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Effect of surface properties in protein corona 
development on mesoporous silica nanoparticles  

Alden M. Clemments,a Carlos Muniesa,b Christopher C. Landry,* a and Pablo 
Botella*b 

 

 

 

Abstract. The composition of the protein corona formed on 
mesoporous silica nanoparticles with several surface 
modifications was characterized. Low MW serum proteins 
were preferentially adsorbed, and PEGylated nanoparticles 
did not adsorb protein regardless of PEG chain length.  

 Nanomedicine is continuously providing new single and 

multifunctional alternatives to traditional pharmaceutical delivery 

and treatment, enhancing both therapeutic activity and selectivity to 

pathological tissues, as well as providing molecular recognition and 

biosensing features.1,2 Unfortunately, the stability of most 

nanomaterials in biological fluids is still a challenge to be solved, and 

the incorporation of stable nanoparticles into the bloodstream 

provokes a strong reaction with serum proteins, lipids, and small 

molecules, forming a shell of aggregated compounds known as the 

protein corona.3 The very high surface to volume ratio of 

nanomaterials dramatically boosts the adsorption process, changing 

their surface properties. This corona defines the biological identity of 

the nanomaterials and determines their final physiological fate. In the 

case of intravenous (iv) injection, protein adsorption drives 

nanoparticle uptake by monocytes and macrophages, leading to 

their distribution to the reticuloendothelial system (RES) and 

compromising their therapeutic efficacy.4-7 

 Independent of the nature of the nanomaterial, the protein 

corona grows in a few minutes over the particles and may evolve for 

several days.8-10 It has a complex composition, often consisting of 

several dozens of proteins. Some of these proteins are loosely bound 

to particle surface (the “soft corona”), but, so far, most of the studies 

of this coating have been carried out over a short list of proteins 

firmly attached to particles forming the “hard corona”, as this 

represents the protein signature of the nanomaterial in a given 

environment.11-15 These studies have shown that the total protein 

concentration in biological fluids may change the composition of the 

corona, although, surprisingly, the concentration of a specific protein 

does not determine its presence in the biological layer (e.g., human 

serum albumin is the most abundant protein in serum but is actually 

in minority around nanoparticles).16,17 Moreover, the role of targeting 

molecules decorating the nanoparticle surface depends on this 

protein covering, as the interaction with specific receptors may be 

seriously hindered.18 

 Changing nanoparticle properties, such as material,16 size,12,19-21 

and surface chemistry,12,21,22 may alter the corona composition. 

Interestingly, the most widely applied strategy to block nonspecific 

protein adsorption on nanoparticles is to modify the surface by 

grafting linear chains of poly(ethylene glycol) (PEG).21,23 In fact, 

different studies support that PEGylation of nanomaterials diminishes 

interaction with serum proteins, decreasing the rate of phagocytic 

uptake and increasing blood residence time.24,25 Additionally, 

proteomics analysis has been performed on a wide range of organic 

and inorganic nanomaterials, such as polystyrene,11,15,16 hydrogels,22 

carbon nanotubes,26 gold,9,21 SPIONs,27 quantum dots,28,29 and 

amorphous silica nanoparticles.16,17,19,20,22 However, so far, no 

investigation has been reported on the protein corona on 

mesoporous silica nanoparticles (MSNs). In recent years, mesoporous 

silica materials have been considered to be excellent platforms for 

drug delivery systems.30-33 The large internal porosity of MSNs favors 

the loading of significant quantities of therapeutic molecules within 

the pore channels. Furthermore, nanoparticle shape and size, as well 

as pore structure, can be easily tuned through various synthetic 

strategies.34,35 Finally, the silanol-containing surface can be easily 

functionalized, introducing additional features that allow for stimuli-

responsive controlled drug release.36 Shi et al37 highlighted the effect 

of PEGylation of MSNs on human serum albumin binding and cellular 

responses, concluding that PEG grafting greatly decreased protein 

binding to MSNs as well as macrophage uptake. Nevertheless, 

additional work is needed to completely characterize the protein 

corona on MSNs, and how it evolves as a function of nanoparticle 

modification.  
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had been formed. This was confirmed using thermogravimetric 

analysis (TGA) on MSNs before and after exposure to 10% FBS. 

Unmodified and –NH2 modified MSNs showed significant amounts of 

adsorbed protein (10.1 and 14.4 wt %), with a lesser amount of 

protein adsorbed by the –COOH modified MSNs (2.3 wt%). In 

contrast, PEGylated MSNs showed no significant protein adsorption. 

Previous studies used long PEG chains,23,26,37 but we show here that 

even a PEG trimer was sufficient to prevent the formation of a protein 

corona. This is relevant to the use of porous nanoparticles, because 

the decrease in surface area and therefore the extent of pore 

blockage was much smaller for –PEG3 than for –PEG24 modified MSNs. 

 The protein corona on each type of MSN in these studies was 

characterized by combining LC-MS and TGA data. Protein was 

released from the particles for analysis using a typical denaturation 

process (see Supplementary Information). The amount of protein 

released by this technique was consistent with the TGA data, as 

confirmed by the bicinchoninic acid (BCA) assay. While other studies 

have shown the wide range of proteins that adsorb onto the surfaces 

of various types of nanoparticles, most of these results have been 

presented in terms of relative amounts of each. For example, 

Monopoli et al.16 applied a normalization to the spectral counts 

obtained from LC-MS data that took into account the molecular 

weight of each protein, but this does not describe the mass of each 

adsorbed protein. Consequently, in these studies, spectral counts 

from LC-MS experiments were normalized to obtain the relative 

percentages of each protein on the surface, and this value was then 

multiplied by the weight of protein determined by TGA to obtain the 

mass of each adsorbed protein (Equation 1). 

 

 In this equation, SpCi is the spectral counts associated with a 

particular protein, and TGA is the weight percent of adsorbed protein 

in the particular MSN sample. The factor of 10 is added to bring the 

units to mg protein per g of particles. The first part of the equation is 

defined as normalized spectral counts, abbreviated NSpC. SpC values 

and a heat map of the complete set of adsorbed proteins for 

unmodified, –NH2 modified, and –COOH modified MSNs are, 

respectively, shown in Table S1 and Fig. S3, and a subset of the most 

common proteins, defined as those with NSpC × TGA of 3.00 or 

higher, is shown in Table 2. It is apparent that although many 

proteins are present in 10% FBS, the subset of adsorbed proteins in 

each type of MSN's hard corona is much smaller.  

 More than 86 wt% of the adsorbed proteins was accounted for by 

only eight proteins (highlighted in Table 2) in the unmodified MSN 

sample, and the same proteins accounted for more than 60 wt% in 

the –COOH modified MSN sample although the total amount of 

adsorbed protein was significantly less. The zeta potential of the 

surface did not appear to be a significant factor in determining the 

type of protein adsorbed, because the isoelectric points (pIs) of the 

adsorbed proteins varied between 5.1 and 8.1. The pI values of most 

of the proteins are below 7, so they are negatively charged at 

physiological pH. However, deposition on negatively charged 

nanoparticles does not correlate with protein charge, showing that 

electrostatic effects alone are not the major driving force regulating 

MSN-protein interactions. This is consistent with the composition of 

the protein corona on other particles.20,38 

 

Table 2. Most common proteins found on porous 70 nm nanoparticles with various surface modifications.a 

     MSN-OH MSN-NH2 MSN-COOH 

Protein 
Mw 

(kDa) 
pI NSpCb 

NSpC 
×TGAc 

NSpC 
NSpC 
×TGA 

NSpC 
NSpC 
×TGA 

Apolipoprotein A-II 11 8.10 0.248 25.1 0.194 27.9 0.140 3.21 
Apolipoprotein C-III 11 5.11 0.044 4.48 0.028 4.08 0.000 0.00 
Hemoglobin subunit  15 8.44 0.000 0.00 0.045 6.48 0.024 0.55 

Hemoglobin fetal subunit  16 7.03 0.073 7.39 0.032 4.67 0.186 4.29 
Hemoglobin subunit  16 6.74 0.061 6.16 0.000 0.00 0.096 2.21 
Apolipoprotein A-I-like 24 5.43 0.089 9.03 0.000 0.00 0.045 1.04 

ACTA2 protein-like 26 5.24 0.060 6.06 0.000 0.00 0.010 0.24 
Apolipoprotein A-I 30 5.97 0.137 13.8 0.017 2.49 0.090 2.08 

Collectin-43 34 5.12 0.000 0.00 0.026 3.74 0.000 0.00 
-2-HS-glycoprotein 38 5.50 0.151 15.3 0.100 14.4 0.040 0.93 

Protein AMBP 39 7.62 0.000 0.00 0.061 8.82 0.000 0.00 
Actin,  skeletal muscle 42 5.23 0.037 3.75 0.000 0.00 0.015 0.35 

LMW Isoform of Kininogen-1 48 6.62 0.000 0.00 0.025 3.58 0.000 0.00 
Serum albumin 69 6.18 0.017 1.71 0.058 8.34 0.018 0.42 

Prothrombin (fragment) 71 6.33 0.000 0.00 0.041 5.90 0.000 0.00 
Inter--trypsin inhibitor heavy chain H2 106 7.94 0.000 0.00 0.043 6.21 0.007 0.16 

 
total protein deposit from TGA 

(wt%)   
 

  
10.1 

  
14.4 

  
2.3 

aMSN-PEGn-OCH3 materials did not show a weight loss from TGA and are not included here. 
bNSpC = normalized spectral counts from LC-MS, calculated as described in the text. 
cNSpC × TGA = amount of each protein found on particle, expressed as mg protein per g particles. 

SpCi

SpCi
i

n


 TGA  10
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However, it is interesting to note that the molecular weights of these 

eight proteins were among the smallest of the entire set of identified 

proteins, with weights all below 38 kDa (Table 2 and Fig. S4)Because 

these samples all had large internal surface areas, there may be a 

size-exclusion effect in which larger proteins are prevented from 

adsorbing in large amounts by the diameter of the pores. This makes 

sense in light of other studies of the protein corona on dense (non-

porous) silica, in which a larger fraction of the adsorbed proteins had 

higher molecular weights. In the case of –NH2 modified MSNs the 

protein distribution is more varied. The eight proteins highlighted in 

Table 2 only account for 37 wt% of the total amount of adsorbed 

protein, and more proteins with higher molecular weights were 

adsorbed. Again, pI does not appear to play an important role here. 

The reason for this discrepancy could be in the dominant role of 

surface primary amines in the nonspecific binding of serum proteins 

on nanoparticles, as has been described in the literature.39,40 

Additionally,  as  noted  above,  the  larger  surface  area  of  the  –NH2 

modified MSNs indicate that the pore surfaces are more accessible to 

proteins, which may  allow  a wider  variety  of  low molecular weight 

proteins  to  be  trapped  in  the  pores.  Finally, PEGylated samples did 

not show any protein adsorption by LC-MS or TGA, even in the case 

of –PEG3 modified particles with surface areas of 241 m2/g. This 

confirmed the ability of PEG chains to prevent protein adsorption 

and therefore to prevent nanoparticle aggregation in biological 

medium. 

 In conclusion, we have characterized protein adsorption onto 

mesoporous silica nanoparticles (MSNs) modified with –NH2, –COOH, 

–PEG3, and – PEG24 groups as well as onto unmodified MSNs, using 

LC/MS-MS and TGA to determine the total mass of each protein 

adsorbed. The results are somewhat different from other studies 

performed on dense (non-porous) silica nanoparticles. Most of the 

adsorbed proteins had low molecular weights, and the –NH2 

modified MSNs had the largest variety of proteins. The pI values of 

the adsorbed proteins were mostly below physiological pH (7.4), 

although there was not a strong correlation between pI and the type 

of surface modification. Finally, PEGylated particles did not adsorb 

protein, regardless of chain length. 
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