RSC Advances

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

A novel KI/TBHP-catalyzed 1,3-dipolar cycloaddition/oxidation/aromatization cascade reaction provided a general, efficient and green access to biologically important pyrrolo[2,1-a]isoquinolines.

Cite this: DOI: 10.1039/c0xx00000x

ARTICLE TYPE

RSC Advances Accepted Manuscript

A General, Simple and Green Access to Pyrrolo[2,1-a]isoquinolines Using KI/TBHP Catalytic System

Huan-Ming Huang,^a Fang Huang^b, Yu-Jin Li^{*a}, Jian-Hong Jia,^a Qing Ye,^a Liang Han,^a Jian-Rong Gao^{*a}

50

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

A novel KI/TBHP-catalyzed 1,3-dipolar cycloaddition/oxidation/aromatization cascade reaction provided a general, efficient and green access to biologically important pyrrolo[2,1-a]isoquinolines. The product pyrrolo[2,1-a]isoquinolines were obtained from reactions between simple, readily available dipolarophiles and tetrahydroisoquinolines in moderate to excellent yields The reaction was environmentally benign in

¹⁰ adoption of nontoxic KI as catalyst and IOH was generated *in situ* from the oxidation reaction of KI and TBHP.

Introduction

Recently, various challenging metal-free reactions have been developed *via* hypervalent iodine,¹ molecular iodine,² DDQ,³ 15 strong base⁴ etc. as catalysis. Very recently, a novel class of iodide-based oxidation catalysts was introduced by Ishihara and co-workers,⁵ and the most important features of this catalytic system are the oxidation reactions require no metals and that

water or *tert*-butyl alcohol is the only by-product derived from ²⁰ the co-oxidant. Comparing to molecular iodine, iodide is cheaper, non-toxic and safe to the environment. This green and efficient

- non-toxic and safe to the environment. This green and efficient method has attracted various chemists to synthesize abundant important compounds such as 2-acyl-2,3-dihydrobenzofuran derivatives,^{5b} 2-aminobenzoxazoles,⁶ *N*-nitrosamines,⁷ amides,⁸ ²⁵ 2-aryl benzothiazoles,⁹ sulfonated oxindoles,¹⁰ a-amino acid
- esters,¹¹ *tert*-butyl peresters,¹² allylic ester,¹³ *N*-sulfonyl formamidine,¹⁴ benzylic esters,¹⁵ highly functionalized [6,6,5] tricyclic frameworks¹⁶ and iodophenols¹⁷ et al.

The pyrrolo[2,1-a]isoquinoline structure occurs in lamellarin

- ³⁰ alkaloids, a newly discovered family of marine natural products that exhibit a wide spectrum of biological activities containing potent inhibitor of human topoisomerase I, inhibition of HIV integrase and potential antitumor activities (Figure 1).¹⁸ So far, various approaches to the synthesis of this useful carbon skeleton
- ³⁵ have been developed,¹⁹ especially the powerful 1,3-dipolar cycloaddition.^{20m-s} Very recently, iodine-catalyzed 1,3-dipolar cycloaddition/oxidation/aromatization cascade with hydrogen peroxide as the terminal oxidant to pyrrolo[2,1-a]isoquinolines was reported by our group (Scheme 1, eq 1).^{19s} As part of our
- ⁴⁰ ongoing research program the functionalized quinone structures^{19s, 20} and inspired by the reported iodide-based oxidation catalysts, we herein report a general, simple and green access to pyrrolo[2,1-a]isoquinolines using KI/TBHP catalytic system (Scheme 1, eq 2). The reaction was environmentally
- ⁴⁵ benign in adoption of nontoxic KI as catalyst and IOH was generated *in situ* from the oxidation reaction of KI and TBHP.

55 Results and discussion

Initially, we focused on examining the feasibility of the reaction of 1,4-naphthoquinone (**1a**) with ethyl 2-(3,4-dihydroisoquinolin-2(1H)-yl)acetate (**2a**) and optimizing the reaction conditions. Excitingly, the proposed reaction between **1a** and **2a** did indeed ⁶⁰ occur in the presence of KI (20 mol%) and 70% aqueous TBHP (3 equiv) in DMF (80 °C) for 10 h to afford the corresponding product (**3a**) in 60% yield (Table 1, entry 1). This result was due to iodine generated *in situ* from the oxidation reaction of iodide with TBHP. Several other solvents were also examined, but the yield of 3a was not improved in all these tested solvents comparing with DMF (entry 2-6). The yield of 3a was still not increased when the amount of KI was up to 30 mol% (entry 7). However, the yield of 3a was increased slightly when amount

- ⁵ of 70% aqueous TBHP was increased to 6 equiv (entry 8). When the amount of **2a** increased to 1.5 euqiv, the yield of **3a** was up to 73% (entry 9). Encouraged by these results, we further increased the amount of **2a** to 1.7 equiv, the yield of **3a** was obtained in 87% (entry 10). However, the yield of **3a** decreased slightly when **Table 1** Optimization of reaction conditions^a
- ¹⁰ the amount of **2a** increased to 2 equiv (entry 11). To further improve the economy of the reaction, the amount of KI decreased to 0.1 equiv, **3a** was only obtained in 70% yield (entry 12). Another oxidant (35% aqueous H_2O_2) was added instead of 70% aqueous TBHP, we only obtained **3a** in 50% yield (entry 13). ¹⁵ Finally, the best yield of **3a** (87%) was obtained from the reaction of **1a** (1 mmol), **2a** (1.7 mmol), KI (20 mol %), and 70% aqueous TBHP (3 mmol) in DMF (5 mL) at 80 °C for 9 h (entry 10).

	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 1a \end{array} + \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $					
entry	solvent	temp (°C)	time (h)	KI (equiv)	1a:2a	yield of 3a (9
1	DMF	80	10	0.2	1:1.2	60
2	EtOH	reflux	15	0.2	1:1.2	57
3	CH ₃ CN	reflux	30	0.2	1:1.2	51
4	CHCl ₃	reflux	28	0.2	1:1.2	47
5	THF	reflux	17	0.2	1:1.2	54
6	1,4-dioxane	reflux	16	0.2	1:1.2	57
7	DMF	80	10	0.3	1:1.2	57
8°	DMF	80	10	0.2	1:1.2	61
9	DMF	80	9	0.2	1:1.5	73
10	DMF	80	9	0.2	1:1.7	87
11	DMF	80	9	0.2	1:2.0	86
12	DMF	80	14	0.1	1:1.7	70
			10	0.0	117	50

^a Compound **1a** (1.0 mmol), **2a** (1.2-2.0 mmol), KI (10 mol%-30 mol%) and 70% aqueous TBHP (3-6 equiv) in solvent (5 mL) were stirred for several ²⁰ hours at the specified temperature until **1a** was consumed. ^bIsolated yield. ^cThe amount of 70% aqueous TBHP was increased to 6 equiv. ^d 3 equiv. 35% aqueous H₂O₂ was added instead of 70% aqueous TBHP.

With the optimal reaction conditions established, we then examined the substrate scope of this KI/TBHP catalytic system to construct pyrrolo[2,1-a]isoquinolines (Scheme 2).

- ²⁵ As the reaction of **1a**, 1,4-anthraquinone (**1b**) was also reacted smoothly with **2a** and the corresponding products (**3b**) was yielded in 93%. However, when *N*-phenyl maleimides (**1c**) was employed under the optimal condition, the corresponding product (**3c**) was only obtained in 70% yield. When the amount of TBHP
- ³⁰ was up to 6 equiv, the yield of **3c** increased to 94%. Then several other *N*-substituted maleimides (**1d–1h**) reacted with **2a** in the presence of 6 equivTBHP and the corresponding products (**3d-3h**) were obtained in good yields (74%-94%). More importantly, other dipolarophiles, such as activated alkynes and acrylates, also
- ³⁵ reacted smoothly with 2a to afford the desired products in moderate yields 78% and 50%. To further evaluate the substrate scope, we examined various tetrahydroisoquinoline derivatives 2. Excitingly, 3k was obtained in 90% yield when ethyl 2-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)acetate (2b) was
- ⁴⁰ employed. Similarly, the desired products **3l** and **3m** were both obtained in 80% when 1,4-anthraquinone (**1b**) and *N*phenylmaleimide (**1c**) reacted with **2b**. Encouraged by these results, we prepared some tetrahydroisoquinoline derivatives containing various ester groups (methyl, ethyl, tertiary butyl, and

⁴⁵ benzyl) and allowed them to react with 1,4-naphthoquinone (1a) or *N*-phenylmaleimide (1c). The corresponding products 3m-3r were also obtained in good yields, except the lower yield of 3p and 3q in 61% and 58% due to the steric of *tert*-butyl group. The yields obtained using the protocol described here were ⁵⁰ comparable to those reported in Ref. 19s (Scheme 2, yields in parentheses), indicating that the products can be synthesized effectively *via* 1,3-dipolar cycloaddition/oxidation/aromatization cascade reaction. This approach could therefore be considered a proper alternative to the reported process catalyzed by iodine ⁵⁵ reported in Ref. 19s. Moreover, the paper's merit lay in the adoption of environmentally benign catalyst (KI) which was

favorable and highly pursued nowadays. According to the above experimental results and previous reports,^{5, 7, 8b, 11-14, 19s, 21} a plausible mechanism was proposed ⁶⁰ (Scheme 3). Initially tertiary amine (**2a**) was oxidized to isoquinolinium salt **A** by IOH, which was oxidized from KI by TBHP.²² Then 1,3-dipole **B** was formed by elimination of HI with **2a** served as tertiary amine base, and then the 1,3-dipolar cycloaddition reaction between **B** and **1a** to afford the addition ⁶⁵ intermediate **D**. Finally, **3a** was formed through sequential oxidation. At the same time, intermediate **C** was reoxidized to IOH and **2a** in the presence of excess TBHP.²³

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Scheme 2 Reaction of different dipolarophiles with tetrahydroisoquinolines.

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

ARTICLE TYPE

Scheme 3 Proposed mechanism

Conclusions

- ⁵ In summary, we have developed a novel protocol for the synthesis of pyrrolo[2,1-a]isoquinolines using KI/TBHP catalytic system. The reaction is environmentally benign in adoption of nontoxic KI as catalyst and IOH is generated *in situ* from the oxidation reaction of KI and TBHP. This novel KI/TBHP-
- ¹⁰ catalyzed 1,3-dipolar cycloaddition/oxidation/aromatization cascade reaction provides a general, efficient and green access to biologically important pyrrolo[2,1-a]isoquinolines and more transformations by this useful catalytic system are currently underway in our laboratory.

15 Experimental

General information

All solvents were purified and dried using standard methods prior to use. Commercially available reagents were used without further purification. ¹H NMR spectra were recorded on an NMR

- ²⁰ instrument operated at 500 MHz. Chemical shifts are reported in ppm with the solvent resonance as the internal standard (CDCl₃: δ 7.26 ppm). ¹³C NMR spectra were recorded on an NMR instrument operated at 125 MHz with complete proton decoupling. Chemical shifts are reported in ppm with the solvent
- $_{25}$ resonance as the internal standard (CDCl₃: δ 77.1 ppm). MS and HRMS were measured in EI or ESI mode and the mass analyzer of the HRMS was TOF. Thin layer chromatography was

performed on pre-coated glass back plates and visualized with UV light at 254 nm. Flash column chromatography was ³⁰ performed on silica gel.

Representative procedure for the synthesis of 3a

A dipolarophile **1a** (1.0 mmol) was added to a mixture of a tetrahydroisoquinoline **2a** (1.7 mmol), 70% aqueous TBHP (3-6 mmol), and potassium iodide (0.2 mmol) in DMF (5.0 mL). The solution was stirred for 9 h at 80 °C. After **1a** was completely consumed (as indicated by TLC and GC-MS), the reaction mixture was washed with aqueous Na₂S₂O₃, dried over magnesium sulfate, and concentrated in vacuo. Purification of the crude product by flash chromatography on silica gel with CH₂Cl₂ ⁴⁰ as the eluent provided desired products **3a**.

Ethyl 9,14-dioxo-5,6,9,14-tetrahydrobenzo[**5,6**]isoindolo[**1,2-a**] isoquinoline-8-carboxylate (**3a**) ^{19m}: yellow solid, yield 87% (0.323 g), mp 144-145°C; ¹H NMR (500 MHz, CDCl₃): δ (ppm) 9.01 (d, J = 8.0 Hz, 1H), 8.31-8.30 (m, 1H), 8.23-8.21 (m, 1H), 7.75-7.69 (m, 2H), 7.46 (t, J = 8.0 Hz, 1H), 7.39 (t, J = 6.5 Hz, 1H), 7.29-7.27 (m, 1H), 4.56 (q, J = 7.0 Hz, 2H), 4.30 (t, J = 6.5 Hz, 2H), 3.12 (t, J = 6.5 Hz, 2H), 1.51 (t, J = 7.0 Hz, 3H); IR

55

v/cm⁻¹ (KBr) 1704, 1660, 1524, 1465, 1413, 1384, 1311, 1268, 1227, 1141, 1108, 1047, 1010, 984, 790, 729, 711; GC-MS *m*/*z* 372.0 [M+1]⁺, 326.7, 301.0, 243.6, 77.8, 51.0.

Ethyl 9,16-dioxo-5,6,9,16-tetrahydronaphtho[5,6]isoindolo[1,2 -a]isoquinoline-8-carboxylate (3b) ¹⁹⁵: orange solid, yield 93% (0.392 g), mp 234-235°C; ¹H NMR (500 MHz, CDCl₃): δ (ppm) 9.00 (d, *J* = 8.0 Hz, 1H), 8.71 (s, 1H), 8.63 (s, 1H), 7.95-7.94 (m, ¹⁰ 2H), 7.55-7.54 (m, 2H), 7.41 (t, *J* = 7.5 Hz, 1H), 7.32 (t, *J* = 8.0 Hz, 1H), 7.21 (d, *J* = 7.5 Hz, 1H), 4.57 (q, *J* = 7.0 Hz, 2H), 4.22 (t, *J* = 6.5 Hz, 2H), 3.06 (t, *J* = 6.5 Hz, 2H), 1.54 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 179.4, 179.2, 161.6, 135.5, 134.8, 134.6, 133.5, 132.1, 131.2, 129.9, 129.8, 129.7, 129.2, 12 15 9.0, 128.8, 128.7, 128.5, 127.3, 127.3, 126.4, 126.1, 124.0, 118.2,

¹⁵ 9.0, 128.8, 128.7, 128.5, 127.3, 127.3, 126.4, 126.1, 124.0, 118.2, 62.5, 43.1, 29.1, 14.1; IR ν /cm⁻¹ (KBr) 1665, 1461, 1267, 1016, 7 51; HRMS (ESI-TOF) *m*/*z* Calcd for C₂₇H₂₀NO₄ [M+H]⁺ 422.139 2, found 422.1388.

20

Ethyl 9,11-dioxo-10-phenyl-6,9,10,11-tetrahydro-5H-pyrrolo [3',4':3,4]pyrrolo[2,1-a]isoquinoline-8-carboxylate (3c) ^{19m}: wh ite solid, yield 94% (0.363 g), mp 190-191°C; ¹H NMR (500 MH z, CDCl₃): δ (ppm) 8.59 (d, J = 8.5 Hz, 1H), 7.50 (t, J = 7.0 Hz, 2 ²⁵ H), 7.43-7.36 (m, 5H), 7.29 (d, J = 7.5 Hz, 1H), 4.77 (q, J = 8.0 H z, 2H), 4.44 (q, J = 7.0 Hz, 2H), 3.18 (t, J = 7.0 Hz, 2H), 1.48 (t, J = 8.0 Hz, 3H); IR ν /cm⁻¹ (KBr) 1759, 1709, 1551, 1482, 1421, 13 84, 1341, 1301, 1279, 1198, 1155, 1111, 1090, 1051, 945, 895, 8 62, 823, 759; GC-MS *m*/*z* 386.8 [M+1]⁺, 385.8, 339.9, 314.0, 270. ³⁰ 1, 139.1.

Ethyl 10-(4-methoxyphenyl)-9,11-dioxo-6,9,10,11-tetrahydro-5*H*-pyrrolo-[3',4':3,4] pyrrolo[2,1-*a*]isoquinoline-8-carboxylat ³⁵ e (3d) ¹⁹ⁿ: white solid, yield 74% (0.308 g), mp 168-169°C; ¹H N MR (500 MHz, CDCl₃): δ (ppm) 8.57 (d, *J* = 7.5 Hz, 1H), 7.41-7. 35 (m, 2H), 7.31 (d, *J* = 8.5 Hz, 2H), 7.28-7.27 (m, 1H), 7.00 (d, *J* = 9.0 Hz, 2H), 4.75 (t, *J* = 7.0 Hz, 2H), 4.42 (q, *J* = 7.5 Hz, 2H), 3.84 (s, 3H), 3.17 (t, *J* = 7.0 Hz, 2H), 1.47 (t, *J* = 7.5 Hz, 3H); IR ⁴⁰ *v*/cm⁻¹ (KBr) 1761, 1707, 1514, 1385, 1280, 1250, 1194, 1159, 1 111, 1031, 809, 743; GC-MS *m*/*z* 417.3 [M+1]⁺, 385.1, 325.6, 28 8.2, 236.1, 156.7, 71.1.

⁴⁵ Ethyl 10-(4-nitrophenyl)-9,11-dioxo-6,9,10,11-tetrahydro-5*H*-pyrrolo-[3',4':3,4] pyrrolo[2,1-*a*]isoquinoline-8-carboxylate (3
e) ¹⁹ⁿ: yellow solid, yield 81% (0.349 g), mp 206-207°C; ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.55 (d, *J* = 8.5 Hz, 1H), 8.35 (d, *J* = 9.0 Hz, 2H), 7.72 (d, *J*= 9.5 Hz, 2H), 7.46-7.40 (m, 2H), 7.32 (d, ⁵⁰ *J* = 7.0 Hz, 1H), 4.80 (t, *J* = 6.5 Hz, 2H), 4.46 (q, *J* = 7.5 Hz, 2H), 3.21 (t, *J* = 6.5 Hz, 2H), 1.49 (t, *J* = 7.5 Hz, 3H); IR v/cm⁻¹ (KBr) 1761, 1713, 1524, 1384, 1321, 1277, 1194, 1138, 1109, 1040, 10 11, 893, 853, 817, 777; GC-MS *m*/*z* 432.5 [M+1]⁺, 400.2, 333.8, 263.9, 200.9, 184.5, 85.1.

Ethyl 10-(4-trifluoromethylphenyl)-9,11-dioxo-6,9,10,11-tetra hydro-5*H*-pyrrolo-[3',4':3,4]pyrrolo[2,1-*a*]isoquinoline-8-carb oxylate (3f) ¹⁹⁸: white solid, yield 83% (0.377 g), mp 203-204°C; ⁶⁰ ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.49-8.47 (m, 1H), 7.72 (d, J = 8.5 Hz, 2H), 7.58 (d, J = 8.5 Hz, 2H), 7.36-7.34 (m, 2H), 7.25 (t, J = 4.5 Hz, 1H), 4.70 (t, J = 7.0 Hz, 2H), 4.39 (q, J = 7.0 Hz, 2 H), 3.13 (t, J = 7.0 Hz, 2H), 1.47 (t, J = 7.0 Hz, 3H); ¹³C NMR (C DCl₃, 125 MHz): δ (ppm) 162.2, 160.6, 159.1, 135.8, 134.2, 133. ⁶⁵ 5, 132.3, 130.3, 127.7, 127.6, 127.5, 126.8, 125.7, 125.6, 125.5, 1 25.1, 124.5, 122.8, 118.8, 115.6, 61.5, 43.2, 27.9, 13.9; IR v/cm⁻¹ (KBr) 1762, 1712, 1477, 1417, 1385, 1325, 1277, 1196, 1162, 11 17, 1068, 1019, 947, 895, 845, 815; GC-MS *m*/*z* 454.7 [M+1]⁺, 4 53.8, 371.0, 408.8, 381.8, 338.0, 139.0; HRMS (ESI-TOF) *m*/*z* C ⁷⁰ alcd for C₂₄H₁₈F₃N₂O₄ [M+H]⁺ 455.1219, found 455.1216.

Ethyl 10-benzyl)-9,11-dioxo-6,9,10,11-tetrahydro-5*H*-pyrrolo-[3',4':3,4]pyrrolo [2,1-*a*] isoquinoline-8-carboxylate (3g) ¹⁹ⁿ: w ⁷⁵ hite solid, yield 88% (0.352 g), mp 200-201°C; ¹H NMR (500 M Hz, CDCl₃): δ (ppm) 8.49 (d, *J* = 7.5 Hz, 1H), 7.45 (d, *J* = 7.0 Hz, 2H), 7.38-7.30 (m, 3H), 7.27-7.23 (m, 1H), 7.20 (d, *J* = 7.0 Hz, 1 H), 4.77 (s, 2H), 4.68 (t, *J* = 7.0 Hz, 2H), 4.43 (q, *J* = 7.0 Hz, 2H), 3.10 (t, *J* = 7.0 Hz, 2H), 1.49 (t, *J* = 7.0 Hz, 3H); GC-MS *m/z* 40 ⁸⁰ 1.0 [M+1]⁺, 400.0, 371.0, 353.9, 325.9, 224.2, 195.1.

Ethyl 10-propyl-9,11-dioxo-6,9,10,11-tetrahydro-5H-pyrrolo [3',4':3,4]pyrrolo[2,1-a] isoquinoline-8-carboxylate (3h) ¹⁹⁸: w ⁵ hite solid, yield 91% (0.321 g), mp 188-189°C; ¹H NMR (500 M Hz, CDCl₃): δ (ppm) 8.53 (d, J = 8.5 Hz, 1H), 7.42-7.39 (m, 1H), 7.38-7.34 (m, 1H), 7.27 (d, J = 8.5 Hz, 1H), 4.72 (t, J = 7.0 Hz, 2 H), 4.43 (q, J = 7.0 Hz, 2H), 3.59 (t, J = 7.0 Hz, 2H), 3.15 (t, J =7.0 Hz, 2H), 1.72-1.67 (m, 2H), 1.49 (t, J = 7.0 Hz, 3H), 0.96 (t, J 10 = 7.5 Hz, 3H); 13 C NMR (CDCl₃, 125 MHz): δ (ppm) 164.2, 162. 7, 159.7, 132.8, 132.4, 130.1, 127.9, 127.9, 127.6, 125.9, 125.7, 1 18.1, 116.7, 61.5, 43.3, 39.9, 28.4, 22.0, 14.2, 11.4; IR v/cm⁻¹ (K Br) 1752, 1700, 1471, 1385, 1330, 1280, 1199, 1123, 1012, 779, 746; GC-MS *m/z* 353.0 [M+1]⁺, 352.0, 323.1, 278.1, 266.2, 222.2, 15 139.2, 103.0; HRMS (ESI-TOF) *m/z* Calcd for C₂₀H₂₁N₂O₄ [M+ H]⁺ 353.1501, found 353.1498.

3-Ethyl 1,2-diethyl 5,6-dihydropyrrolo[2,1-a]isoquinoline-1,2, 20 3-tricarboxylate (3i) ¹⁹⁸: white solid, yield 78% (0.301 g), mp 11 2-113°C; ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.20-8.18 (m, 1 H), 7.32-7.30 (m, 2H), 7.25-7.24 (m, 1H), 4.54 (t, J = 7.0 Hz, 2H), 4.38 (q, J = 7.0 Hz, 2H), 4.34-4.30 (m, 4H), 3.00 (t, J = 7.0 Hz, 2 H), 1.41 (t, J = 7.0 Hz, 3H), 1.37-1.32 (m, 6H); ¹³C NMR (CDCl₃,

²⁵ 125 MHz): δ (ppm) 166.0, 163.4, 159.9, 136.6, 134.3, 129.2, 128. 5, 127.3, 126.9, 126.9, 126.5, 119.0, 110.8, 61.4, 61.0, 60.7, 42.6, 29.4, 14.12, 14.09, 14.05; IR v/cm⁻¹ (KBr) 1673, 1581, 1431, 136 6, 1155, 1043, 886; GC-MS *m/z* 385.5 [M]⁺, 384.7, 339.7, 312.8, 265.7, 221.9, 139.0, 129.9; HRMS (ESI-TOF) m/z Calcd for C21H ³⁰ ₂₄NO₆ [M+H]⁺ 386.1604, found 386.1598.

Diethyl 5,6-dihydropyrrolo[2,1-a]isoquinoline-1,3-dicarboxyla te (3j) ¹⁹ⁿ: yellow solid, yield 50% (0.157 g), mp 100-101°C; ¹H ³⁵ NMR (500 MHz, CDCl₃): δ (ppm) 8.45 (d, *J* = 8.5 Hz, 1H), 7.50 (s, 1H), 7.36-7.30 (m, 2H), 7.25 (d, J = 6.0 Hz, 1H), 4.61 (t, J = 6. 5 Hz, 2H), 4.37-4.32 (m, 4H), 3.03 (t, J = 6.5 Hz, 2H), 1.41-1.38 (m, 6H); GC-MS *m/z* 314.2 [M+1]⁺, 312.9, 283.5, 155.9,73.5.

Ethyl 2,3-dimethoxy-9,14-dioxo-5,6,9,14-tetrahydrobenzo[5,6] isoindolo[1,2-a] isoquinoline-8-carboxylate (3k) ¹⁹⁸: orange soli

d, yield 90% (0.388 g), mp 194-195°C; ¹H NMR (500 MHz, CDC l_3): δ (ppm) 8.88 (s, 1H), 8.23 (t, J = 2.0 Hz, 1H), 8.12-8.10 (m, 1 ⁴⁵ H), 7.66-7.60 (m, 2H), 6.67 (s, 1H), 4.51 (q, *J* = 7.0 Hz, 2H), 4.21 (t, J = 7.0 Hz, 2H), 4.06 (s, 3H), 3.89 (s, 3H), 3.01 (t, J = 7.0 Hz, 2H), 1.48 (t, J = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ (pp m) 179.5, 179.4, 161.5, 150.2, 147.6, 136.2, 135.8, 134.6, 133.1, 132.7, 127.3, 126.9, 126.4, 125.9, 122.9, 119.1, 116.3, 112.4, 110.

⁵⁰ 2, 62.4, 54.3, 55.9, 43.3, 28.5, 14.0; IR v/cm⁻¹ (KBr) 1718, 1657. 1479, 1385, 1282, 1257, 1217, 1152, 1132, 1045, 1015, 705; HR MS (ESI-TOF) m/z Calcd for C₂₅H₂₂NO₆ [M+H]⁺ 432.1447, foun d 432.1444.

Ethyl 2,3-dimethoxy-9,16-dioxo-5,6,9,16-tetrahydronaphtho[5, 6]isoindolo[1,2-a] isoquinoline-8-carboxylate (3l) ¹⁹⁵: orange so lid, yield 80% (0.433 g), mp 271-272°C; ¹H NMR (500 MHz, CD Cl₃): δ (ppm) 8.98 (s, 1H), 8.80 (s, 1H), 8.68 (s, 1H), 8.04-8.00 60 (m, 2H), 7.63-7.61 (m, 2H), 6.73 (s, 1H), 4.57 (q, J = 7.5 Hz, 2H), 4.26 (t, J = 7.0 Hz, 2H), 4.13 (s, 3H), 3.93 (s, 3H), 3.06 (t, J = 7. 0 Hz, 2H), 1.54 (t, J = 7.5 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 179.6, 179.4, 161.8, 150.2, 147.7, 136.3, 134.9, 134.6, 1 32.4, 131.3, 129.83, 129.77, 129.3, 128.82, 128.76, 128.4, 127.0, 65 126.1, 123.8, 119.3, 117.2, 112.6, 110.2, 62.5, 56.3, 56.0, 43.3, 2 8.6, 14.1; IR v/cm⁻¹ (KBr) 1719, 1659, 1479, 1384, 1271, 1240, 1 222, 1186, 1133, 1038, 914, 763; HRMS (ESI-TOF) m/z Calcd fo r C₂₉H₂₄NO₆ [M+H]⁺ 482.1604, found 482.1600.

RSC Advances Accepted Manuscri Ethyl 2,3-dimethoxy-9,11-dioxo-10-phenyl-6,9,10,11-tetrahyd

ro-5H-pyrrolo[3',4':3,4] pyrrolo[2,1-a]isoquinoline-8-carboxyl ate (3m) ¹⁹ⁿ: orange solid, yield 80% (0.357 g), mp 230-231°C; ¹ H NMR (500 MHz, CDCl₃): δ (ppm) 8.24 (s, 1H), 7.49-7.47 (m, 75 2H), 7.40-7.36 (m, 3H), 6.75 (s, 1H), 4.73 (t, J = 7.0 Hz, 2H), 4.4 1 (q, J = 7.0 Hz, 2H), 3.97 (s, 3H), 3.93 (s, 3H), 3.11 (t, J = 7.0 H z, 2H), 1.46 (t, J = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 163.46, 161.59, 159.59, 150.67, 148.57, 134.01, 132.60128. 97 (2C), 127.84, 127.28 (2C), 125.55, 125.03, 118.29, 118.08, 11 80 4.75, 110.48, 110.26, 61.48, 56.14, 55.97, 43.42, 27.81, 14.12; G C-MS *m*/*z* 447.1 [M+1]⁺, 445.0, 411.3, 385.4, 301.9, 254.3, 100.1, 56.4.

Methyl 2,3-dimethoxy-9,14-dioxo-5,6,9,14-tetrahydrobenzo[5, 6]isoindolo[1,2-a] isoquinoline-8-carboxylate (3n) ^{19S}: orange s olid, yield 92% (0.329 g), mp 205-206°C; ¹H NMR (500 MHz, C DCl₃): δ (ppm) 8.95 (s, J = 8.0 Hz, 1H), 8.27-8.25 (m, 1H), 8.17-

- ⁵ 8.16 (m, 1H), 7.71-7.65 (m, 2H), 7.42 (t, J = 6.5 Hz, 1H), 7.36-7. 33 (m, 1H), 7.23 (s, J = 7.0 Hz, 1H), 4.26 (t, J = 6.5 Hz, 2H), 4.06 (s, 3H), 3.08 (t, J = 6.5 Hz, 2H); ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 179.51, 179.47, 161.8, 135.8, 135.6, 134.6, 133.7, 133.3, 1 32.9, 130.1, 128.9, 127.4 (2C), 127.2, 126.5, 126.3, 125.4, 123.4,
- ¹⁰ 117.5, 53.0, 43.2, 29.0; IR ν/cm^{-1} (KBr) 1712, 1656, 1466, 1412, 1385, 1314, 1269, 1224, 1140, 1113, 1060, 1012, 799, 734; GC-MS *m*/*z* 358.1 [M+1]⁺, 356.8, 333.6, 276.5, 139.8, 73.9; HRMS (ESI-TOF) *m*/*z* Calcd for C₂₂H₁₆NO₄ [M+H]⁺ 358.1079, found 35 8.1077.
- 15

Methyl 2,3-dimethoxy-9,11-dioxo-10-phenyl-6,9,10,11-tetrahy dro-5*H*-pyrrolo[3',4':3,4] pyrrolo[2,1-*a*]isoquinoline-8-carbox ylate (3o) ¹⁹⁵: orange solid, yield 71% (0.264 g), mp 217-218°C; ²⁰ ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.58-8.57 (m, 1H), 7.49 (t, J = 7.5 Hz, 2H), 7.43-7.36 (m, 5H), 7.29-7.28 (m, 1H), 4.77 (t, J = 7.0 Hz, 2H), 3.98 (s, 3H), 3.18 (t, J = 7.0 Hz, 3H); ¹³C NMR (C DCl₃, 125 MHz): δ (ppm) 163.0, 161.5, 160.0, 133.6, 132.6, 132. 4, 130.4, 128.8 (2C), 128.0, 127.9, 127.70, 127.65, 127.0 (2C), 12 25 5.5, 125.3, 118.2, 116.3, 52.3, 43.4, 28.3; IR ν/cm⁻¹ (KBr) 1497, 1 385, 1199, 756, 694, 620; GC-MS *m*/*z* 373.6 [M+1]⁺, 372.1, 348. 6, 303.2, 256.4, 202.1, 154.1, 54.6; HRMS (ESI-TOF) *m*/*z* Calcd for C₂₂H₁₇N₂O₄ [M+H]⁺ 373.1188, found 373.1184.

30

Tert-butyl 2,3-dimethoxy-9,14-dioxo-5,6,9,14-tetrahydrobenzo [5,6]isoindolo[1,2-a] isoquinoline-8-carboxylate (3p) ¹⁹⁵: orang e solid, yield 61% (0.244 g), mp 170-171°C; ¹H NMR (500 MHz, CDCl₃): δ (ppm) 9.02 (d, J = 7.5 Hz, 1H), 8.30 (dd, $J_I = 2.0$ Hz, $J_2 = 6.5$ Hz, 1H), 8.23 (dd, $J_I = 2.0$ Hz, $J_2 = 6.5$ Hz, 1H), 7.72-7.6 9 (m, 2H), 7.45 (t, J = 7.5 Hz, 1H), 7.37 (t, J = 7.5 Hz, 1H), 7.27 (d, J = 8.5 Hz, 1H), 4.27 (t, J = 7.0 Hz, 2H), 3.11 (t, J = 7.0 Hz, 2 H), 1.72 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 179.8, 17 9.3, 160.6, 135.8, 135.0, 134.9, 133.5, 133.1, 132.9 (2C), 129.9, 1 40 28.8, 127.7, 127.4, 127.4, 127.2, 126.5, 122.4, 117.2, 84.1, 43.0, 29.1, 28.1 (3C); IR ν/cm^{-1} (KBr) 1660, 1467, 1385, 1266, 1229, 1141, 1010, 714; HRMS (ESI-TOF) m/z Calcd for C₂₅H₂₁NO₄Na

[M+Na]⁺ 422.1369, found 422.1365.

Tert-butyl 2,3-dimethoxy-9,11-dioxo-10-phenyl-6,9,10,11-tetra hydro-5*H*-pyrrolo [3',4':3,4]pyrrolo[2,1-*a*]isoquinoline-8-carb oxylate (3q) ¹⁹⁵: orange solid, yield 58% (0.240 g), mp 234-235° C; ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.59 (dd, $J_I = 1.5$ Hz, J_2 ⁵⁰ = 8.0 Hz, 1H), 7.50 (t, J = 8.0 Hz, 2H), 7.43-7.35 (m, 5H), 7.28 (t, J = 6.5 Hz, 1H), 4.75 (t, J = 6.5 Hz, 2H), 3.16 (t, J = 6.5 Hz, 2 H), 1.68 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 163.2, 16 1.6, 159.0, 133.0, 132.8, 132.4, 130.1, 128.9 (2C), 127.9, 127.9, 1 27.7, 127.6, 127.3 (2C), 125.7, 124.7, 120.2, 116.0, 83.4, 43.3, 28. ⁵⁵ 4, 28.3 (3C); IR ν /cm⁻¹ (KBr) 1759, 1703, 1481, 1415, 1385, 134 9, 1305, 1289, 1154, 1135, 1112, 1089, 1051, 950, 889, 843, 762; HRMS (ESI-TOF) *m*/z Calcd for C₂₅H₂₂N₂O₄Na [M+Na]⁺ 437.1 478, found 437.1475.

Benzyl 2,3-dimethoxy-9,11-dioxo-10-phenyl-6,9,10,11-tetrahy dro-5*H*-pyrrolo[3',4':3,4] pyrrolo[2,1-*a*]isoquinoline-8-carbox ylate (3r) ^{19S}: orange solid, yield 90% (0.390 g), mp 198-199°C; ¹ H NMR (500 MHz, CDCl₃): δ (ppm) 9.00 (d, *J* = 7.5 Hz, 1H), 8.3 65 0 (dd, *J*₁ = 2.5 Hz, *J*₂ = 6.0 Hz, 1H), 8.24 (dd, *J*₁ = 3.0 Hz, *J*₂ = 6. 5 Hz, 1H), 7.74-7.70 (m, 2H), 7.57 (d, *J* = 6.5 Hz, 2H), 7.47-7.36 (m, 5H), 7.27 (d, *J* = 8.5 Hz, 1H), 5.53 (s, 2H), 4.26 (t, *J* = 6.5 Hz, 2H), 3.08 (t, *J* = 6.5 Hz, 2H); ¹³C NMR (CDCl₃, 125 MHz): δ (p pm) 179.8, 179.5, 161.4, 135.9, 135.8, 135.2, 134.9, 133.7, 133.4, 70 133.1, 130.2, 129.0, 128.8 (2C), 128.7 (2C), 128.7, 127.5, 127.5,

127.3, 126.7, 126.4, 125.5, 123.7, 117.7, 68.4, 43.3, 29.2; IR ν/c m⁻¹ (KBr) 1642, 1384, 1262, 1097, 802; HRMS (ESI-TOF) m/z C alcd for C₂₈H₂₀NO₄ [M+H]⁺ 434.1392, found 434.1390.

Acknowledgements

⁷⁵ This work was supported by the Natural Science Foundation of China (Grant no. 21176223), the National Natural Science Foundation of Zhejiang (Grant no. LY13B020016), and the Key Innovation Team of Science and Technology in Zhejiang Province (Grant no. 2010R50018).

80 Notes and references

^a State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou and 310014, P. R. China. Fax: +86-0571-88320544; Tel: +86-0571-88320891; E-mail: lyjzjut@zjut.edu.cn; gdgjr@zjut.edu.cn

85 ^b Department of Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China. E-mail: huangfang@263.net.cn

 \dagger Electronic Supplementary Information (ESI) available: [Images of $^1\rm H$ and $^{13}\rm C$ NMR of all products]. See DOI: 10.1039/b000000x/

- (a) A. De Mico, R. Margarita, L. Parlanti, A. Vescovi and G. Piancatelli, *J. Org. Chem.*, 1997, **62**, 6974-6977; (b) D. Kalyani, N. R. Deprez, L. V. Desai and M. S. Sanford, *J. Am. Chem. Soc.*, 2005, **127**, 7330-7331; (c) K. C. Nicolaou, T. Montagnon, P. S. Baran and Y. L.
- ⁵ Zhong, J. Am. Chem. Soc. 2002, **124**, 2245-2258; (d) T. Wirth, Angew. Chem. Int. Ed. 2005, **44**, 3656-3665; (e) H. Tohma, H. Morioka, S. Takizawa, M. Arisawa and Y. Kita, *Tetrahedron* 2001, **57**, 345-352; (f) L. Pouységu, D. Deffieux and S. Quideau, *Tetrahedron* 2010, **66**, 2235-2261.
- 10 2 (a) P. T. Parvatkar, P. S. Parameswaran and S. G. Tilve, *Chem.-Eur. J.* 2012, **18**, 5460-5489; (b) H. Togo and S. Iida, *Synlett* 2006, **2006**, 2159-2175; (c) D. Fischer, H. Tomeba, N. K. Pahadi, N. T. Patil, Z. Huo and Y. Yamamoto, *J. Am. Chem. Soc.* 2008, **130**, 15720-15725; dD. Fischer, H. Tomeba, N. K. Pahadi, N. T. Patil and Y. Yamamoto,
- Angew. Chem. Int. Ed. 2007, 46, 4764-4766; (e) Z. Huo, H. Tomeba and Y. Yamamoto, *Tetrahedron Lett.* 2008, 49, 5531-5533; (f) F. C. Küpper, M. C. Feiters, B. Olofsson, T. Kaiho, S. Yanagida, M. B. Zimmermann, L. J. Carpenter, G. W. Luther, Z. Lu, M. Jonsson and L. Kloo, *Angew. Chem. Int. Ed.* 2011, 50, 11598-11620; (g) Y. Kita,
- K. Morimoto, M. Ito, C. Ogawa, A. Goto and T. Dohi, J. Am. Chem. Soc. 2009, **131**, 1668-1669; (h) N. Fei, Q. Hou, S. Wang, H. Wang and Z.-J. Yao, Org. Biomol. Chem. 2010, **8**, 4096-4103; (i) S. Ali, H.-T. Zhu, X.-F. Xia, K.-G. Ji, Y.-F. Yang, X.-R. Song and Y.-M. Liang, Org. Lett. 2011, **13**, 2598-2601; (j) H. Batchu, S. Bhattacharyya and
- 25 S. Batra, Org. Lett. 2012; (k) B. Alcaide, P. Almendros, G. Cabrero, R. Callejo, M. P. Ruiz, M. Arnó and L. R. Domingo, Adv. Synth. Catal. 2010, **352**, 1688-1700; (1) W.-B. Wu and J.-M. Huang, Org. Lett. 2012, **14**, 5832-5835; (m) W.-C. Lee, H.-C. Shen, W.-P. Hu, W.-S. Lo, C. Murali, J. K. Vandavasi and J.-J. Wang, Adv. Synth.
- Catal. 2012, **354**, 2218-2228; (n) Y.-X. Li, K.-G. Ji, H.-X. Wang, S. Ali and Y.-M. Liang, *J. Org. Chem.* 2010, **76**, 744-747; (o) Y.-X. Li, H.-X. Wang, S. Ali, X.-F. Xia and Y.-M. Liang, *Chem. Commun.* 2012, **48**, 2343-2345; (p) Y.-P. Zhu, M.-C. Liu, F.-C. Jia, J.-J. Yuan, Q.-H. Gao, M. Lian and A.-X. Wu, *Org. Lett.* 2012, **14**, 3392-3395;
- (q) H. Huang, X. Ji, W. Wu and H. Jiang, *Adv. Synth. Catal.* 2013, **355**, 170-180; (r) K. V. Sashidhara, A. Kumar, S. Agarwal, M. Kumar, B. Kumar and B. Sridhar, *Adv. Synth. Catal.* 2012, **354**, 1129-1140; (s) X. Zhang, Y. Zhou, H. Wang, D. Guo, D. Ye, Y. Xu, H. Jiang and H. Liu, *Adv. Synth. Catal.* 2011, **353**, 1429-1437.
- 40 3 (a) C.-J. Li, Acc. Chem. Res. 2008, 42, 335-344; (b) Y. Oikawa, T. Yoshioka and O. Yonemitsu, Tetrahedron Lett. 1982, 23, 885-888; (c) Y. Zhang and C.-J. Li, J. Am. Chem. Soc. 2006, 128, 4242-4243.
- 4 V. P. Mehta and B. Punji, *RSC Adv.* 2013, **3**, 11957-11986.
- (a) M. Uyanik and K. Ishihara, *ChemCatChem* 2012, 4, 177-185; (b)
 M. Uyanik, H. Okamoto, T. Yasui and K. Ishihara, *Science* 2010, 328, 1376-1379; (c) M. Uyanik, D. Suzuki, T. Yasui and K. Ishihara,
- Angew. Chem. Int. Ed. 2011, 50, 5331-5334.
 T. Froehr, C. P. Sindlinger, U. Kloeckner, P. Finkbeiner and B. J. Nachtsheim, Org. Lett. 2011, 13, 3754-3757.
- 50 7 J. Zhang, J. Jiang, Y. Li and X. Wan, J. Org. Chem. 2013, 78, 11366-11372.
- 8 (a) G. Wang, Q.-Y. Yu, J. Wang, S. Wang, S.-Y. Chen and X.-Q. Yu, *RSC Adv.* 2013, **3**, 21306-21310; (b) Z. Liu, J. Zhang, S. Chen, E. Shi, Y. Xu and X. Wan, *Angew. Chem. Int. Ed.* 2012, **51**, 3231-3235; (c)
- S. Zhang, L.-N. Guo, H. Wang and X.-H. Duan, Org. Biomol. Chem. 2013, 11, 4308-4311; (d) M. Lamani and K. R. Prabhu, Chem.-Eur. J. 2012, 18, 14638-14642; (e) H. Li, J. Xie, Q. Xue, Y. Cheng and C. Zhu, Tetrahedron Lett. 2012, 53, 6479-6482; (f) W.-P. Mai, G. Song, J.-W. Yuan, L.-R. Yang, G.-C. Sun, Y.-M. Xiao, P. Mao and L.-B. Qu, RSC Adv. 2013, 3, 3869-3872.
- 9 Y. Gao, Q. Song, G. Cheng and X. Cui, Org. Biomol. Chem. 2014, 12, 1044-1047.
- 10 X. Li, X. Xu, P. Hu, X. Xiao and C. Zhou, J. Org. Chem. 2013, 78, 7343-7348.
- 65 11 J. Zhang, J. Jiang, Y. Li, Y. Zhao and X. Wan, Org. Lett. 2013, 15, 3222-3225.
- 12 W. Wei, C. Zhang, Y. Xu and X. Wan, *Chem. Commun.* 2011, **47**, 10827-10829.
- 13 E. Shi, Y. Shao, S. Chen, H. Hu, Z. Liu, J. Zhang and X. Wan, *Org. Lett.* 2012, **14**, 3384-3387.
- 14 S. Chen, Y. Xu and X. Wan, Org. Lett. 2011, 13, 6152-6155.

- 15 G. Majji, S. Guin, A. Gogoi, S. K. Rout and B. K. Patel, *Chem. Commun.* 2013, **49**, 3031-3033.
- 16 Y.-C. Wong, C.-T. Tseng, T.-T. Kao, Y.-C. Yeh and K.-S. Shia, *Org. Lett.* 2012, **14**, 6024-6027.
- 17 K. Rajender Reddy, M. Venkateshwar, C. Uma Maheswari and P. Santhosh Kumar, *Tetrahedron Lett.* 2010, **51**, 2170-2173.
- 18 (a) H. Fan, J. Peng, M. T. Hamann and J.-F. Hu, *Chem. Rev.* 2007, 108, 264-287; (b) D. Pla, F. Albericio and M. Alvarez, *MedChemComm* 2011, 2, 689-697; (c)BT. Fukuda, F. Ishibashi and M. Iwaob, *Heterocycles* 2011, 83, 491-529; (d) S. T. Handy and Y. Zhang, *Org. Prep. Proced. Int.* 2005, 37, 411-445; (e) C. Bailly, *Curr.*
- Med. Chem. Anti-Cancer Agents 2004, 4, 363-378; (f) F. A. M. A. D. Pla, Anti-Cancer Agents Med. Chem. 2008, 2008, 746-760. 85 19 (a) M. Banwell and D. Hockless, Chem. Commun. 1997, 33, 2259-2260; (b) A. Heim, A. Terpin and W. Steglich, Angew. Chem. Int. Ed. 1997, 36, 155-156; (c) D. L. Boger, C. W. Boyce, M. A. Labroli, C. A. Sehon and Q. Jin, J. Am. Chem. Soc. 1998, 121, 54-62; (d) C. P. Ridley, M. V. R. Reddy, G. Rocha, F. D. Bushman and D. J. Faulkner, Bioorg. Med. Chem. 2002, 10, 3285-3290; (e) P. Ploypradith, C. Mahidol, P. Sahakitpichan, S. Wongbundit and S. Ruchirawat, Angew. Chem. Int. Ed. 2004, 43, 866-868; (f) P. Cironi, I. Manzanares, F. Albericio and M. Álvarez, Org. Lett. 2003, 5, 2959-2962; (g) S. T. Handy, Y. Zhang and H. Bregman, J. Org. Chem. 2004, 69, 2362-2366; (h) P. Ploypradith, R. K. Kagan and S. Ruchirawat, J. Org. Chem. 2005, 70, 5119-5125; (i) S. Su and J. A. Porco, J. Am. Chem. Soc. 2007, 129, 7744-7745; (j) T. Ohta, T. Fukuda, F. Ishibashi and M. Iwao, J. Org. Chem. 2009, 74, 8143-8153; (k) Q. Li, J. Jiang, A. Fan, Y. Cui and Y. Jia, Org. Lett. 2010, 13, 312-315; (1) L. Ackermann, L. Wang and A. V. Lygin, Chem. Sci. 100 2012, 3, 177-180; (m) C. Yu, Y. Zhang, S. Zhang, H. Li and W. Wang, Chem. Commun. 2011, 47, 1036-1038; (n) Y.-Q. Zou, L.-Q. Lu, L. Fu, N.-J. Chang, J. Rong, J.-R. Chen and W.-J. Xiao, Angew. Chem. Int. Ed. 2011, 50, 7171-7175; (o) M. Rueping, D. Leonori and T. Poisson, Chem. Commun. 2011, 47, 9615-9617; (p) L. Huang and 105 J. Zhao, Chem. Commun. 2013, 49, 3751-3753; (q) H.-T. Wang and C.-D. Lu, Tetrahedron Lett. 2013, 54, 3015-3018; (r) S. Guo, H. Zhang, L. Huang, Z. Guo, G. Xiong and J. Zhao, Chem. Commun. 2013, 49, 8689-8691; (s) H.-M. Huang, Y.-J. Li, Q. Ye, W.-B. Yu, L. Han, J.-H. Jia and J.-R. Gao, J. Org. Chem. 2014, 79, 1084-1092. 110
- 20 (a) H.-M. Huang, J.-R. Gao, L.-F. Hou, J.-H. Jia, L. Han, Q. Ye and Y.-J. Li, Tetrahedron 2013, 69, 9033-9037; (b) H.-M. Huang, Y.-J. Li, Y.-P. Dai, W.-B. Yu, Q. Ye and J.-R. Gao, J. Chem. Res. 2013, 37, 34-37; (c) H.-M. Huang, Y.-Jj. Li, J.-R. Yang, J.-H. Jia, Q. Ye, L. Han and J.-R. Gao, Tetrahedron 2013, 69, 5221-5226; (d) Y.-J. Li, 115 H.-M. Huang, H.-Q. Dong, J.-H. Jia, L. Han, Q. Ye and J.-R. Gao, J. Org. Chem. 2013, 78, 9424-9430; (e) Y.-J. Li, H.-M. Huang, J. Ju, J.-H. Jia, L. Han, Q. Ye, W.-B. Yu and J.-R. Gao, RSC Adv. 2013; (f) Y.-J. Li, H.-M. Huang, Q. Ye, L.-F. Hou, W.-B. Yu, J.-H. Jia and J.-R. Gao, Adv. Synth. Catal. 2014, 356, 421-427; (g) H.-M. Huang, J. 120 Han, F. Xu, Y.-J. Li, H. Dong, W.-B. Yu and J.-R. Gao, Chem. Lett. 2013, 42, 921-923; (h) H.-M. Huang, J.-R. Gao, Q. Ye, W.-B. Yu, W.-J. Sheng and Y.-J. Li, RSC Adv. 2014, 4,15526-15533.
- L. Chen, E. Shi, Z. Liu, S. Chen, W. Wei, H. Li, K. Xu and X. Wan,
 Chem.-Eur. J. 2011, **17**, 4085-4089.
 - 22 T. Nobuta, N. Tada, A. Fujiya, A. Kariya, T. Miura and A. Itoh, *Org. Lett.* 2013, **15**, 574-577.
 - 23 (a) J. Barluenga, M. Marco-Arias, F. Gonzalez-Bobes, A. Ballesteros and J. M. Gonzalez, *Chem. Commun.* 2004, 2616-2617; (b) J. Barluenga, M. Marco-Arias, F. Gonz dez-Bobes, A. Ballesteros and J. M. Gonz dez, *Chem.-Eur. J.* 2004, **10**, 1677-1682.