

RSC Advances

Designing Stuffed Hetero Fullerene Clusters: C26B46N12 and C14B58N12Li12

Journal:	RSC Advances	
Manuscript ID:	RA-ART-04-2014-003646	
Article Type:	Paper	
Date Submitted by the Author:	22-Apr-2014	
Complete List of Authors:	Kaipanchery, Vidya; Indian Institute of Science Education and Research Thiruvananthapuram, Chemistry Jemmis, Eluvathingal; Indian Institute of Science, Department of Inorganic and Physical Chemistry	

SCHOLARONE™ Manuscripts

Designing Stuffed Hetero Fullerene Clusters: C₂₆B₄₆N₁₂ and C₁₄B₅₈N₁₂Li₁₂

Kaipanchery Vidya and Eluvathingal D. Jemmis*b

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

Abstract

The stuffed fullerene-like nano clusters based on the approximately spherical B₈₄, (B₁₂@B₁₂@B₆₀), fragment of the β-rhombohedral boron are proposed using Wade's Rules and the criterion of overlap matching. Thus the fifty additional electrons required to make the B₈₄ skeleton electron sufficient, are provided by replacing 26 boron atoms by carbon atoms and 12 boron atoms by nitrogen atoms giving rise to C₂₆B₄₆N₁₂. This particular combination has the added advantage that the fullerene surface made from the C₂B₃N five membered rings has less strain arising from the pyramidalization of the sp² hybridised trigonal planar carbon or nitrogen; the natural angle needed to have optimum overlap is not far from the 31.7 degrees required for the icosahedral symmetry. The advantage from overlap-matching can be further increased by capping the two pentagonal faces of the cluster by a Li each, keeping the electron count same by replacing 12 carbon atoms by 12 boron atoms. DFT based computational results support these formulations.

15

1 Introduction

Molecules, which exhibit unusual bonding patterns and structures away from the precept bonding picture exhibited by 5 carbon were always exciting to chemists. Computational chemists have led this exploration of new structures, which breaks the tenets of conventional molecular structure and bonding. Studies of planar tetra coordinate carbon and related rule breaking structures have become part of the chemistry "classics". 1-4 The 10 chemistry of the neighboring element boron differs largely in structure and bonding from those of carbon. The discovery of C₆₀ (Fig.1, a) has spurred many scientists to explore new atomic clusters even though its first prediction by Eiji Osawa went unnoticed.⁵ In contrast to the few and elegant rules of carbon 15 chemistry, the structure and bonding in elemental boron, boranes and borides present extreme complexity. Our attempt here is to combine the beauty of fullerene and the complexity of boron to predict stable fullerene-like molecules based largely on boron.

Fig.1: Structures of C_{60} (a), B_{80} (b) and B_{84} (c).

A fullerene based on boron B₆₀ is deficient by 60 electrons. Addition of 60 electrons to B_{60} is a possible way to 25 stabilize it. A physical approach would be to add extra 20 boron atoms which could provide the 60 electrons. The resulting boron cluster (Fig.1, b) B₈₀ where a boron atom is placed nearly in the center of each B₆ ring is found to be less stable in terms of binding energy per atom than the spherical icosahedral fullerene 30 like stuffed B₈₄ fragment of β-rhombohedral boron. ⁷⁻⁹ The stuffed fullerene-like boron nano clusters are based on the approximately spherical B₈₄ (Fig.1, c) fragment of the β -rhombohedral boron. ¹⁰ B₈₄ fragment has a central closo-B₁₂ unit and its 12 vertices are connected to 12 pentagonal pyramids (nido-B₆) via 2c-2e 35 exohedral B-B bonds (Fig.2, a). The 12 pentagons in the periphery are connected to form the C₆₀-like surface. The B₈₄ fragment can thus be described as $B_{12}@B_{12}@B_{60}.$ However B_{84} is not electron sufficient. The required number of electrons can be estimated using Wade's n+1 skeletal electron pair rule. 16 The 40 central B₁₂ requires -2 charge. Each pentagonal pyramidal B₆ needs n+2 skeletal electron pairs, which makes for B₆⁴. Thus, the B₈₄ requires 50 electrons more, which can be given by substituting appropriate number of boron atoms by carbon and nitrogen atoms.

Fig.2: (a) $B_{12}@B_{12}@B_{60}$ and (b) the out-of-plane bend angle in

the five membered ring of fullerenes.

What are the factors in addition to electron count that can be used to stabilize the boron fullerene skeleton? An obvious source of instability in C_{60} is the strain involved in pyramidalizing the trigonal planar $\rm sp^2$ hybridized arrangement around each atom to what is needed in C_{60} . The distortion from planarity is $\rm 31.7^0$ by symmetry (Fig.2b). How do we design a fullerene where the bent geometry is naturally favored? This is achieved to a large extend by a judicious design in $\rm B_{84}$ based stuffed fullerenes with the atoms inside the fullerene assisting in pyramidalization to enhance orbital overlaps as described below.

60 1.1 Controlling the pyramidalization by overlap matching

The out-of-plane distortion from planarity of the trigonal carbon in C_{60} is $31.7^{0.17-18}$ Let us construct the B_{84} fullerene from C₆₀ by considering its anion, C₆₀⁻¹², which is synthesized as C₆₀⁻¹²(Li⁺)₁₂. ¹⁹⁻²⁰ From the point of view of three-dimensional delocalization each C₅ is isoelectronic with pentagonal pyramidal B₆H₆⁴. We can study the structural details of B₆H₆⁴ and the isoelectronic neutral analogues of B₆H₆⁴ namely C₄B₂H₆ and C₂B₃NH₆. The electronic structure of these 70 pentagonal pyramidal molecules are better understood through a ring-cap interaction diagram where the π -MOs of the five membered rings are stabilized by the interaction with the orbitals of the capping group, as schematically shown in Fig. 3. This also provides a way to control the surface curvature. When the orbitals 75 of the capping groups are small or the ring is large, the ring X-H bonds bend towards the cap to increase bonding. This is ideal for the design of fullerenes that requires a curved surface by symmetry. Thus we can replace all of the C_5 pentagons in C_{60}^{-12} by pentagonal pyramids with apex atom pointing towards the 80 centre of the fullerene. These 12 apex boron atoms are bonded to a central B_{12}^{2} icosahedron to form B_{84} fullerene.

Fig.3: The ring-cap overlap and resulting out-of-plane bending of hydrogens for a diffuse cap orbital and a less diffuse cap orbital respectively.

The charge in B₈₄⁵⁰⁻ can be reduced by replacement of boron atoms. A neutral carborane C₂B₁₀ unit can replace the central icosahedral B₁₂²⁻ unit in B₈₄ fullerene. There are several options for the pentagonal pyramidal B₆⁴⁻ units. ^{21,22} Replacement of four boron atoms by four carbons or three boron atoms by two carbons and one nitrogen atom removes the charge. We study the out-of-plane bending in isomers of C₄B₂H₆ and C₂B₃NH₆ so that the pentagonal pyramid with maximum out-of-plane bending can be selected for construction of the fullerene structure. The out-of-plane bend angle for the pentagonal pyramidal C₄B₂H₆ unit is only18.8° which is considerably less compared to 31.7° in C₆₀. ²³ The twelve pyramidal nido-B₆⁴⁻ units can be replaced by a neutral nido-C₂B₃N unit with the anticipation that with less diffuse orbitals of nitrogen as cap makes the ring hydrogens bent more towards N, which helps in pyramidalization. The pentagonal

Page 3 of 6 * RSC Advances

ring hydrogens bent towards the apical atom, be it B, C or N. The structure of $C_{60}^{-12}(\text{Li}^+)_{12}$ suggests yet another possibility. If two borons of the B₆ unit is replaced by a carbon and nitrogen, and a Li is used to bridge the open face of the pentagonal pyramid, an sisoelectronic bipyramidal structure, CB₄NLi, is obtained. This is anticipated to increase the bending of the X-H bond in the required direction.

2 Computational Methods

All the computations were carried out using G03 and G09 programs at B3LYP/6-31G* level. 24,25 The Relative energies, out-of-plane X-H bend angle, bond energies of pentagonal rings of eight isomers of pentagonal pyramidal $C_2B_3NH_6$ (I-VIII) are presented in Table 1. The relative energies of fullerene clusters of molecular formula $C_26B_46N_{12}$ derived from these pentagonal pyramids were also calculated. Similarly CB_4NLi (IX) and its B_{84} analog $C_{14}B_{58}N_{12}Li_{12}$ are also studied. The energies are given with ZPE correction.

3 Results and Discussions

The nido-C₂B₃NH₆ has eight isomers; two of these have nitrogen as a cap, two carbon as a cap and four boron as a cap. Twelve such C₂B₃N pentagonal pyramids are used in 25 constructing the stuffed fullerene in the following way. The five membered rings of the C₂B₃N pentagonal pyramid are connected through sigma bonds to form the fullerene surface. The twelve apex atoms are bonded to a central C₂B₁₀ unit so that a neutral cluster with composition C₂₆B₄₆N₁₂ (12C₂B₃N+C₂B₁₀) results. 30 Optimized structures of all eight isomers of C₂B₃NH₆ are shown in Fig.4 and relative energies in Table 1. The isomer VI with boron as a cap has the lowest energy. The relative energies of the eight isomers are given in Table 1. The average ring hydrogen out-of-plane bending angle θ is calculated for all the pentagonal 35 pyramidal isomers given in Table 1. The isomer (II) with nitrogen as a cap has got the largest θ value (=23.9°), which is closest to 31.7° , calculated for the ideal icosahedral C₆₀. Isomer I, which also has nitrogen cap, does not have a pentagonal pyramidal structure and it is therefore not easy to calculate an out 40 of plane bending. However the ring-cap overlap matching criteria in pyramidal molecules suggests that the isomer II and also I will be better candidates to construct the C₂₆B₄₆N₁₂ cluster compared to other isomers even though I and II are not the lowest energy isomers. The relative energies for isomers with a 45 given cap vary considerably, Table 1. Obviously, not only the ring-cap orbital compatibility but also the pentagonal ring bond energies also control the relative stabilities. The relative ring bond energy for each pentagonal ring for a given cap, calculated using sigma-bond energies of the bonds involved in the five 50 membered ring, is given in Table 1. Among the isomers with N as cap II is more stable than I because the pentagonal ring sigma bond energies for II is more than I. In the isomers with C as cap, IV is more stable than III since the bond energy for pentagonal ring for IV is large. Among the isomers with B as cap VI is the 55 most stable and has highest pentagonal ring bond energy. In VI, there is a homonuclear C-C bond and four hetero nuclear B-N. B-C bonds. In addition B as a cap is more appropriate for a pentagonal ring, whose X-H bonds are tilted from planarity by the least amount in V-VIII. However this is not as helpful from 60 the point of view of non-planarity required for fullerene surface.

No.	Cap	ΔE_1 (in	Average	ΔE_2 (in
	-	kcal/mol)	θ	kcal/mol)
	NH cap			
I	η^2 (broken)	107.3	-	73.0
II	η^5	100.8	23.9	47.6
	СН сар			
III	η^5	98.2	21.9	65.3
IV	η^5	59.9	22.1	12.6
	ВН сар			
V	η^5	42.8	13.3	52.7
VI	η^5	0.0	12.7	0.00
VII	η^5	60.9	14.1	80.0
VIII	η^5	18.5	12.3	27.3
IX	$(CB_4NLiH_6) \eta^5$	ı	26.0	-

Table 1: The relative energies ΔE_1 of pentagonal pyramidal isomers of $C_2B_3NH_6$ in kcal/mol, their average X-H out-of-plane bend angle θ , relative pentagonal ring sigma bond energies ΔE_2 respectively computed at B3LYP/6-31g* level. Lower values of ΔE_1 and ΔE_2 indicate greater stability. The relative energy in kcal/mol and out-of-plane bend angle θ of CB_4NLiH_6 (IX) also given.

(The bond energies (in kcal/mol) (C-N=72.8, B-N=106.5, C-C=82.6, B-B=70.0, B-C=89.0, N-N=40.0 C-H=98.3, B-H=93.0, N-H=92.0.) are taken from Inorganic Chemistry: Principles of Structure and Reactivity (4th Edition) by James E. Huheey, Ellen A. Keiter, Richard L. Keiter, Prentice Hall; 4 edition, 1997.)

The C₂₆B₄₆N₁₂ clusters are generated by taking twelve pentagonal pyramids of one particular isomer of C2B3N and an icosahedral C₂B₁₀ in the centre. Each pentagonal pyramidal 85 isomer can lead to a family of different stuffed boron cluster by rotating the five membered rings on the surface of large cluster, forming new orientations with respect to each other. This results in large number of isomers for the boron based stuffed fullerene. The enumeration of isomers of a classical C₄₈B₁₂ fullerene leads 90 to numbers of the order of 10¹¹. Here we have selected thirty eight structures (Supplementary material), by chemical knowledge based on the following reasoning. The bond energy of different bonds formed between each pentagonal pyramid to be as high as possible. In addition, the bond lengths should not 95 be much smaller than the B-B distances as the outer shell should not break by strain. Similarly smaller atoms, carbon and nitrogen are to be kept at apex of the pentagonal pyramids so that maximum advantage is available by the overlap match and consequent reduction of strain of the outer shell. With these 100 restrictions in mind, the substitution of B atoms by C and N atoms are done in a way where maximum B-N, B-C and B-B bonds are formed.^{27,28} Short bonds, e.g., C-C, C-N are avoided wherever possible to reduce strain of the outer ring and consequent breakage of other bonds in the cluster. Thirty-eight 105 clusters (Supplementary material) are generated using this strategy. Here 1a-1e are generated from I, 2a-2f from II, 3a-3e from III, 4a-4g from IV, 5a-5e from V, 6a-6c from VI, 7a-7d from VII, and 8a-8c from VIII, (Supplementary material). Out of these 19 have an approximately spherical (closo) structure. 110 These are examined and eight low energy structures from this

list, (Fig.5), are selected for discussion. Even though the isomer I is largely distorted from a pentagonal pyramidal structure, the pyramidal structure is brought back when it becomes part of the large fullerene cluster and a stable closo B₈₄ based CBN cluster results. The relative energies of the eight clusters calculated from the eight C₂B₃N isomers are given in Table 2. The clusters 1b, 2c, 4c, 6b have an approximately spherical closo fullerene-like structure compared to clusters 3b, 5c, 7b and 8b where distortions in spherical symmetry occur due to breakage of some bond leading to open spaces in the cluster. This is seen in clusters where the nitrogens are on the surface of the cluster, which results in the formation of short C-N bonds on the surface of the cluster. The short bonds cause strain in the cluster resulting in

breakage of the other bonds in the cluster. As a result the cluster 15 loses its spherical shape and takes a less symmetric open structure.

20

Fig.4: Given are the global minimum structures of pentagonal pyramidal isomers of $C_2B_3NH_6$ calculated at B3LYP/6-31g* level 25 and their relative energies in kcal/mol and given in brackets are their out-of-plane bend angle θ .

However, clusters 4c and 6b with nitrogens on the 30 surface still retain approximately spherical, closo structures. Obviously nitrogen on the surface is not the only reason for the breakage of bonds, but the clusters having pentagonal pyramids with C-N, C-C bonds in the pentagon ring show a tendency to break bonds and to distort. We anticipate that these inherent 35 distortions in the pentagonal ring of the cluster can be reduced by replacing the B or C or N by Al or Si or P, so that the bond shortening in one part of the pentagonal pyramid in the cluster due to shorter C-N, C-C bonds leading to breakage of bonds can be compensated. Even though 4c and 6b may form closed stable 40 fullerene clusters, they can have isomers having C-N, C-C bonds leading to the rupture of cluster. This can be avoided in clusters with N as cap since they also help more in pyramidalization of the triagonal arrangement of the surface atoms due to their large θ value (Table 1) compared to other pentagonal pyramidal 45 isomers.

These structures are found to be minima on their PES. The stability of these fullerene like clusters are further checked by the theoretical IR spectrum of the eight closo minimum 50 energy clusters (Supplementary information). The kT value of lowest frequency mode with non-zero intensity in kcal/mol for these eight clusters is given in Table 2. The clusters 1b, 2c, 4c and 6b have frequencies with energies greater than the room temperature kT value=0.59kcal/mol, which indicates they are 55 stable at room temperature.²⁹ Also the intensities of the lower frequencies are less in these above mentioned clusters. Cluster **1b** has a low frequency of 207.05cm⁻¹=0.59kcal/mol with zero intensity. So we can neglect this low frequency. The next low frequency with non-zero intensity is much above the room 60 temperature kT value which is around 0.77kcal/mol. This points out that these clusters may remain as closo fullerene like clusters because none of the bonds are broken at room temperature. The C₆₀ fullerene has four strong IR absorptions at 528, 577, 1183, and 1429 cm⁻¹. Among these the lowest frequency when 65 converted to kT have a value of 1.5kcal/mol which is much greater than room temperature kT value indicating its stability. This may pave the way for the future experimental work on these molecules. Whereas, 3b, 5c, 7b and 8b clusters have frequencies whose energies are below the room temperature kT indicating 70 there are bonds that may break leading to less stable open structures.

Cluster Isomer	HOMO- LUMO Gap (in eV)	kT value of lowest frequency mode with non-zero intensity.(kcal/mol)	Relative energy in kcal/mol
1b(I,)	2.87	0.77	1099.10
2c(II)	3.58	0.79	960.31
3b(III)	2.00	0.38	647.75
4c(IV)	4.27	0.76	515.67
5c(V)	1.36	0.27	838.92
6b(VI)	4.04	0.62	493.35
7b(VII)	1.82	0.34	415.10
8b(VIII)	1.20	0.57	0.00
9	2.24	0.45	-

75 Table:2: HOMO-LUMO Gap (in eV), kT values (in kcal/mol) and Relative energies (in kcal/mol) of the lower energy closo structures (1b-8b) of $C_{26}B_{46}N_{12}$ clusters out of the thirty eight clusters from pentagonal pyramids I to VIII and $C_{14}B_{58}N_{12}Li_{12}$ (9) calculated at B3LYP/6-31g* level.

The HOMO-LUMO gaps of the selected eight closo minimum energy clusters are compared with that of C_{60} HOMO-LUMO gap of 2.3 ± 0.1 eV. The HOMO-LUMO gaps for the seight clusters 1-8 are given in Table 2. Clusters 1b, 2c, 4c, 6b have larger HOMO-LUMO energy gaps than C_{60} indicating their stability. Out of these the two structures with N as cap give the largest HOMO-LUMO gap. Both of them also have bond frequencies above room temperature kT value indicating that they can be selected as candidate out of these clusters for the

Page 5 of 6 * RSC Advances

Fig.5

Fig.5: The closo minimum energy structures for $C_{26}B_{46}N_{12}$ clusters out of the thirty eight clusters calculated from the eight pentagonal pyramidal isomers **I-VIII** of $C_2B_3NH_6$ at $B3LYP/6-31g^*$ level.

synthesis of CBN fullerenes based on B_{84} structure. The qualitative idea of overlap matching to reduce the strain of the surface atoms appears to be valid.

Further reduction in strain of the surface atoms can be achieved in the following way. The out-of-plane X-H bend angle for CB₄NLi (**IX**) is 26° (Table 1). A Li atom on the top of the five membered ring pushes the ring substituents away from Li, while a nitrogen atom on the opposite side would prefer the ring 15 substituents move towards it. The net result is that the strain is reduced further. Incorporation of the five membered ring in the cluster surface must reduce strain further. The structure $C_2B_{10}@(C_2B_3N)_{12}$ can be visualized as having 12 negative charges if one carbon of the pentagonal pyramid is replaced by a 20 boron atom and a Li is placed on the open five membered ring. This leads to $C_2B_{10}@(CB_4NLi)_{12}$ i.e.; $C_{14}B_{58}N_{12}Li_{12}$ (9) (Fig.6), the HOMO-LUMO gap and the kT value of lowest frequency mode with non-zero intensity are given in Table 2. The two lowest vibrational modes are having kT values less than 0.59 25 kcal/mol with very low intensities 0.09 and 1.4 respectively, but the other higher intensity frequency modes much above kT value. Li at the apex provides an additional advantage. A Li atom on the top of the five membered ring pushes the ring substituents away from Li, while a nitrogen atom on the opposite side would 30 prefer the ring substituents move towards it. The net result is that the strain is reduced further. Cartesian coordinates and energies of all the structures generated are given in the supplementary material.

Fig.6: The minimum energy structure for $C_{14}B_{58}N_{12}Li_{12}$ cluster computed at B3LYP/6-31g* level.

50 3.1 Experimental possibilities

Various C-B-N fullerenes were synthesized by polymer pyrolysis, chemical reactions, arc-melting and electronbeam irradiation. Atomic structure and formation mechanism investigated by High Resolution Electron 55 Microscopy(HREM), Energy Dispersive Spectrometer(EDS) studies, and Electron Energy Loss Spectroscopy(EELS).³² Laser vaporization of a graphite pellet containing boron nitride powder was found to produce fullerenes in which one or more atoms of the hollow carbon cage was replaced by a boron atom.33 60 Numerous fullerenes were synthesized in various B-C-N materials by *in-situ* electron beam irradiation in a high-resolution transmission analytical electron microscope. Starting materials like chemical-vapor deposited graphitic carbon (B-C materials), fused mixtures of boric acid and urea (hexagonal BN, /iBN), 65 boric acid, urea and saccharose (B-C-N materials) and sodium tetrahydroborate and ammonium (rhombohedral BN, rBN) were used for irradiation experiments. The transformation to fullerenelike morphology from originally flat or curled and jumbled graphene-like sheets or polygonal particles takes place through a 70 solid-state phase transition by rearrangement of atoms, which is drastically enhanced by thermal and irradiation-induced diffusion. In all of the above reported CBN clusters, the doping of B and N atoms take place on a C₆₀ fullerene which has an inherent strain due to curving. In addition, as the number of $_{75}$ nitrogen atoms increases in these CBN clusters based on C_{60} fullerene, the possibilities for C-N, N-N bonds which cause breakage or distortion in the C_{60} increase. ³⁴⁻³⁸ This can be reduced in B_{84} based stuffed fullerenes. In the B_{84} based stuffed CBN clusters in addition to charge neutralization of B_{84}^{50-} by replacing 80 B atoms by C and N atoms, there is an inherent bend angle (curvature) for the pentagonal pyramids that makes the curving easier during the formation of the fullerene. Variations on these strategies may be tried for generating the (CBN based) stuffed fullerenes.

85 Conclusions

The strain involved in bending away from the trigonal planar structure of spherical C₆₀ fullerene can be reduced in stuffed boron fullerene clusters by selecting pentagonal pyramids that have high curvature (bend angle). The most appropriate pyramidal structure for this purpose is calculated to be C₂B₃N where N is in the apex position. The curvature effect is only one contributor to stability; the individual bond energies, type of bonds formed also add up to decide the relative energies,

stability and structure of the cluster. The strain involved in the rings due to shorter C-C, C-N, C-B bonds can be decreased by appropriate substitutions so that approximate spherically symmetric clusters can be made. A fullerene analog with 5 C₁₄B₅₈N₁₂Li₁₂ is also a good candidate for realizing stuffed fullerenes.

Acknowledgements

We thank IISER TVM for providing the necessary computational facilities. V. K. thanks UGC for a JRF and E. D. J. thanks DST for J. C. Bose Fellowship.

References

- Keese, R., Chemical Reviews 2006, 106 (12), 4787-4808; Siebert,
 W.; Gunale, A., Chemical Society Reviews 1999, 28 (6), 367-371; I.
 Minkin, V.; M. Minyaev, R.; Hoffmann, R., Russian Chemical Reviews
 2002, 71 (11), 869-892; Sorger, K.; Ragué; Schleyer, P. v., Journal of Molecular Structure: THEOCHEM 1995, 338 (1-3), 317-346.
- 20 2. George A. Olah, G. K. Surya Prakash, Robert E. Williams, Kenneth Wade, Leslie D. Field, *Hypercarbon Chemistry*(2 edition), 2011, Wiley-Interscience.
- 3. Rasmussen, L. R. a. D. R., Pure Appl. Chem. 1998, 70, 1977-1984; Hoffmann, R.; Alder, R. W.; Wilcox, C. F., Journal of the American
- 25 Chemical Society 1970, 92 (16), 4992-4993; Rasmussen, D. R.; Radom, L., Angewandte Chemie International Edition 1999, 38 (19), 2875-2878.
 - 4. von Rague Schleyer, P.; Boldyrev, A. I., *Journal of the Chemical Society, Chemical Communications* **1991,** (21), 1536-1538; Collins, J. B.; Dill, J. D.; Jemmis, E. D.; Apeloig, Y.; Schleyer, P. v. R.; Seeger, R.;
- 30 Pople, J. A., Journal of the American Chemical Society 1976, 98 (18), 5419-5427; Boldyrev, A. I.; Simons, J., Journal of the American Chemical Society 1998, 120 (31), 7967-7972; Sateesh, B.; Srinivas Reddy, A.; Narahari Sastry, G., Journal of Computational Chemistry 2007, 28 (1), 335-343; James E. Huheey, E. A. K., Richard L. Keiter,
- 35 Inorganic Chemistry: Principles of Structure and Reactivity (4th Edition) 1997, Prentice Hall.
 - 5. E. K. Osawa, K., Chem. Abstr. 1970, 25.
 - 6. Jemmis, E. D.; Jayasree, E. G., Accounts of Chemical Research 2003, 36 (11), 816-824.
- 40 7. Gonzalez Szwacki, N.; Sadrzadeh, A.; Yakobson, B. I., *Physical Review Letters* 2007, 98 (16), 166804.
 - 8. Prasad, D. L. V. K.; Jemmis, E. D., *Physical Review Letters* **2008**, *100* (16), 165504.
- 9. Li, F.; Jin, P.; Jiang, D.-e.; Wang, L.; Zhang, S. B.; Zhao, J.; Chen, 45 Z., *The Journal of Chemical Physics* **2012**, *136* (7), 074302.
 - 10. Jemmis, E. D.; Balakrishnarajan, M. M., *Journal of the American Chemical Society* **2001**, *123* (18), 4324-4330.
 - 11. Prasad, D. L. V. K.; Balakrishnarajan, M. M.; Jemmis, E. D., *Physical Review B* **2005**, *72* (19), 195102.
- 50 12. Jemmis, E. D.; Prasad, D. L. V. K., Journal of Solid State Chemistry 2006, 179 (9), 2768-2774.
 - 13. Balakrishnarajan, M. M., Jemmis, E. D., *J. Am. Chem. Soc.* **2000**, *122*, 7392-7393.
- 14. Jemmis, E. D.; Balakrishnarajan, M. M.; Pancharatna, P. D., *Journal* 55 of the American Chemical Society **2001**, 123 (18), 4313-4323.
 - 15. Jemmis, E. D.; Balakrishnarajan, M. M.; Pancharatna, P. D., *Chemical Reviews* **2001**, *102* (1), 93-144.

- 16. Wade, K., Journal of the Chemical Society D: Chemical Communications 1971, (15), 792-793.
- 60 17. Solà, M; Mestres, J; and Duran, M; J. Phys. Chem, 1995, 99, 10752.
 - Nunzi, F; Sgamellotti, A; Re, N; J. Chem. Soc., Dalton Trans., 2002, 399–404.
- Kohanoff, J; Andreoni, W; Parrinello, M; Chem. Phys. Lett., 1992, 198 (5), 472-477.
- 65 20. T. P. Martin, N. M., U. Zimmermann, U. Näher, and H. Schaber, J. Chem. Phys. 1993, 99, 4210.
 - 21. Jemmis, E. D., J. Am. Chem. Soc. 1982 104 (25), 7017-7020.
- 22. Kumar, E. D. J. a. P. N. V. P., Proc. Ind. Acad. Sci. 1984, 93, 479-489
- 70 23. Prasad, D. L. V. K.; Jemmis, E. D., Applied Physics Letters 2010, 96 (2), 023108.
- 24. Frisch, M. J., et al. *Gaussian 03*, Revision C.02; Gaussian, Inc.: Wallingford, CT, **2004**.
- 25. Frisch, M. J., et al. Gaussian 09, revision A.02; Gaussian, Inc.:
- 75 Wallingford, CT, 2009.
- 26. Ghorbani, M and Songhori, M, Fullerenes, Nanotubes and Carbon Nanostructures, 2013, 21(6), 460-471.
- 27. Xu, X.; Shang, Z.; Wang, G.; Li, R.; Cai, Z.; Zhao, X., *The Journal of Physical Chemistry A*, **2005**, *109* (16), 3754-3761.
- 80 28. Kar, T.; Pattanayak, J.; Scheiner, S., The Journal of Physical Chemistry A, 2003, 107 (41), 8630-8637.
- 29. Atkins, P; Paula, J D; *Atkins' Physical Chemistry*(9th *Edition*), **2010**, Oxford University Press.
- 30. Kriitschmer, W; Fostiropoulos, K; Huffman, D. R; *Chemical* 85 *Physics Letters*, 1990, 170(2),
- 31. Kratschmer, W.; Lamb, L. D.; Fostiropoulus, K.: Huffman, D. R. *Nature* **1990**, *347*, 354.
- 32. Lof, R. W.; van Veenendaal, M. A.; Koopmans, B.; Jonkman, H. T.; Sawatzky, G. A., *Physical Review Letters* **1992**, *68* (26), 3924-3927.
- 90 33. Oku, T.; Hirano, T.; Kuno, M.; Kusunose, T.; Niihara, K.; Suganuma, K., Materials Science and Engineering: B 2000, 74 (1–3), 206-217.
- 34. Guo, T.; Jin, C.; Smalley, R. E., *The Journal of Physical Chemistry* **1991**, *95* (13), 4948-4950.
- 35. D. Golberg, Y. B., O. Stephanl, L. Bourgeois, K.Kurashima, T.
- 95 Sasaki, T. Sato, and C. Goringe, Journal of Electron Microscopy, 1999, Oxford University Press, 48 (6), 701-709.
- 36. Dunk, P. W.; Rodríguez-Fortea, A.; Kaiser, N. K.; Shinohara, H.; Poblet, J. M.; Kroto, H. W., *Angewandte Chemie International Edition* **2013**, *52* (1), 315-319.
- 37. Aihara, J.-I., Fullerene Science and Technology 1999, 7 (5), 879-896.
 38. Pattanayak, J.; Kar, T.; Scheiner, S., The Journal of Physical Chemistry A 2002, 106 (12), 2970-2978.
- ^a School of Chemistry, Indian Institute of Science Education and 105 Research Thiruvananthapuram, CET Campus,
 - Thiruvananthapuram, 695 016, India.
 - b Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India. E-mail:jemmis@iisertvm.ac.in.
- Supplementary Information (ESI): Cartesian coordinates of optimized geometries and energies of structures are given. The individual X-H out-of-plane bend angles of all the eight pentagonal pyramids are given. See DOI: