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Carbene-catalyzed TEMPO-mediated oxidative coupling conditions were used to convert the 

aldehydes to amides via phenolic ester intermediates.   
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N-heterocyclic carbene-catalyzed oxidation using TEMPO is 

reported for the conversion of aldehydes to amides. A wide 

range of amides were synthesized in good yields (up to 72%) 

via a one-pot, sequential protocol involving oxidative 

esterification of aldehydes and subsequent aminolysis. To 

promote efficient aminolysis, various alkoxides leaving 

groups were evaluated. 

The amide group is a common feature in many important compounds 

including pharmaceuticals, peptide bonds, and polymers (e.g., nylon 

and aramid).1 As a result, a variety of synthetic methods have been 

developed over the years to form amides, including use of coupling 

reagents, metal-catalysts, and metal-free conditions.2-7 Amongst 

these, our attention has been drawn to carbene-catalyzed amidation 

conditions because of the environmental benefits of metal-free 

conditions. Compared to carbene-catalyzed esterification of 

aldehydes,8,9,10 carbene-catalyzed amide formation from aldehydes is 

limited because of the competing imine formation. Based on 

Studer’s report on carbene-catalyzed oxidative amidation, imine 

formation can be reduced using a sequential approach of carbene-

catalyzed reactive ester formation, followed by aminolysis of the 

esters.6a,11 Although most carbene-catalyzed reactions required 

higher catalyst loadings and showed lower turnovers compared to 

those of the metal-catalyzed reactions, continuous studies of 

carbene-catalyzed reactions would provide efficient metal-free 

synthetic protocols. 

We recently reported a carbene-catalyzed oxidation of aldehydes 

using 2,2,6,6-tetramethylpiperidinyloxy (TEMPO) to afford a 

diverse range of esters and thioesters.12 Under Studer’s conditions, 

the stable TEMPO-ester formed readily, thereby making formation 

of the other esters and thioesters impossible.10a However, we found 

that we could modulate the formation of various esters and thioesters 

without forming the TEMPO-esters as the product. Herein, we report 

the use of carbene catalysts and TEMPO oxidant for the tandem 

oxidative esterification of aldehydes-aminolysis, to afford a diverse 

range of amides from aldehydes. A possible mechanism is proposed 

in Scheme 1. Based on our previous work, aldehyde 1a undergoes 

oxidative esterification via Breslow intermediate I to afford phenolic 

ester 1c. Subsequent aminolysis of 1c provides desired amide 1b. 

 

 
Scheme 1 N-heterocyclic carbene-catalyzed amides synthesis from aldehydes 

 

Optimization results are listed in Table 1. Initially, the oxidative 

esterification of cinnamaldehyde 1a with various alcohols, followed 

by aminolysis using benzyl amine was investigated. Alcohols (1 

equiv.) were reacted with cinnamaldehyde 1a (1 equiv.) in the 

presence of 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr, 

10 mol%), TEMPO (2 equiv.) in toluene at 100 °C for 4 h, followed 

by addition of benzyl amine (2 equiv.) and the mixture being stirred 

at 40 °C for 18 h. As shown in entry 1 of Table 1, reaction of 1a with 

isopropyl alcohol failed to form the desired amide 1b. Use of 
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fluorinated alcohols improved the yield to 34% and 57% (entries 2 

and 3). It was proposed that the basicity of the conjugated base of the 

alcohol could affect the progress of the aminolysis step, as the 

oxidative esterification of 1a to form the corresponding esters was 

completed within 4 h. Thus, the more basic isopropoxide group is 

considered as a poorer leaving group, and therefore no amide 

formation was observed. By considering the pKa of the alcohols, 

phenol, with a similar pKa to that of hexafluoroisopropyl alcohol 

(HFIP) was tested (entry 4).13 As expected, these reactions, which 

proceeded via the phenolic and hexafluoroisopropyl ester 

respectively, afforded the similar yields of product (entries 3 and 4). 

In addition to phenol, pNO2-phenol and pentafluorophenol (F5-

PhOH) were tested; however, these failed to form desired amide 1b 

(entries 5 and 6). In the case of the electron-deficient phenols, the 

intermediate esters were not formed because of the low 

nucleophilicity of the phenol derivatives. It was found that the 

amount of TEMPO could be reduced to 1.5 equiv. and afforded 

amide 1b in 44% yield (entry 7). The IPr carbene catalyst loading 

was also reduced to 5 mol%; however, this led to a decrease in the 

yield of 1b (entry 8). Finally, an alternative carbene catalyst (IMes) 

was investigated but unfortunately this also led to a lower yield of 

1b compared to that with the IPr catalyst (43%, entry 9).14 In the 

absence of carbene catalysts, either phenolic ester 1c or amide 1b 

was not formed. Without TEMPO, saturated amide 1d was formed 

in 69% yield, implying redox-esterification instead of oxidative 

esterification occurred in the absence of TEMPO.15 Based on our 

previous reports regarding the oxidative esterification of 1a with 

phenol,12 it was expected that excessive amounts of phenol would 

not increase the yield of esters. This was confirmed by reacting 1a 

with 1 and 2 equiv. of phenol which afforded 1c in a comparable 75% 

and 63% yields, respectively (Scheme 2). Subsequently, the 

stoichiometry of phenol was fixed at 1 equiv. with respect to 1a. 

Table 1. Optimization of carbene-catalyzed amidation to form 1b 

 

 

Scheme 2 Oxidative esterification of 1a with phenol 

 

Next, the substrate scope was investigated by employing a diverse 

range of amines and aldehydes (Tables 2 and 3). The reaction of 

cinnamaldehyde with various amines was conducted using the 

optimized reaction conditions. Electron-rich benzyl amines (p-

methyl benzyl amine and p-methoxy benzyl amine) performed well 

in the reaction with cinnamaldehyde, to afford 2b and 3b in 55% and 

59% yield, respectively (Table 2, entries 1 and 2). Heteroaromatic 

amine led to the formation of 4b in a slightly reduce yield (41%, 

entry 3). The reactions of cinnamaldehyde with allyl amine and 

aliphatic amine proceeded well to afford 5b (50%) and 6b (52%) 

(entries 4 and 5). An amide formation using sterically hindered α-

ethylbenzyl amine was also successful and afforded 7b in 60% yield 

(entry 6). 

Next, the scope of aldehyde was investigated for amide formation 

using benzyl amine (Table 3). Benzaldehyde and electron-deficient 

benzaldehydes (pNO2-substituted and pfluoro-substituted) reacted 

with benzyl amine to provide 8b (55%), 9b (55%), and 10b (56%), 

respectively (entries 1-3). Thiophenyl carboxaldehyde and furfural 

reacted well to afford 11b and 12b in 54% and 72% yield, 

respectively (entries 4 and 5). In addition to aromatic aldehydes, 

aliphatic aldehydes were also subjected to the reaction conditions; 

however, this afforded aliphatic amide 13b and 14b in a reduced 45% 

and 38% yield, respectively (entries 6 and 7). 

Table 2. The reactions of cinnamaldehyde with various amines 
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Table 3. The reactions of various aldehydes with benzyl amine 

Entry Aldehyde Product Yielda

1

H

O

NHBn

45%

2

H

O

NHBn

O

55%

NHBn

O

55%

4

56%

5

54%

6

72%

O2N

O

O2N

H

O

3

S
H

O

S
NHBn

O

O
H

O

O
NHBn

O

NHBn

O

H

O

F F

7 C7H15 O
C7H15 NHBn

O
38%

13b

9b

8b

11b

12b

10b

14b

R H

O

1. IPr (10 mol%)
TEMPO (2 equiv)
PhOH (1 equiv)

R NHBn

O

40 C, 18 htoluene (0.5 M)

100 C, 4 h

2. BnNH2
(2 equiv)

a Isolated yield

Experimental: TEMPO (1.0 mmol) and IPr (0.05 mmol) was added

to a solution of aldehyde (0.5 mmol) and PhOH (0.5 mmol) in

toluene (0.5 M) under nitrogen atmosphere. The reaction mixture

was stirred at 100 C for 4h. Then, benzylamine (1.0 mmol) was

added to the reaction vessel and the reaction mixture was stirred at

40 C for 18h.  
 

Conclusions 

In conclusion, we have expanded our NHC-catalyzed oxidative 

coupling using TEMPO for the synthesis of a range of amides from 

aldehydes. To address the previous imine formation issues, we 

utilized a tandem reaction protocol involving NHC-catalyzed 

oxidative phenolic ester formation followed by aminolysis. The 

optimum alcohol for the ester formation and aminolysis was chosen 

based on pKa values. As a result, phenol (pKa = 10.0) was found to 

be the most favourable alcohol for the amide formation. Under 

optimized conditions, a diverse range of aromatic and aliphatic 

aldehydes and amines were coupled to form the desired amides in 

modest to good yield via the intermediate esters. 
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