e.e.) were obtained with a retention of configuration. A radical tetrabromination of (±)-7 to (±)-3 (85-91% yield) required an excess of NBS. The satisfactory purity allowed to pursue the synthesis of (±)-1. Under similar conditions, both enantiomers (-)-3 (>95% e.e.) and (+)-3 were also produced with a retention of configuration. A spontaneous ring closure of (±)-3 provided (±)-9,10-dibromoheptahelicene 1 (80-88% yield) or each enantiomers (M)-15 (1)-1 (>98% e.e.) and (P)-1 (+) (>98% e.e.). Traces of 2 (≤4% HPLC) came from the cyclization of residual tribromide 4 (<4% in 3, HPLC).

The best yields of 1 were thus obtained near 0-3°C. A polar solvent was needed and DMF provided the best results with tBuOK. Less polar solvents such as THF, dioxane or CH2Cl2 were not successful with tBuOK, and a fast addition of tBuOK to the precursor 3 produced a high 35 molar ratio 1:2.

As a convenience, crude 3 generated a molar ratio 1:2:4.2 in a 80% yield. The tribromide 4 accounts for the formation of 2. If 3 is almost pure (HPLC: 96% of 1; 4% of 4), a 87% yield of 1 is then obtained. We next turned our attention to the reactivity of (±)-1 in some metal-catalyzed couplings (scheme 4). A double Sonogashira reaction in triethylamine, with PdCl2(PPh3)2/Cu as catalysts, generated (±)-8 in a 95% yield. Removal of TMS groups from (±)-8 with K2CO3, in MeOH lead quantitatively to (±)-9. As an innovative one-pot functionalization, a double cyation with CuCN in moist N-methylpyrrolidone at 180°C directly produced the 9,10-imidohelicene (±)-10 (75% yield).

The aim was to optimize the reaction conditions to get further insights, preliminary optimization of the benzylic couplings to (±)-1, a few parameters were examined for the first time: a) bases, b) temperatures, c) solvents, d) addition rates. In short, tBuOK was one of the most practical and efficient bases. However, LiHMDS did not provide a significant coupling in the absence of HMPA, in spite of a higher basicity. Similarly, K2CO3 did not promote a cyclization to 1 in DMF. As for the temperature, incomplete reactions and slow rates were noticed at -35°C with tBuOK in DMF.

We wanted to understand the coupling mechanism from 11. A previous thought was a carbenoid coupling coming from α-eliminations of HBr at the benzyllic positions. However, it was found unlikely with LiHMDS/HMPA at 0°C from a [7]helicene derivative.5 For the first time, a new hypothetical mechanism is outlined in scheme 5. A long-range benzyllic-type elimination from 11 is reasonable, based on numerous reports.13 It could then lead to trienes 12 and/or 13, followed by an electrocyclic rearrangement to 14. As a support of this proposal, another type of electrocyclization was suggested, but in a [5]helicene formation.14 Finally, an aromatization after a second elimination would generate 15. The first elimination might be a rate-determining step sensitive to a polar solvent (such as DMF), due to a stabilization of a polarized transition state. To get further insights, preliminary calculations with the GenMol program were performed. In the [7]helicene series, the relative constraint energy (torsion, angle, steric, electrostatic energy) of each species under study was evaluated (scheme 5). Compounds 11 (52.3 kcal/mol) and 15 (48.7 kcal/mol) were more energetic or comparable.
to 12 (47.5 kcal/mol) or to 13 (48.2 kcal/mol). As a consequence, 12 or 13 are thus energetically attainable 5 intermediates. A similar biphenanthryl structure with a bridged double-bond supports the assumption of a thermal stability of 12 or 13. As for 11, a positive electrostatic potential at each C-H benzylic-type proton induces a strong benzylic repulsion, combined to a steric strain at 10 both terminal benzene rings. The constraint energy of 14 is less than for 15 because of a staggered conformer at the 9,10-position, causing also less steric repulsion at the terminal rings. As for the $\pi$-orbitals overlap of 12 and 13, a distance of 3.2Å and 3.3Å, respectively, was found between the terminal methylene carbon atoms in the lowest-energy conformers. Even if a distorsion of 12 or 13 for shortening this distance costs in energy, a slight deviation from planarity over many atoms provides a minimal activation energy of the transition states.

20 Conclusions
For the first time, stereoselective benzylic-type couplings are shown as key reactions in some expeditious, non-racemic (or racemic$^{17}$) routes to functionalized higher helicenes. All intermediates of the three-step sequence to 25 helicenes proceed with a full retention of configuration, which is set from the start. Such efficient and scalable syntheses are rare in the literature for making enantiopure [7]helicenes. Based on X-ray crystallography, experiments, and GenMol$^{10}$ calculations, an electrocyclization 30 mechanism is proposed. Carbenoid couplings are unlikely. This work significantly widens the production and uses of non-racemic helicenes, which are absolutely required for enantiopure chiroptical-electronic materials. It will unequivocally add a contribution to chiroscience, materials 35 and nanoscience, chemical-biology, and supramolecular chemistry. Importantly, the simplicity of this method will encourage a spread use of it within the scientific community.$^{18}$

Acknowledgments
40 ANR BioNanoPlasmon, MESR France, CNRS, Aix-Marseille Université and CINAM. Dr. M. Giorgi (for XRD), Mr. E. Pizarro-Cartier and Mr. X. Robillard (Univ. Sherbrooke).

Notes and References
45 $^a$ CNRS, Aix-Marseille Université, CINAM UMR 7325, 163 Avenue de Luminy, 13288 Marseille, France; Tel/Fax: (+33)491829155; E-mail: marc.gingras@univ-amu.fr.

Electronic Supplementary Information (ESI) available: experimental procedures, characterization, spectroscopic, and X-ray crystallographic data for new compounds. See DOI: 10.1039/b000000x/


4 See reference 1. It mainly involves Diels-Alder, [2π+2π→2π] cycloisomerizations, radical, metal-catalyzed C-O, C-N, C-S, C-C couplings.


11 The configurations of (-)$^{12}$ or (+)$^{12}$ were assigned by comparison to optical rotation of (S)-(-)$^{12}$ and (R)-(+)$^{12}$ in ref. 9, % e.e. for 8, 9, 12 and 14 were determined by chiral HPLC (Chiralcel OD-H, n-heptane/PrOH), UV-Vis and CD chiral detector.


13 For long-range eliminations involving benzylic groups: M. Gingras, J.-M. Raimundo, Y.M. Chabre, Angew. Chem. Int. Ed., 2007, 46, 1010 and references therein. Classic examples of eliminations from 1,2- or 1,4-bis(bromomethyl) benzene have lead to quindimethanes.


