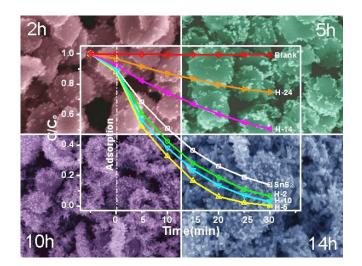
RSC Advances

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.


You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

Graphical Abstract

A novel and facile hydrothermal-assisted self-hydrolysis route has been proposed for the controllable preparation of SnS_2/SnO_2 heterostructured nanoplates (HNPs), which only employ pregrown SnS_2 nanoplates as the precursors without using any additional surfactant. Very interestingly, the size, morphology and content of SnO_2 in the SnS_2/SnO_2 HNPs can be conveniently tuned by just varying the reaction duration in the self-hydrolysis process. www.rsc.org/xxxxxx

ARTICLE TYPE

Controllable growth of SnS_2/SnO_2 heterostructured nanoplates via a hydrothermal-assisted self-hydrolysis process and their visible-light-driven photocatalytic reduction of Cr(VI)

Liyuan Mao,[‡] Jingjing Li,[‡] Yunlong Xie, Yijun Zhong, and Yong Hu*

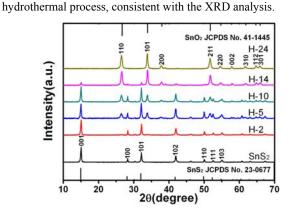
s Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

A novel and facile hydrothermal-assisted self-hydrolysis route has been proposed for the controllable preparation of SnS₂/SnO₂ heterostructured nanoplates (HNPs). Benefiting ¹⁰ from the unique structural features, the as-prepared SnS₂/SnO₂ HNPs exhibit significantly enhanced visible-lightdriven photocatalytic activity in the reduction of aqueous Cr(VI).

Semiconductor hetero-nanostructures, composed of chemically ¹⁵ distinct components, possess unique and enhanced properties in contrast with individual component materials, arising from strong interfacial interactions at the nanoscale, which have led to revolutionary new applications in various areas, such as catalysis, optical, magnetic, electrical, sensors, and so on.¹⁻⁹ As a kind of

- ²⁰ CdI₂-type layered semiconductor, SnS₂ displays a wide photoelectrochemical response in the visible light region with a narrow band gap of about 2.2eV.^{10, 11} Compared with other metal sulfides, such as CdS, SnS₂ is low toxicity and good chemical stability makes it becomes a promising visible-light-driven
- ²⁵ photocatalyst.¹²⁻¹⁴ SnO₂ is a stable oxide semiconductor with a wide band gap of about 3.5-3.8 eV, which can couple to SnS₂ to form a heterostructure for various potential applications, such as photocatalysis, gas-sensing, and lithium-ion batteries, etc.¹⁵⁻¹⁷ Especially, SnS₂/SnO₂ hetero-nanostructures have demonstrated
- ³⁰ enhanced photocatalytic activity because of enhanced charge separation of photogenerated carriers through interfacial charge transfer.^{15, 16} Lots of research efforts have been devoted to the fabrication of this kind advantageous heterostructure.¹⁷⁻¹⁹ However, to the best of our knowledge, there is no report on ³⁵ solution fabrication of SnS₂/SnO₂ heterostructures via an in-situ

hydrolysis process without employing any additional metal salt. In this work, we have developed a controllable


hydrothermal-assisted self-hydrolysis route to prepare SnS_2/SnO_2 heterostructured nanoplates (HNPs), which only use the pregrown

- ⁴⁰ SnS₂ nanoplates (NPs) as precursors without employing any additional surfactant. This is a facile and novel method, and a series of SnS₂/SnO₂ HNPs with the different SnO₂ contents have been successfully obtained by self-hydrolysis of SnO₂ NPs in the presence of citric acid at 180 ^oC for different time. A series of
- ⁴⁵ samples prepared with the different reaction time (0, 2, 5, 10, 14, and 24h) in the hydrothermal process were denoted as pure SnS₂, H-2, H-5, H-10, H-14 and H-24, respectively. It has been

discovered that the reaction duration plays a very important role in determining the size, morphology and composition of the final

⁵⁰ products. Benefiting from the unique structural features, the asprepared SnS₂/SnO₂ HNPs exhibit significantly enhanced visiblelight-driven photocatalytic activity in the reduction of aqueous Cr(VI). Furthermore, the mechanisms of the optimal SnO₂ content to reach the maximum photocatalytic activity in the ⁵⁵ SnS₂/SnO₂ HNPs are proposed and discussed.

The phase composition and structure of the as-prepared pure SnS₂ NPs and SnS₂/SnO₂ HNPs obtained with the different reaction times were first examined by powder X-ray diffraction (XRD) analysis, as shown in Fig. 1. For pure SnS₂ NPs, all the 60 diffraction peaks can be well indexed to the pure hexagonal phase SnS_2 (JCPDS card no. 23-0677) with lattice constants of a = 3.648 Å and c = 5.899 Å. No impurity peaks are detected which shows that the products are of pure phase. For SnS₂/SnO₂ HNPs, in addition to the obvious SnS₂ patterns, broadened diffraction 65 peaks at 2θ values of 26.6°, 33.9°, 37.9°, 51.8°, 54.8°, 57.8°, 61.9° , 64.7° and 65.9° match well with the (110), (101), (200), (211), (220), (002), (310), (112) and (301) crystal planes of tetragonal phase SnO₂ (JCPDS card no. 41-1445, a = 4.738 Å), respectively. In particular, the peak intensity of the SnO₂ 70 component gets stronger with the increase of the hydrolysis time, indicating the amount of SnO₂ in the hybrid system is increased gradually. The energy dispersive X-ray spectroscopy (EDS) analysis was also performed to confirm the existence of Sn, O, and S elements in the hetero-nanostructures (Fig. S1, see ESI⁺). $_{75}$ The SnS₂/SnO₂ moral ratio in the nanocomposites (Table S1, see ESI[†]) decreases with the increase of reaction time in the

[journal], [year], **[vol]**, 00–00 | 1

This journal is © The Royal Society of Chemistry [year]

Fig. 1 XRD patterns of as-prepared pure SnS₂ NPs and SnS₂/SnO₂ HNPs obtained with different reaction durations.

The typical scanning electron microscopy (SEM) images of the as-obtained pure $SnS_2\ NPs$ and $SnS_2/SnO_2\ HNPs$ are shown in 5 Fig. 2. A panoramic view of the SEM image (Fig. 2a) of pure

- SnS₂ shows that the product is completely composed of monodispersed hexagonal plates with an average size of around 500 nm in diameter. The high-magnification image (inset in Fig. 2a) reveals the surface of SnS_2 NP is relatively smooth, without
- 10 the presence of any secondary nanostructures. Time-dependent experiments are carried out to understand the formation process of HNPs, Fig. 2b-f shows the SEM images of five samples obtained with different reaction durations in the self-hydrolysis process. As can be seen in Fig. 2b, at the early stage of the 15 reaction (2h), some particle subunits are formed on the surface of
- SnS₂ NPs. When the reaction duration is increased to 5-14h (Fig. 2c, d and e), the product obviously contains a large portion of irregular particles deposited on the surface of NPs. And, the nanoparticles gradually grow into short nanorods with the 20 increasing of reaction time. When the reaction duration is further
- prolonged, the SnS₂ NPs can hardly been observed due to the more Sn^{4+} ions released from SnS_2 (Fig. 2f).

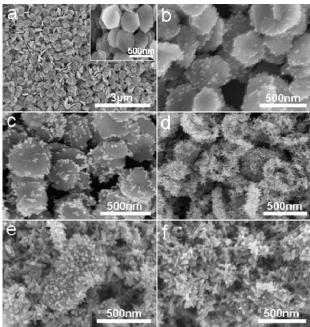


Fig. 2 SEM images of the as-obtained samples with the different reaction 25 times: (a) pure SnS₂, (b) H-2, (c) H-5, (d) H-10, (e) H-14, and (f) H-24.

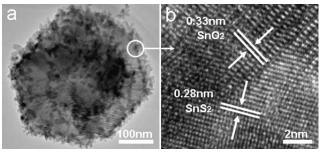
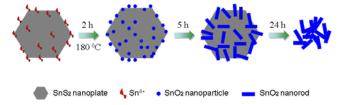


Fig. 3 (a) TEM and (b) HRTEM images of the as-obtained sample H-5.

Transmission electron microscopy (TEM) and high-resolution (HR)TEM measurements provide further information about the 30 microstructure of the products. Fig. 3a shows typical TEM image of the as-prepared H-5 sample, where we can clearly see that monodispersed SnO₂ nanoparticles are tightly grown on the surface of the SnS2 NP. The interface of SnS2/SnO2 heteronanostructure is further confirmed by the HRTEM image (Fig. 35 3b), the fringe interval of 0.28 nm corresponds to the interplanar spacing of the (101) planes of hexagonal phase SnS₂, while the 0.33 nm interval is in agreement with the (110) interplanar spacing of tetragonal phase SnO₂.

Based on all the above experimental results, the growth process 40 of the SnS₂/SnO₂ HNPs is illustrated in Scheme 1. In an acidic solution, Sn⁴⁺ ions hydrolyze first and then further dehydrate to produce SnO₂ according to reactions 1 (eqn (1)) and 2 (eqn (2)) at 180 °C under hydrothermal treatment.^{20, 21}

(1)


(2)

 $\operatorname{Sn}^{4+} + 4\operatorname{H}_2\operatorname{O} \rightarrow \operatorname{Sn}(\operatorname{OH})_4 + 4\operatorname{H}^+$ Sn

45

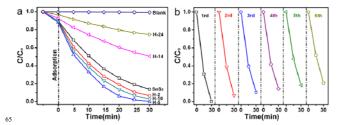
$$(OH)_4 \rightarrow SnO_2 + 2H_2O$$

When the reaction time is prolonged, the successively released Sn⁴⁺ from the dissociation reactions of SnS₂ will further hydrolyze and nucleate to form SnO2 nanoparticles on the surface of SnS₂ NPs. However, the obtained SnO₂ nanoparticles with 50 high-energy sites will further grow according to crystallographicoriented direction to form short nanorods with the increasing of reaction duration.⁵ Meanwhile, SnS₂ NPs are gradually dissolved to provide continuous Sn⁴⁺ ions for the growth of SnO₂ so that SnO₂ short nanorods are finally obtained while very little SnS₂ 55 are left after 24 h in the hydrothermal treatment.

Scheme 1 Schematic illustration of the conversion processes from SnS₂ NP to SnS₂/SnO₂ HNP via a hydrothermal-assisted self-hydrolysis process.

- The UV-vis diffuse reflectance spectra of the as-prepared pure SnS₂ NPs and SnS₂/SnO₂ HNPs are investigated (Fig, S2a, see ESI[†]). The pure SnS₂ NPs display optical absorption edge at around 550 nm, which may be assigned to the intrinsic bandgap absorption of SnS₂.²² The absorption curves of the as-obtained 65 sample H-2, H-5 and H-10 are similar to SnS₂ NPs, but the absorption intensity decreases with the less content SnS₂. For sample H-24, the sharp absorption onset at around 350 nm, corresponding to the big energy band gap of SnO_2 (3.5 eV),²³ which indicates that SnS₂ NPs are almost converted into SnO₂.
- 70 The band gaps (Eg) of the samples are derived based on the theory of optical absorption using the relation (eqn (3)):²⁴ $(\alpha hv)^n = k(hv-Eg)$ (3)

Where hv is the photon energy, α is the absorption coefficient, k is a constant relative to the material, and n is either 75 2 for a direct transition or 1/2 for an indirect transition. The Eg of the as-prepared pure SnS₂, H-2, H-5, H-10, H-14 and H-24 are estimated to be 2.23, 2.21, 2.21, 2.24, 2.24 and 3.51, respectively, which indicates that SnS₂/SnO₂ have the potential to be efficient visible light-driven photocatalysts (Fig, S2b, see ESI⁺). To further


investigate the heterojunction interface is beneficial to photogenerated charge separation, the photocurrent transient response measurement of pure SnO_2 and SnS_2/SnO_2 heterostructure (sample H-5) is performed. Fig. S3 (see ESI[†])

- s shows the rapid and consistent photocurrent responses for each switch-on and -off event in multiple 100s on-off cycles under visible-light illumination. It is worth to note that the photocurrent density of the SnS₂/SnO₂ heterostructure is about 40 μA•cm⁻², almost 4 times higher than that of pure SnS₂, which is about 10
- 10 µA•cm⁻². The enhanced photocurrent response of the as-prepared SnS₂/SnO₂ heterostructure indicates higher separation efficiency of the photoinduced carriers and a lower recombination rate in such hybrid structures under visible-light illumination. This can be explained by the favorable transfer of electrons from SnS₂ to
- $_{15}$ SnO₂ that reduces the recombination of electron-hole pairs. Therefore, the SnS₂/SnO₂ HNPs exhibit the enhanced photoreduction of Cr(VI).

The photocatalytic reduction tests of Cr(VI) species in an aqueous solution under visible-light irradiation using the as-²⁰ prepared SnS₂/SnO₂ HNPs as photocatalysts were further carried out. As can be seen in Fig. 4a, where *C* is the concentration of Cr(VI) after light irradiation and C_0 is the initial concentration of Cr(VI) before dark adsorption. After irradiated for 30 min, there is no obvious change in the Cr(VI) concentration after visible-

- ²⁵ light irradiation in the absence of the catalysts, whereas nearly 86.2%, 93.4%, 99.7%, 97.2%, 49.4% and 25.3% of Cr(VI) is degraded by samples pure SnS_2 , H-2, H-5, H-10, H-14 and H-24, respectively. The sample H-5 exhibits the highest photocatalytic activity among all of the samples, which indicates that there is an
- $_{30}$ optimal loading amount of SnO₂ nanoparticles on the SnS₂ NPs. We have further studied the stability and reusability of sample H-5, as shown in Fig. 4b. After six cycles of photocatalytic reduction of Cr(VI), there is still 79.1% of Cr(VI) can be reduced. This loss might be mainly caused by the deposited Cr(III) species
- ³⁵ on the surface of SnS₂/SnO₂ HNPs,^{12, 25} and partly caused by the loss of the photocatalysts during each collection and rinsing cycle. The superior photocatalytic reduction activity of these heteronanostructures may be ascribed as follows. A schematic diagram representing charge transfer process in the SnS₂/SnO₂ HNPs is
- $_{40}$ illustrated in Scheme S1 (see ESI†). The conduction band of SnS₂ is more negative than that of SnO₂, the electrons quickly transfer to the conduction band of SnO₂ when SnS₂ is excited under visible-light illumination, whereas the generated holes accumulate in the valence band of SnS₂. The efficient separation
- ⁴⁵ of the electron–hole pairs and reduction of charge recombination in the electron transfer process increases both the yield and the lifetime of the photogenerated carriers, and consequently enhances the photocatalytic performance. However, the excessive SnO₂ may reduce the inherent optical absorption of SnS₂ and
- ⁵⁰ result in a rapid decrease in photogenerated charges, ultimately reducing the photocatalytic activity. Therefore, the sample H-5 should have the ideal hetero-nanostructure, which possess the optimal balancing of charge separation and transport and hence demonstrate most favorable photocatalytic reduction activity in
- ss this particular case. The surface area of the as-prepared pure SnO_2 and SnS_2/SnO_2 HNPs (sample H-5 and H-24) is measured by the Brunauer–Emmett–Teller (BET) method using an ASAP2020 sorptometer. The as-prepared pure SnS_2 , H-5, and H-24 have a

specific surface area of 12.16, 15.93 and 27.94 m²g⁻¹, respectively. ⁶⁰ This result indicates that the surface areas of the as-obtained products gradually increase when the self-hydrolysis reaction time is prolonged. Thus, the specific surface area is not the determining factor in the photocatalytic efficiency.

Fig. 5 (a) Photocatalytic reduction of Cr(VI) in the presence of different photocatalysts under visible-light irradiation. (b) Recycling test of photoreduction of Cr(VI) using sample H-5 as the photocatalyst under visible-light irradiation for 30 min.

In summary, we have developed a facile hydrothermal-assisted self-hydrolysis route to form SnS₂/SnO₂ HNPs, which only use the as-obtained SnS₂ NPs as precursors in the presence of citric acid. It has been found that the size, morphology and content of SnO₂ in the SnS₂/SnO₂ HNPs can be conveniently tuned by just ⁷⁵ varying the reaction duration in the hydrothermal treatment. As expected, the as-prepared SnS₂/SnO₂ HNPs exhibit enhanced visible-light-driven photocatalytic activity in the reduction of aqueous Cr(VI), because the interfacial electron can transfer from SnS₂ to SnO₂ in the SnS₂/SnO₂ hybrid system. The synthetic ⁸⁰ method presented here is very simple and cost-effective, and can be extended to prepare other metal sulfide/oxide heteronanostructures for a wide range of applications.

Acknowledgements

Y. Hu acknowledges financial support from the Natural ss Science Foundation of China (21171146, 21371152) and Zhejiang Provincial Natural Science Foundation of China (LR14B010001).

Notes and references

105

Key Laboratory of the Ministry of Education for Advanced Catalysis

- 90 Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, P. R. China. E-mail: <u>yonghu@zjnu.edu.cn</u>
 - [‡]These authors contributed equally to this work.
- † Electronic Supplementary Information (ESI) available: [Detailed experimental procedures, additional EDS pattern, UV-vis diffuse 95 reflectance spectra. See DOI: 10.1039/b000000x/
- 1 Y. R. Wang, W. L. Yang, L. Zhang, Y. Hu and X. W. Lou, *Nanoscale*, 2013, 5, 10864-10867.
- 2 H. Y. Zheng, Y. J. Li, H. B. Liu, X. D. Yin and Y. L. Li, *Chem. Soc. Rev.*, 2011, **40**, 4506-4524.
- 100 3 W. L. Yang, L. Zhang, Y. Hu, Y. J. Zhong, H. B. Wu and X. W. Lou, Angew. Chem. Int. Ed., 2012, 51, 11501-11504.
 - 4 X. H. Zhao, P. Wang and B. J. Li, *Chem. Commun.*, 2010, **46**, 6768-6770.
 - 5 Z. Lou, F. Li, J. N. Deng, L. L. Wang and T. Zhang, ACS Appl. Mater. Interfaces, 2013, 5, 12310-12316.
 - 6 L. Y. Mao, Y. R. Wang, Y. J. Zhong, J. Q. Ning and Y. Hu, J. Mater. Chem. A, 2013, 1, 8101-8104.
 - 7 D. Sarkar, G. G. Khan, A. K. Singh and K. Mandal, J. Phys. Chem. C, 2012, 116, 23540-23546.
- 110 8 Y. Hu, H. H. Qian, Y. Liu, G. H. Du, F. M. Zhang, L. B. Wang and X. Hu, *CrystEngComm*, 2011, **13**, 3438-3443.
 - 9 B. Mukherjee, A. Peterson and V. Subramanian, Chem. Commun., 2012,

Journal Name, [year], [vol], 00–00 | 3

This journal is © The Royal Society of Chemistry [year]

48, 2415-2417.

- 10 Y. F. Sun, H. Cheng, S. Gao, Z. H. Sun, Q. H. Liu, Q. Liu, F. C. Lei, T. Yao, J. F. He, S. Q. Wei and Y. Xie, *Angew. Chem. Int. Ed.*, 2012, 51, 8727-8731.
- ⁵ 11 P. Chen, Y. Su, H. Liu and Y. Wang, ACS Appl. Mater. Interfaces, 2013, 5, 12073-12082.
- 12 Y. C. Zhang, J. Li, M. Zhang and D. D. Dionysiou, *Environ. Sci. Technol.*, 2011, 45, 9324-9331.
- 13 X. Li, J. Zhu and H. X. Li, *Appl. Catal. B: Environ.*, 2012, **123-124**, 10 174-181.
- 14 Z. Y. Zhang, C. L. Shao, X. H. Li, Y. Y. Sun, M. Y. Zhang, J. B. Mu, P. Zhang, Z. C. Guo and Y. C. Liu, *Nanoscale*, 2013, **5**, 606-618.
- 15 X. L. Zhou, T. F. Zhou, J. C. Hu and J. L. Li, *CrystEngComm*, 2012, 14, 5627-5633.
- ¹⁵ 16 Y. C. Zhang, Z. N. Du, K. W. Li, M. Zhang and D. D. Dionysiou, ACS Appl. Mater. Interfaces, 2011, **3**, 1528-1537.
- 17 K. Chang, W. X. Chen, H. Li and H. Li, *Electrochim. Acta*, 2011, 56, 2856-2861.
- 18 Y. C. Zhang, L. Yao, G. Zhang, D. D. Dionysiou, J. Li and X. Du, *Appl.* 20 *Catal. B: Environ.*, 2014, **144**, 730-738.
 - 19 Y. C. Zhang, Z. N. Du and M. Zhang, *Mater. Lett.*, 2011, **65**, 2891-2894.
 - 20 Z. Y. Wang, Z. C. Wang, S. Madhavi and X. W. Lou, Chem. Eur. J., 2012, 18, 7561-7567.
- 25 21 Z. H. Wen, G. Wang, W. Lu, Q. Wang, Q. Zhang and J. H. Li, Cryst. Growth Des., 2007, 7, 1722-1725.
- 22 R. Lucena, F. Fresno and J. C. Conesa, *Appl. Catal. A: Gen.*, 2012, **415-416**, 111-117.
- 23 C. H. Wang, C. L. Shao, X. T. Zhang and Y. C. Liu, *Inorg. Chem.*, 2009, **48**, 7261-7268.
- 24 C. Y. Yu, Y. R. Wang, Y. Liu, C. F. Guo and Y. Hu, *Mater. Lett.*, 2013, **100**, 278-281.
- 25 N. Wang, Y. Z. Xu, L. H. Zhu, X. T. Shen and H. Q. Tang, J. Photochem. Photobiol. A: Chem., 2009, 201, 121-127.

35