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Abstract

First, we present an analytical approach to access the exact energy spectrum

and wave functions of the gated Bernal bilayer graphene (BBLG), with all the

tight-binding parameters included. To tackle the broken mirror symmetry caused

by a gated voltage Vg and interlayer interactions, we create a unitary transformation

to reduce the Hamiltonian matrix of BBLG to a simple form, which can offer the

analytical energy spectrum. The formula generate the gated tunable energy bands

and reveal that Vg changes the subband spacing, produces the oscillating bands,

and increases the band-edge states. Then, we employ the analytical model to revisit

the optical dipole matrix element and optical absorption spectra. In the absence of

Vg, the anisotropic dipole matrix element exhibits the maximum around the point

M and zero value along the high symmetry line ΓK in the first Brillouin zone.

Vg effectively induces the nonzero dipole matrix element along the high symmetry

line ΓK, which makes significant contribution in the absorption spectra. Moreover,

the application of Vg opens an optical gap and gives rise to a profound low-energy

peak in absorption spectra. The dependence upon the gated bias Vg for the location

and height of this peak clearly emerges through the analytical model. Our exact

analytical model can be further used to study the many-body effect and exciton

effect on the electronic and optical properties of BBLG.
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1 INTRODUCTION

Graphene, a hit topic since 2004,1 having attracted a surge of interest for fundamen-

tal and experimental studies,2–9 is a one atom-thick layer made up of carbon atoms

arranged in a honeycomb lattice. Stemming from the specular geometrical structure,

graphene is an extraordinary two dimensional material with many unique properties,

e. g., linear energy dispersions crossing at Dirac point, electron-hole symmetry, Klein

tunneling, high mobility at room temperature, and novel quantum Hall effect.7–13 The

unusual electric properties make graphene a possible candidate for fabricating the fu-

ture electronic devices. Graphene is a zero bandgap semiconductor due to linear en-

ergy dispersions crossing at Dirac point. The touch of valence and conduction bands

in its energy spectrum limits on-off current ratios achievable and prevents the use of

graphene in making field transistors. It is significant for the opening of a band gap in

graphene to remove the limitation in using graphene material for semiconductor appli-

cations. Many breakthrough methods are proposed to generate a band gap in monolayer

graphene, e. g., using molecular doping,14,15 the application of strain,16,17 and pattern-

ing a graphene sheet into a nanoribbon.18 On the other hand, a tunable band gap is

induced in the Bernal bilayer graphene (BBLG) through the application of a perpen-

dicular electric field. BBLG is made up of two monolayer graphenes, held by the weak

Van der Waals force, in the AB-stacking. The experimental works demonstrate that a

tunable bandgap of up to 0.25 eV is achieved for electrically gated bilayer graphene by

a variable external electric field.19–22

The energy dispersions of the gated BBLG are usually explored within the tight-

binding model.23–31 The minimal model, considering only the intralayer and main in-

terlayer interactions, is widely employed to study the energy dispersions of BBLG.30,31

Around the Dirac points, the analytical low-energy dispersions of the gated BBLG

are obtained through the continuum model. A 4× 4 Hamiltonian matrix is solvable

and gives out the analytical low-energy dispersions. A full tight-binding Hamiltonian

model takes into account all hopping integrals, including the additional skew interac-

tion (γ3) and electron-hole asymmetry (γ4) in the model.23,27 γ3 is the trigonal warping
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and γ4 is the origin of electron-hole asymmetry. The trigonal warping can significantly

modify the physical properties of BBLG.32–34 Cserti shows that trigonal warping has

a great effect on the minimal conductivity of BBLG.32 Moreover, γ3 gives rise to the

electron-hole asymmetry and distorts the circular equi-energy contour to a trigonal

symmetry.33,34 A full tight-binding Hamiltonian matrix is a 4× 4 matrix and its four

energy bands are usually obtained by the numerical diagonalization. Many important

physical properties do not directly emerge through the numerical calculation because of

a lack of the exact energy spectrum. To fully and exactly describe the electric and opti-

cal properties in the full energy region, an analytical description of energy dispersions

of the four-band model is expected.

Here, we present a model to access the analytical form of energy spectrum and

eigenstates of gated BBLG, based on the tight-binding framework and all the tight-

binding parameters γ0, γ1, γ3 and γ4 are all considered too (the inset of Fig. 1(a)).

Unlike AA-stacking graphene,35,36 the skew interlayer interactions γ3 and gated bias

Vg destroy the inversion symmetry of gated BBLG. The broken symmetry increases the

difficulty in solving the eigenvalue problem. Through a rotation operator, we generate

a new set of tight-binding basis functions to deal with the broken symmetry resulting

from the γ3 and Vg. The renormalized Vg-dependent intralayer and interlayer interac-

tions are derived based on the new set of basis functions. Most importantly, the new

basis functions exactly reduces the Hamiltonian matrix H into a band-storage matrix.

As a result, the energy dispersions and wave functions are analytically solvable. Fur-

thermore, the present work is to provide full-frequency energy bands, which is beyond

the effective mass approximation. The analytical form of energy spectrum and eigen-

states are further applied to studying the optical absorption spectra and exploring the

origin of optical transition channels.

The rest parts of the paper are organized as follows: We develop a model to derive

the analytical form of energy spectrum of gated BBLG in Sec. II. Subsequently, the

electronic properties are revisited in Sec. III through the analytical energy spectrum.

In Sec. IV, the energy spectrum and eigenstates are used to explore the dipole matrix

element and optical absorption spectra of gated BBLG. Finally, the conclusions are
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drawn in Sec. V.

2 Theory and Model

BBLG is the stack of two identical graphene layers with the AB-stacking, as shown in

the inset of Fig. 1(a). On each graphene plane, two basic atoms A and B are arranged in

the honeycomb lattice and the bond length between atoms A and B is b = 1.42 Å. The

distance between two graphene layers is assumed to be 3.35Å.37 The lower or upper

graphene layer is denoted by the index l = 1 or 2. Atoms A2 and A1 have the same

(x,y) projection and they are denoted as the dimer sites. And the projections of the

other half, atoms B, lie in the center of the hexagons in the adjacent sheets. BBLG is a

periodic system in the xy plane and has four atoms, A1,B1,A2,B2, in its primitive cell.

The first Brillouin zone of BBLG, as illustrated in the inset of Fig. 1(b), is the same as

that of a graphene, which is a hexagon with points Γ located at (0,0), K at ( 4π
3
√

3b
,0),

and M at ( π√
3b
, π

3b ).

The electronic properties of BBLG subjected to a perpendicular electric field are

studied within the tight-binding method framework; Hamiltonian equation of BBLG is

HΦ=EΦ, where the Bloch function is Φ= c1|A1⟩+c2|A2⟩+c3|B1⟩+c4|B2⟩, which is

the linear combination of the periodic wave functions |A1⟩, |A2⟩, |B1⟩, and |B2⟩. HΦ =

EΦ is then transformed into the matrix equation H|c⟩=E|c⟩, here |c⟩= |c1,c2,c3,c4⟩T .

The representation of Hamiltonian matrix reads

H =

 HAA HAB

HBA HBB

 , (1)

where H is a 4×4 matrix. The elements HAA, HAB, HBA, and HBB are 2×2 matrices.

The hopping integrals γi, usually used to describe the Bernal bilayer graphene, are

illustrated in the inset of Fig. 1(a). γ0 is the intralayer interaction. The hopping integral

γ1 is the interaction between the dimer sites A1 and A2. The trigonal warping integral,

γ3, is the skew interlayer hopping between atoms B1 and B2. γ4 represents γA1,B2 and

4
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γB2,A1 . The matrices HAA, HAB, HBA are further to be expressed as

HAA =

 Vg γ1

γ1 −Vg

 , (2a)

HAB = H∗
BA =

 γ0 fk γ4 f ∗k

γ4 fk γ0 f ∗k

 , (2b)

HBB =

 Vg γ3 fk

γ3 f ∗k −Vg

 , (2c)

where the on-site energy Vg is the electric potential caused by the external perpendicular

electric field. fk =∑3
l=1 exp(ik ·bl) is the structure factor, where k = (kx,ky) is the wave

vector and bl represents the nearest neighbor on the same graphene plane. The three

neighboring atoms are located at b1 = (−
√

3b
2 ,− b

2 ), b2 = (0,b), and b3 = (
√

3b
2 ,− b

2 )

and thus, fk = 2cos(
√

3b
2 kx)exp(−iky

b
2 )+ exp(ikyb).

To find out the analytical energy dispersions of the 4× 4 matrix above, we now

construct the symmetrized basis functions (|ψ1⟩, |ψ2⟩, |ψ3⟩, |ψ4⟩)T , which are linear

combination of the periodic wave functions |A1⟩, |A2⟩, |B1⟩, and |B2⟩. The symmetrized

basis functions are



|ψ1⟩

|ψ2⟩

|ψ3⟩

|ψ4⟩


=



s+1 s+2 0 0

0 0 s+1
f ∗k
| fk|

s+2
fk
| fk|

0 0 s−1
f ∗k
| fk|

s−2
fk
| fk|

s−1 s−2 0 0





|A1⟩

|A2⟩

|B1⟩

|B2⟩


, (3)

where the coefficients s±1 and s±2 are the components of eigenvector of the matrix HAA

(Eq.( 2a)). The eigen-equation of HAA is

 Vg γ1

γ1 −Vg


 s±1

s±2

=±εAA

 s±1

s±2

 , (4)
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where the eigenenergy is εAA =
√

γ2
1 +V 2

g . The related eigen-vectors (s±1 ,s
±
2 )

T are

 s+1

s+2

=

 γ1√
γ2

1+(εAA−Vg)2

εAA−Vg√
γ2

1+(εAA−Vg)2

 ,

 s−1

s−2

=

 γ1√
γ2

1+(εAA+Vg)2

−(εAA+Vg)√
γ2

1+(εAA+Vg)2

 . (5)

Similarly, the eigenenergy related to HBB is εBB =
√

γ2
3 | fk|2 +V 2

g .

The Bloch function, spanned by the new basis functions (|ψ1⟩, |ψ2⟩, |ψ3⟩, |ψ4⟩)T , is

Φ= d1|ψ1⟩+d2|ψ2⟩+d3|ψ3⟩+d4|ψ4⟩. According to the symmetrized basis functions

|ψi⟩, the matrix equation has the form



H11 H12 H13 0

H21 H22 H23 H24

H31 H32 H33 H34

0 H42 H43 H44





d1

d2

d3

d4


= E



d1

d2

d3

d4


, (6)

where the matrix elements are Hi j = ⟨ψi|H|ψ j⟩. The diagonal matrix elements are



H11 = εAA,

H22 =
V 2

g
εAA

+ γ1
εAA

γ3
2| fk|2

[ f 3
k + f ∗3

k ],

H33 =−H22,

H44 =−εAA.

(7a)

The off-diagonal terms are



H12 =H21 = (γ0 +
γ1

εAA
γ4)| fk|,

H13 =H31 =− Vg
εAA

γ4| fk|,

H14 =H41 = 0,

H23 =H∗
32 =

γ1Vg
εAA

+ γ3
2| fk|2

[
(εAA−Vg)

εAA
f ∗3
k − (εAA+Vg)

εAA
f 3
k ],

H24 =H42 =− Vg
εAA

γ4| fk|,

H34 =H43 = (γ0 − γ1
εAA

γ4)| fk|.

(7b)
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Notably, in the absence of the gated bias, Vg = 0, H13, H31, H24 and H42 are all equal

to zero.38 Moreover, a straightforward calculation shows that H2
22 +H23H32 = ε2

BB =

V 2
g + γ2

3 | f|2 because the sub-matrix

 H22 H23

H32 H33


is the transformation of HBB.

2.1 In the limit of γ4 = 0

The exclusion of electron-hole asymmetry, γ4 = 0, allows us to obtain a simple and

exact analytical solution to energy spectrum. The interactions H13, H31, H24 and H42

in Hred are all equal to zero as γ4 = 0. The reduced Hamiltonian matrix Hred is a

band-storage matrix and is expressed as follows:

Hred =



H11 H12 0 0

H12 H22 H23 0

0 H32 −H22 H12

0 0 H12 −H11


, (8)

where H12 =H34 = γ0| f(k)|. The analytical energy dispersions, associated with Hred ,

read

E(k)±± = ±
√

B±
√

B2 −C , (9)

where

B =H2
11/2+H2

12 +(H2
22 +H23H32)/2

=
γ2

1
2 + γ2

0 | fk|2 +
γ2

3 | fk|
2

2 +V 2
g ,

C =H4
12 −2H11H

2
12H22 +H2

11(H
2
22 +H23H32).

= γ4
0 | fk|4 −2γ1γ2

0 γ3| fk|3cos(3ϕ)+ γ2
1 γ2

3 | fk|2 +V 2
g (γ2

1 +V 2
g + γ2

3 | fk|2 −2γ2
0 | fk|2).

7
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where H2
22 +H23H32 = γ2

3 | f |2 +V 2
g is used. fk = | fk|eiϕ and the angle ϕ is ϕ =

tan−1 Im[ f (k)]
Re[ f (k)] . There are four branches of energy bands, which are in the sequence

E(k)++ > E(k)+− > E(k)−− > E(k)−+. The former tow, E(k)++ and E(k)+−, are

the energy dispersions associated with the conduction bands. The latter two, E(k)−−

and E(k)−+ are the energy spectrum related to the valence bands.

At the point K, B = γ2
1/2 +V 2

g and C = V 2
g (γ2

1 +V 2
g ). The state energies are

exactly E(K) = ±Vg and ±
√

γ2
1 +V 2

g . Around the point K and in the absence of the

electric field, B ≫ C and C ≈ (γ2
0 | fk|2 − γ1γ3| fk|)2. The two branches of low energy

dispersions of BBLG are E(k)±− ≈ ±
√

C
2B = ± 1

γ1
(γ2

0 | fk|2 − γ1γ3| fk|). They are the

eigenenergies of the effective Hamiltonian matrix

He f f =
1
γ1

 0 γ2
0 | fk|2 − γ1γ3| fk|

γ2
0 | fk|2 − γ1γ3| fk| 0

 .

2.2 The effect of γ4 on the energy dispersions

A plainly analytical energy dispersions of the Hamiltonian matrix (Eq.(6)), involving

all hopping integrals, is in fact inaccessible. The energy dispersions are generally ob-

tained by the numerical diagonalization method. To obtain a simply analytical solution

to energy spectrum, we treat γ4 as a perturbation and neglect the matrix elements H13,

H31, H24 and H42 because they make nonsignificant contributions to the energy spec-

trum. H13, H31, H24 and H42 are right dependent on the magnitude of gated voltage Vg

and interlayer interaction γ4. The magnitude of γ4 is smaller than that of γ0 and γ3, so

that H13, H31, H24 and H42 are negligible. γ4 affects the matrix elements H12 and H34

in such a manner as H12 = (γ0+
γ1
ε γ4)| fk| and H34 = (γ0− γ1

ε γ4)| fk|. The Hamiltonian

equation with the band-storage Hamiltonian matrix is expressed as follows:



H11 H12 0 0

H21 H22 H23 0

0 H32 −H22 H34

0 0 H43 −H11





d1

d2

d3

d4


= E±,±



d1

d2

d3

d4


. (10)
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The eigen-energies, determined by the criterion Det|H|= 0, are the roots of the secu-

lar equation E4 −BE2 −B′E +C = 0, where B =H2
11 +H2

22 +H23H32 +H2
12 +H2

34,

B′ = (H11+H22)(H
2
12−H2

34), and C=H2
12H

2
34−H11H22(H

2
12+H2

34)+H2
11(H

2
22+

H23H32). The analytical form of the eigen-energies looks so complicated and tedious

just because the coefficient B′ ̸= 0. To acquire the simple analytical result, we further

approximate B′ ≈ 0 because H12 ≈H34. As a result, the eigen-energies E(k) are

E(k)±± =±

√
B/2±

√
(B/2)2 −C. (11)

To check out the accuracy of the afore-presented model, we first calculate energy

dispersions E(k)±± at Vg = 0 in the high symmetry line K-Γ-M-K, shown by the dashed

red curves in Fig. 1(a). There are four energy subbands E(k)±±. For comparison, en-

ergy dispersions, E±±, obtained through the numerical diagonalization of Hamiltonian

matrix (Eq. 1), are also drawn by the black curves in Fig. 1(a). The tight binding

parameters γ ′i s used to calculate the energy bands are: γ0 =−3.12 eV, γ1 = 0.38 eV,

γ3 = 0.280 eV, and γ4 = 0.12 eV.39 Obviously, the red curves are not identical to those

in black in higher energy region E> 3.0 eV. The higher the energy E is, the more dis-

crepancy between two curves is. Plus, the energy spectrum E in the presence of the

gated voltage Vg = 200 meV are presented in Fig. 1(b). The applied gated voltage does

not significantly affect the profile of energy bands in the high symmetry line K-Γ-M-K.

The disagreement between the red and black curves reveals that the derived analytical

formula can not exactly describe the energy spectra in the energy region E(eV ) > 3.0

eV. Energy dispersions around the the point K at different V ′
gs are shown in the Fig.2

for comparison. The calculation result illustrates that the presented analytical model

can not replicate the exact energy dispersions around the point K. Notably, in the ab-

sence of the gate voltage, the presented analytical model E±± can not reproduce the

analytical formula of BBLG at Vg = 0.38

We here modify and improve the aforementioned analytical model to approach the

exact energy dispersions at any Vg. In the absence of the gated voltage Vg = 0, the

matrix elements H23 and H32 in Eq. (10) play a minor role and can be then neglected.38
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E++ and E−− (E+− and E−+) belong to the symmetrical states (the anti-symmetrical

states). E++ and E−− depend only upon H12 =H21 = (γ0 +
γ1
ε γ4)| fk| while E+− and

E−+ on H34 =H43 = (γ0 − γ1
ε γ4)| fk|.38 We thus replace both H34 and H43 with H12

and H21 in Eq. (10) during the calculation of E++ and E−− at any Vg. Then, we obtain

the energy dispersions

E(k)++ =

√
B+

√
B2 −C , (12a)

E(k)−− = −
√

B−
√

B2 −C , (12b)

where B=H2
12+(H2

11+H2
22+H23H32)/2 and C =H4

12−2H2
12H11H22+H2

11(H
2
22+

H23H32). The other two energy bands E+− and E−+ are acquired by utilizing H34 =

(γ0 − γ1
ε γ4)| fk| to calculate B

′
= H2

34 +(H2
11 +H2

22 +H23H32)/2 and C
′
= H4

34 −

2H2
34H11H22 +H11(H

2
22 +H23H32). E+− and E−+ are, respectively, expressed as

E(k)+− =

√
B′ −

√
B′2 −C ′

, (12c)

E(k)−+ = −

√
B′

+

√
B′2 −C ′

. (12d)

The analytical formula (Eqs. (12a)-(12d)) are now employed to calculate the energy

dispersions of gated BBLG. We first present the analytical energy dispersions E(k)±±

at Vg = 0 in Fig. 3(a). E(k)±± in the high-symmetry line K-Γ-M-K are drawn in

red to be distinguished from those obtained through the numerical diagonalization of

Hamiltonian matrix in black. The red curves are exactly identical to the black ones

except for the conduction bands in the high-symmetry line KM, where 3.0 eV < E <

3.5 eV [Fig. 3(b)]. The energy spectrum in the presence of the gated voltage Vg = 200

meV is also exhibited in Fig. 3(c). The identity between the red and black curves

reveals that the derived analytical formula can well describe the energy spectrum of the

gated BBLG except for the conduction bands in the energy region 2.6 eV < E < 3.4

eV [Fig. 3(d)]. The results of the calculation show that the analytical model is able

to provide us with the exact energy dispersions of the gated BBLG as E < 2.6 eV or

E > 3.5 eV. The analytical energy dispersions and conjugated eigenstates are useful for

10
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exploring the electronic properties, such as energy dispersions, density of states (DOS),

and absorption spectra.

3 Discussion: Electronic Properties

Characteristics of the low energy spectrum are explored. BBLG owns two pairs of

parabolic conduction and valence bands, as shown in Fig. 4 in the dashed and solid

curves, which are obtained, respectively, by the analytical formula and numerical di-

agonalization method. The dashed curves are in good agreement with the solid curves.

With the comparison shown above, the exact solution to the low energy spectrum of

BBLG emerges through our analytical model. While the high energy bands arouse

some focus of our discussion, we are more interested in the lowest-energy electronic

properties. At Vg = 0, E(k)+− and E(k)−+, the first pair located near the chemical

potential µ = 0 exhibits a tiny overlap. E(k)+− and E(k)−− are asymmetrical about

µ = 0, i.e., the electron-hole asymmetry, which is caused by the interlayer interaction

γ4. The minimum of E(k)+− and the maximum of E(k)−+ are located at almost the

same wavevector(∼ the K point). E(k)+− and E(k)−− along high symmetry lines Γ-K

and M-K are strongly anisotropic, which originates in the vanishing of H23 and H32 in

Eqs. (12a)-(12d) along the line Γ-K.

The gated voltage Vg has a great influence on the low energy spectrum. First, the

low energy subbands are significantly modified by Vg and change from monotonically

parabolic dispersions into oscillating ones, referred to as a Mexican hat. Then, the

asymmetry between the conduction E(k)+− and the valence E(k)−+ bands along the

Γ-K direction about the chemical potential is also enhanced. In addition to the K point,

two extra band-edge states emerge in all directions. There exists a band-edge state

with the minimum (maximum) energy along the Γ-K direction. The energy difference

between the lowest band-edge state of E+−(k) and the highest one of E−−(k) decides

the band gap Eg. The locations of band-edge state are determined by ∂E+−
∂kx

|kc = 0 and

∂E−−
∂kx

|kv = 0. By taking the main interactions γ0 and γ1 into consideration, E+− (E−−)

11
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has a minimum (maximum) at

kc =
Vg

h̄v

√
2γ2

1 +4V 2
g

γ2
1 +4V 2

g
,

where the Fermi velocity v is h̄v = 3bγ0/2. Therefore, the energy gap is

Eg =
2γ1Vg√
γ2

1 +4V 2
g

,

The size of the band gap Eg = E−+(kc)−E−−(kv), which at first grows rapidly but

then gradually declines with the increase in Vg. Another band-edge state along the

KM direction belongs to the saddle point. Such states are the critical points in the

energy-wavevector space and thus have a high DOS.

The DOS is useful for understanding the essential physical properties of BBLG.

DOS is defined as

D(ω) = ∑
η1,η2

D(ω)η1,η2 , (13a)

Dη1,η2(ω) =
2
π

∫
1stBZ

d2k
(2π)2

Γ
(Eη1,η2(k)−ω)2 −Γ2 , (13b)

where η1,η2 =±,± represents the subband index. The broadening energy width Γ is

set as 3.0 meV. The full density of state D(ω) is the summation of Dη1,η2(ω), resulting

from each subband Eη1,η2 . D(ω) and Dη1,η2(ω) of BBLG at Vg = 0 are illustrated in

Fig. 5(a). DOS exhibits logarithmic peaks, originating in the saddle point M around

ω = ±3 eV, which directly reflects the main features of the energy dispersions. The

detailed structure of DOS at low energy is presented in Fig. 5(b). D+−(ω) (D−+(ω))

makes contributions to D(ω) as 0 < ω < γ1 (−γ1 < ω < 0). BBLG at Vg = 0 is a

semimetal due to nonvanished DOS at ω = 0. The gated voltage Vg can open a band
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gap and induce two van hove singularities in the energy region −γ1 < ω < γ1, as shown

in Figs. 5(c)-5(e), where band gap is labeled by vertical red bars and van hove singular-

ities are indicated by the blue arrows. One can modulate the band gap in BBLG using

an external electric field. The increase in Vg not only enlarges the size of the band gap

but enhances the height of van hove singularities. The predicted size of band gap and

locations of van hove singularities can be verified by experimental measurements.

4 Absorption Spectra

Utilizing the analytical model, we revisit the low-energy absorption spectra of the gated

BBLG, which has been studied through the numerical method.40–42 The absorption

function of the bilayer graphene at zero temperature (T = 0) is given by38

A(ω) ∝ ∑
i, f

∫
1stBZ

dk
(2π)2 Im

[
Ff −Fi

Eex −ω − iΓ

]
×|M f i(k)|2, (14)

where Γ is the broadening parameter owing to various nonradiative processes. f (i)

denotes the final (initial) state and Ff (Fi) is the Fermi-Dirac distribution function.

Eex = E f (k)−Ei(k) is the excitation energy. M f i(k) = ⟨Φ f (k)| Ê·P⃗
me

|Φi(k)⟩, the dipole

matrix element, is the velocity operator between the initial and final wave functions

Φi(k) and Φ f (k). The absorption spectra Ax(ω) originates in electronic transitions

that correspond to excitations from the occupied valence bands to the unoccupied con-

duction bands, excited by the electromagnetic field. In this work, the direction of

electromagnetic field is assumed to be parallel to the x-axis. Within the gradient ap-

proximation,43,44 the dipole matrix element M f i(k) = ⟨Φ f (k)| ∂H
∂kx

|Φi(k)⟩, where Ê·P⃗
me

is derived from the gradient of Hamiltonian operator, ∂H
∂kx

. Because of the zero mo-

mentum of photon, the optical selection rule is ∆k = 0. The optical transition channels

are determined by the thermal factor FF −Fi and the dipole matrix element.

The dipole matrix element, by inserting the tight-binding wave functions Φ =
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c1|A1⟩+ c2|A2⟩+ c3|B1⟩+ c4|B2⟩, is expressed as

M f i = ∑
l,m

c f
l (

∂H
∂kx

)lmci
m, (15a)

where ( ∂H
∂kx

)lm = ∂Hlm
∂kx

and Hlm is the element of the Hamiltonian matrix (Eq. (1)). After

the action of rotation operator (Eq. (3)), the dipole matrix element is then changed into

M f i = ∑
l,m

d f
l Vlmdi

m, (15b)

where the analytical form of matrix elements Vlm is given explicitly in the appendix.

|di, f
1 ,di, f

2 ,di, f
3 ,di, f

4 ⟩ are the initial (final) eigenstates associated with the Bloch function,

Eq. (6). The eigenstate corresponding to each energy dispersion E±± can be exactly

specified, which is



d1 =
1√
Nc
,

d2 =
1√
Nc

[
E±±−H21

H12

]
,

d3 =
1√
Nc

[
(E±±−H22)d2−H11

H23

]
,

d4 =
1√
Nc

[
(E±±−H33)d3−H32d2

H34

]
.

(16)

The analytical expression for dipole matrix element can be used to efficiently evaluate

the magnitude of Mfi and the optical absorption spectra A(ω). M f i depends on energy

spectrum, velocity operator, and eigenstates.

The square of the absolute value of dipole matrix element |M f i(k)|2 in the high-

symmetry line Γ-K-M for the transition E−− →E+− at different Vg’s is drawn in Fig. 6,

where the solid (dashed) curves are calculated with the energy spectrum and eigenstates

obtained through the numerical method (analytical model). The dashed curves are

exactly in agreement to solid ones along the high-symmetry line ΓK while they exhibit

some discrepancy around the point M. In the absence of the gated voltage (Vg = 0),

|M f i(k)|2 exhibits a highly anisotropic characteristic with a maximal value around the

point M in the high-symmetry line Γ-K-M. |M f i| is equal to zero in the line Γ-K, along

14
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which the structure factor f (k) is a real number and the matrix elements H23 and H32

in Eq. (6) is equal to zero. The 4× 4 Hamiltonian matrix is decomposed into the

two 2× 2 blocks. The eigen-vector corresponding to the final (initial) state is |d f ⟩ =

|d1,d2,0,0⟩ (|di⟩ = |0,0,d3,d4⟩. The six matrix elements V13, V23, V24, V31, V32, and

V42 are all equal to zero as Im[ f (k)] = 0 and Vg = 0. The straightforward calculation

exhibits that the magnitude of the dipole matrix element vanishes, i.e., |M f i|= 0.

In the presence of the gated voltage, |M f i|2 shows different aspects, as illustrated

in Figs. 6(b)-6(d). Vg alters the Hamiltonian matrix elements, energy spectrum and

eigenstates |di⟩ and |d f ⟩. Moreover, the Vg-dependent Vlm’s are also modified by the

gated voltage. As a result, at Vg = 100 meV, |M f i|2 (blue solid curve in Fig. 6(b))

around the point M exhibits a different aspect and magnitude. The maximum is located

in the vicinity of the point M. The increase in Vg does not alter the profile of |M f i|2

around the point M. Most importantly, the application of Vg enhances |M f i|2 in the

high-symmetry line KΓ. Vg introduces the nonzero matrix elements H23 and H32 in

Eq. (6), which mixes the symmetrical and anti-symmetrical wave functions, i.e., the

alternation of the eigenstates. Moreover, Vg also produces the six matrix elements V13,

V23, V24, V31,V32, and V42, being unequal to zero. As a result, Vg intensifies |Mfi|2 in the

symmetry line KΓ. Such a characteristic strongly modifies the low energy absorption

spectra in the presence of Vg.

The low-energy absorption spectra A(ω) of AB BLG reflect the characteristics of

energy dispersions. There are six possible interband excitations resulting from four

branches of energy dispersion. The optical excitation from the subband E−+ to E−−

and transition between E+− and E++ are forbidden by the thermal factor Ff −Fi. Four

allowed excitations, A1(ω), A2(ω), A3(ω) and A4(ω), are shown by the vertical lines

in the inset on the left panel of Fig. 7(a). A1(ω) stems from the transition between the

highest valence subband E−− and the top conduction subband E++, and A2(ω) origi-

nates in the excitation E−+→ E+−. Moreover, the transition from the subband E−−

to E+− generates the spectra A3(ω) and the excitation between the subbands E−+ and

E++ leads to A4(ω). A1(ω) [A2(ω)] shows a discontinuous structure at ω ≈ 380 meV,

as illustrated in Fig. 7(a). Such an optical gap originates in the interband transition

15
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between E−− and E++ subbands [ E−+ and E−+ subbands]. A4(ω), resulting from the

transition from E−+ to E++ subbands, exhibits an absorption edge at ω ≈ 800 meV.

There is no optical gap found in the spectra A3(ω) (red curve) because of the overlap

between the subbands E−− and E+−. As a result of the superposition of sub-spectra,

the total spectra exhibit two discontinuities at ω ≈ 380 and ω ≈ 800 meV, and no

optical gap is found in A(ω).

The application of Vg has a great effect on the low-energy absorption spectra A3(ω),

as depicted in Fig. 7(b). Vg not only opens a band gap but gives rise to a sharp peak in

A3(ω). In the presence of Vg, the steep rise of the spectra, due to the transition between

the band-edge states of E−− and that of E+− subband in the ΓK direction, can be used

to determine the size of energy gap Eg. The energy gaps are equal to ω = 0.17, 0.25,

and 0.28 eV as Vg = 100,200, and 300 meV. The first absorption peak is a compound

one, consisting of a shoulder on the low energy side and a main peak. The former

(shoulders) result from the transition between the E−+ and E+− subbands, denoted by

the vertical red arrow in Fig. 4. The excitation indicated by the vertical blue arrow in

Fig. 4 brings about the main peak. As Vg = 100,200, and 300 meV, the main peaks

are located at ω = 0.18, 0.30, and 0.35 eV. The main peak is in the logarithmic form,

stemming from the saddle point in energy dispersions in the high-symmetry line MK.

The frequency of the main peak depends on the magnitude of Vg. These peaks make a

blue-shift with the increase in Vg. The height of the first peak also enhances with the

increase in Vg because DOS around the band-edge state of E−+ (E+−) and |M f i|2 in

the high-symmetry line ΓK are enhanced by Vg, as shown in Figs. 5 and 6.

How the tight-binding parameters γ ′i s influence the low energy absorption spectra

A(ω) is deliberated. The dashed brown curve in Fig. 7(c) presents A(ω) at Vg = 200

meV, through the analytical model, including all the tight-binding parameters γ0, γ1,

γ3, and γ4. The close of the interlayer interaction γ4 has no effect on A(ω), shown by

cyan curve in Fig. 7(c). According to Eq. (7b), the magnitude of γ1
εAA

γ4| fk| gradually

declines with the increase in Vg. As a result, absorption spectra at Vg = 200 meV are

not affected by the interlayer interaction γ4. A(ω), illustrated by the red curve, exhibits

a larger band gap Eg = 270 meV and a sharp peak located at ω = Eg as the main
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intralayer interaction (γ0) and interlayer interaction (γ1) are taken into consideration.

Moreover, A(ω) presents a simple feature and weaker intensity of absorption relative

to those in the brown curve. The chief cause is that the close of the interlayer interaction

γ3 not only changes energy dispersions and wave functions but turns off some optical

transition channels.

Comparison of the study results with those obtained through ab initio calculation is

made. The analytical formula can exactly describe four energy dispersions and gener-

ate the energy bands with ”Mexican hat” structure. Our research demonstrates that the

gated voltage Vg alters the subband spacing, changes the energy band gap, produces the

oscillating bands, and induces more band-edge states. The aforementioned electronic

properties, e. g., band feature, tunable band gap, and electric-field-modified oscillat-

ing bands, are also produced through the ab initio calculation.41 That is, the electronic

properties derived from the analytical model are in qualitative agreement with those

given by the ab initio calculation. To be more specific, we quantitatively compare the

sizes of gated tunable band gaps acquired by the two methods. The calculated tun-

able band gaps, shown in Fig. 8 in the cross symbols, are taken from the ab initio

calculation.45 The band gap first increases monotonically as the strength of electric

field increases. Then, the energy gaps saturate to a value Eg ≈ 270 meV as the field

strength |F| is greater than 0.2V/Å. We now evaluate Eg by employing the analytical

model for γ3 = γ4 = 0 (black curve) and γ3 ̸= 0 and γ4 ̸= 0 (red curve). The red curve

exhibits that Eg first increases sublinearly as the strength of electric field (|F|= 2Vg/c

and c is the layer distance) is less than 0.05V/Å. While the energy gaps approach to

a value Eg ≈ 300 meV as |F| > 0.2 V/Å. The behavior of Eg predicted by the ana-

lytical method (red curve) is similar to that of the ab initio method. The comparison

between the black and red curves illustrates that as the field strength is weaker than

0.05 V/Å, the tunable band gaps are independent of the hopping integral γ3. After that,

the hopping integral γ3 reduces the size of Eg.
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5 Conclusions

We develop a method to access the analytical form of the energy spectrum and eigen-

states of the gated BBLG within the tight-binding model with all the tight-binding

parameters included. The trigonal warping γ3 and applied gated bias Vg destroy the

mirror symmetry of BBLG. To deal with the broken symmetry caused by γ3 and Vg, a

new set of tight-binding basis functions is constructed through a rotation operator. The

renormalized intralayer and interlayer interactions exhibit a gated bias dependence.

Most importantly, the Hamiltonian matrix H is transformed into a band-storage matrix

in the subspace spanned by the new basis functions. The formula of energy dispersions

and wave functions are then obtained, analytically. γ4, the electron-hole asymmetry, is

treated as a perturbation and included in the analytical formula. The electronic prop-

erties, density of states, optical dipole matrix element and optical absorption spectra

are explored by employing this analytical formula. The study shows that Vg can open

an optical gap and produce a profound low-energy peak in absorption spectra. The

dipole matrix element M and absorption spectra are strongly modified by Vg. Finally,

the characteristics of absorption spectra, e.g., the location and height of this low-energy

peak, are significantly presented and explored through the analytical model.
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Appendix

The element Vlm is the operator
( ∂H

∂kx

)
sandwiched by the symmetrized basis functions

⟨ϕl | and |ϕm⟩, i. e. Vlm = ⟨ϕl | ∂H
∂kx

|ϕm⟩, where H is the Hamiltonian representation Eq.

(1). The analytical form of each a Vlm is listed as follows.

V11 = 0,
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V12 =
γ0

2| f |

(γ2
1 f ∗ ∂ f

∂kx
+(ε −Vg)

2 f ∂ f ∗
∂kx

ε(ε −Vg)

)
+

γ1

ε
γ4(

f ∗

2| f |
∂ f
∂kx

+
f

2| f |
∂ f ∗

∂kx

)
,

V13 = (γ0
γ1

ε
− γ4)(

f ∗

2| f |
∂ f
∂kx

− f
2| f |

∂ f ∗

∂kx
)− (γ4

Vg

ε
)(

f
2| f |

∂ f ∗

∂kx
+

f ∗

2| f |
∂ f
∂kx

)
,

V14 = 0,

V21 = V ∗
12,

V22 =
γ1

ε
γ3

2
(

f ∗

| f |
∂ f ∗

∂kx

f ∗

| f |
+

f
| f |

∂ f
∂kx

f
| f |

)
,

V23 =
γ3

2
(

f ∗

| f |
∂ f ∗

∂kx

f ∗

| f |
− f

| f |
∂ f
∂kx

f
| f |

)
−

Vg

ε
γ3

2
(

f ∗

| f |
∂ f ∗

∂kx

f ∗

| f |
+

f
| f |

∂ f
∂kx

f
| f |

)
,

V24 = (−γ0
γ1

ε
+ γ4)(

f ∗

2| f |
∂ f
∂kx

− f
2| f |

∂ f ∗

∂kx
)− (γ4

Vg

ε
)(

f
2| f |

∂ f ∗

∂kx
+

f ∗

2| f |
∂ f
∂kx

)
,

V31 = V ∗
13,

V32 = V ∗
23,

V33 =−V22,

V34 =
γ0

2| f |

(γ2
1 f ∂ f ∗

∂kx
+(ε +Vg)

2 f ∗ ∂ f
∂kx

ε(ε +Vg)

)
+

−γ1

ε
γ4(

f
2| f |

∂ f ∗

∂kx
+

f ∗

2| f |
∂ f
∂kx

)
,

V42 = V ∗
24,

V34 = V ∗
43,

V44 = 0.
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Figure Captions

FIG. 1. (a) The energy spectra, obtained by Eq. (11), are illustrated in the red dashed

curves. The black curves are the energy spectrum by the numerical diagonal-

ization. The geometric structure of the AB-stacking bilayer graphene and the

intralayer and interlayer interactions are shown in the inset. (b) Same plots as (a)

but the gated voltage Vg = 200 meV. The inset exhibits the first Brillouin zone.

M is the saddle point and K and K′ are the Dirac points.

FIG. 2. The dashed curves are the low energy spectrum at different Vg’s acquired by Eq.

(11). For comparison, the energy spectrum by the numerical diagonalization are

drawn in the black curves.

FIG. 3. (a) The energy dispersions at Vg = 0 illustrated in the red dashed curves are

obtained by the exact analytical model. The black curves are the energy spectrum

by the numerical diagonalization. (b) The conduction bands around the point M.

(c) The same plot as (a) but for Vg = 200meV. (d) The conduction bands around

the point M.

FIG. 4. Dashed and solid curves are energy dispersions obtained by exact analytical for-

mula and numerical diagonalization. For comparison, the exact energy disper-

sions are illustrated by the colorful curves.

FIG. 5. (a) DOS Dη1η2 , associate with each subband Eη1η2 , of BBLG at Vg = 0. (b)-(e)

are the low-energy DOS at Vg = 0,100,200, and 300 meV. The vertical red bars

indicate the energy band gap. The blue arrows label the van Hove singularities

in DOS.

FIG. 6. (a)-(d) The solid curves are the square of the absolute values of optical matrix

|Mfi|, obtained by the numerical diagonalization method. The same plots ob-

tained by analytical formula are given in the dashed curves.

FIG. 7. (a) A1(ω), A2(ω), A3(ω), and A4(ω), the sub-optical spectra, are shown by blue,

green, red and brown curves. Four allowed optical transitions are indicated by
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the vertical lines in the inset in left panel. (b) The low-energy absorption spectra

Ai(ω) at Vg = 0, 100, 200, and 300 meV are drawn in the red, green, brown

and blue. (c) the low energy absorption spectra with the different tight-binding

parameters.

FIG. 8. The cross symbols are band gaps acquired through the ab initio calculation (data

are taken from APL 98, 2011, 263107). Eg is obtained by the analytical model

for γ3 = γ4 = 0 (black curve) and γ3 ̸= 0 and γ4 ̸= 0 (red curve).
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