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Effects of Template Removal on Both Morphology of 
Mesoporous Silica Coated Gold Nanorod and Its 
Biomedical Application 

Jie Fenga, Zhifei Wang*,a, Bin Shena, Liming Zhangb, Xia Yanga, Nongyue He*,b 

Mesoporous silica coated Au nanorods (Aurod@SiO2) have recently attracted considerable 
interest in nanomedicine, and the template removal procedure is crucial for the preparation of 
such hybrid nanostructure. Herein, two kinds of typical extraction solvents (NH4NO3/CH3OH 
and HCl/CH3OH) were separately used to extract the surfactant cetyltrimethylammonium 
bromide (CTAB) from the obtained Aurod@SiO2. The results show that CTAB molecules could 
be completely removed from the pores of Aurod@SiO2 without damaging the internal Au 
nanorod by NH4NO3/CH3OH, while Aurod@SiO2 treated with HCl/CH3OH suffered from both 
poor extraction efficiency and the shape transformation of Au nanorod caused by the selective 
etching in the presence of oxygen. In addition, the consequent drug loading experiment shows 
that Aurod@SiO2 extracted by NH4NO3/CH3OH possesses a larger drug loading capacity with 
the loading efficiency of 82.5%. Furthermore, the in vitro photo-thermal therapy experiment 
shows that Aurod@SiO2 extracted by NH4NO3/CH3OH is more efficient in killing the YCC-2 
gastric cancer cells as compared with that extracted by HCl/CH3OH. 
 

Introduction  

Recently, the development of hybrid nanomaterials with multiple 
functionalities, such as diagnostic imaging, drug delivery and 
therapy, has been attracting more attention in the biomedical fields. 
Compared with pure nanoparticles (NPs), the hybrid nanomaterial 
can cleverly integrate various properties into unique nanoparticle 
formulation, and further has potential improvement on the 
previously established therapeutic and diagnostic regimes.1 Among 
various hybrid nanomaterials, mesoporous silica coated Au nanorods 
(Aurod@SiO2) have specially stirred up great interest. In this hybrid 
structure, Au nanorods exhibit intriguing nonlinear optical properties 
owing to their localized surface plasmon resonances that can be 
synthetically tuned across a broad spectral range, covering the 
visible and near-infrared regions by tailoring their aspect ratios (the 
ratio between the length and diameter). Such splendid plasmon-
related property makes Au nanorods be used in both imaging and 
photothermal conversion-based therapy.2-5 Meanwhile, mesoporous 
silica shell (MSS) has also gained much attention due to its unique 
features, such as large surface area and pore volume, high chemical 
and thermal stability, excellent biocompatibility, and versatile 
surface chemistry for further functionalization.6, 7 Therefore, it can 
work as “nanocarrier” for the delivery of drugs or other cargos to 
cells and also be used as the ideal platform for constructing 
multifunctional materials. 

Up to now, the main procedure to fabricate Aurod@SiO2 always 
involves the use of cetyltrimethylammoniumbromide (CTAB), 
which is first used as stabilizer in the synthesis of Au nanorods, and 
subsequently as the soft template for the formation of mesoporous 
silica shell.8 And in the post-synthesis treatments, CTAB should be 
efficiently removed to get a more open and hollow pore channel so 

as to increase its drug loading capacity. In addition, the residual 
CTAB is potentially toxic for human system when using 
Aurod@SiO2 as drug carrier. Therefore, how to effectively remove 
CTAB template is an important issue before its real application as a 
theranostic platform. So far, numerous methods, including high-
temperature thermal–chemical calcinations processes,9 dialysis,10 
and solvent extraction,11 have been proposed to remove the template 
from silica based mesostructured materials. The calcination 
processes, owing to their aggressive thermal and/or chemical 
environments, often damage the intrinsic physical-chemical 
characteristics of the underlying substrate, thus limiting their 
application in the removal of CTAB from the obtained Aurod@SiO2. 
The “dialysis” process is time-consuming, and the treatment often 
requires a large amount of water containing acetic acid, which is 
neither environmental-friendly nor cost-effective for the real 
production. Therefore, to the best of our knowledge, solvent 
extraction is the most effective way to remove CTAB from the silica 
based mesostructured hybrid NPs. 

However, compared with pure silica based mesostructured 
materials, the effect of solvent extraction on the property of hybrid 
silica based mesostructured NPs has been reported rarely. As we 
know, as the core in Aurod@SiO2, Au nanorods have been reported 
to easily reshape or to suffer from size reduction upon the various 
conditions such as the treatment with cyanide ,12 oxygen,13 ferric 
chloride,14 Cu2+ and ascorbic acid in a hot aqueous solution.15 In 
order to guarantee its potential efficacy as a theranostic platform, it’s 
crucial for us to find a kind of extraction solvent, which can not only 
extract all the CTAB molecules from Aurod@SiO2, but also maintain 
the original shape of both mesoporous silica NPs and internal Au 
nanorod. Generally speaking, the high efficiency of template 
removal requires that the suitable solvent not only has the good 
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accessibility to highly cross-linked regions but also can break the 
interactions between CTAB and the siliceous mesostructured 
framework. Therefore, in most cases, the methanol solvent 
containing cations such as H+, NH4

+ is most recommended, where 
CTAB is expected to be removed through both its dissolution in 
methanol and the ion exchange between H+ or NH4

+ and CTAB.  
For the reasons mentioned above, herein we comparatively 

studied the effect of two different extraction solvents 
(NH4NO3/CH3OH and HCl/CH3OH) on the efficiency of CTAB 
removal from the obtained Aurod@SiO2. Their effect on both 
morphology and plasmon-related properties of the obtained 
Aurod@SiO2 were emphatically investigated. Then the drug loading 
experiment was carried out to assess the effect of two extraction 
solvents on the drug loading capacity. Finally the in vitro photo-
thermal therapy experiment was implemented to evaluate the photo-
thermal therapy (PTT) effect of Aurod@SiO2 after solvent extraction. 
These results reported here will lay a solid foundation for the 
Aurod@SiO2 based photo-thermal therapy and drug delivery. 

Experimental 

Materials 
Gold(III) chloride (HAuCl4.3H2O), cetyltrimethylammonium-

bromide (CTAB), silver nitrate (AgNO3), sodium borohydride 
(NaBH4), sodium hydroxide (NaOH), methanol (CH3OH), L-
ascorbic acid (AA), and tetraethyloxysilane (TEOS) were purchased 
from Sinopharm Chemical Reagent Limited Corporation and used as 
received. 3-aminopropyltriethoxysilane (APTES), polyacrylic acid 
(PAA, MW=1,800), and DOX in the form of the hydrochloride salt 
were purchased from Aladdin. α-mPEG-ω-amine (MW=10,000) was 
purchased from Shanghai Yanyi Biotechnology Corporation. Fetal 
bovine serum (FBS), Dulbecco's modified Eagle's medium, 
penicillin/streptomycin were purchased from ThermoFisher 
Scientific. Calcein-AM and propidium iodide (PI) were obtained 
from Invitrogen. All glassware and Teflon-coated magnetic stirring 
bars were thoroughly cleaned with aqua regia, followed by copious 
rinsing with purified water. Water was purified with a Millipore 
system. 
Synthesis of Au nanorods  

Au nanorods were fabricated by a seed-mediated, Ag (І)-assisted 
growth procedure according to the previous report.8 The seed 
solution was prepared as follows: Briefly, 0.25 mL of an aqueous 
solution of HAuCl4 solution (0.01 M) was added to 7.5 mL of CTAB 
solution (0.10 M) in a test tube. The solutions were gently mixed by 
inversion. The solutions appeared bright brown-yellow in color. 
Then, 0.6 mL of an aqueous ice-cold NaBH4 solution (0.01 M) was 
added all at once, followed by rapid inversion mixing for 2 min. The 
resulting solution developed a pale brown-yellow color. After that, 
the test tube was kept in a water bath maintained at 25 °C to obtain 
stable seed solution. The growth solution was prepared by mixing 
285 mL of CTAB (0.1 M), 12 mL of HAuCl4 (0.01 M) and 1.8 mL 
of AgNO3 (0.01 M) together in 500 mL reagent bottle. Another 100 
μL of HCl (37%, wt) was added into the above solution. Following 
this step, 1.92 mL of L-ascorbic acid (0.01 M) was added to the 
resulting solution under gentle stirring, which changed the color of 
the growth solution from dark yellow to colorless. Finally 0.6 mL of 
seed solution was added to the resulting solution at 27~30 °C. The 
color of the solution gradually changed within 10~20 min. The 
temperature of the growth medium was kept constant at 27~30 ºC 
during the whole procedure. 
Synthesis of Aurod@SiO2 

The post mesoporous silica coating of Au nanorods were achieved 
by a modified stöber method. Firstly, 200 mL of as-synthesized Au 

nanorods were washed twice with Milli-Q water to remove excess 
CTAB and redispersed in 100 mL of Milli-Q water. Subsequently, 
10 mL of NaOH solution (0.1 M) was added to adjust the pH value 
to 11, then 0.9 mL of 20% TEOS in methanol solution was added to 
the resulting solution at the rate of 300 µL every 30 min. The 
mixture was allowed to react at 27 oC for at least 2 days. The 
resulting Aurod@SiO2 was washed two times with water and three 
times with methanol and finally dispersed into 100 mL of methanol. 
The removal of CTAB from the as-synthesized 
Aurod@SiO2 by HCl/CH3OH (denoted as “route A”) 
or NH4NO3/CH3OH (denoted as “route B”) 
extraction 

The removal of CTAB from the as-synthesized Aurod@SiO2 was 
carried out by two different solvent extraction methods.        
Typically, the removal of CTAB by HCl/CH3OH extraction was 
performed in 0.25 M HCl/CH3OH solution at 60 °C. Firstly, 2 mg of 
as-synthesized Aurod@SiO2 was added to 5 mL of 0.25 M 
HCl/CH3OH solution. Then the resulting mixture was heated to 
reflux at 60 °C under stirring. In comparison, the removal of CTAB 
by NH4NO3/CH3OH extraction is similar to the above the procedure, 
except that HCl/CH3OH was replaced by 5 mL of methanol solution 
containing 30 mg of NH4NO3. For the sake of comparison, the 
extracted Aurod@SiO2 was taken out and washed by methanol at 
selected time for both UV-vis and TEM characterization. 
Evaluation of drug loading capacity of Aurod@SiO2 
treated with route A or route B 

DOX was chosen as a model drug to assess the effect of different 
extraction solvents on drug loading capacity of the extracted 
Aurod@SiO2. Briefly, 1 mg of the extracted Aurod@SiO2 was mixed 
with 1 mL of PBS buffer containing 100 µg of DOX and stirred at 
room temperature for 24 h. Then the supernatant was collected and 
the residual DOX content was measured by UV–vis measurement at 
a wavelength of 480 nm. The loading efficiency (LE) is obtained 
using the following equation: 

original

tsupernatanoriginal

DOX
DOXDOX

LE(%)
−

=  

Preparation of PEGylated Aurod@SiO2 
To improve the biocompatibility of Aurod@SiO2, their surface 

was further functionalized with α-mPEG-ω-amine group prior to the 
in vitro photo-thermal therapy experiment.. Firstly, 5 mg of 
Aurod@SiO2 treated by route A or route B was dispersed in 5 mL of 
methanol, and then 100 μL of APTES was rapidly added to the 
above solution. After 24 h of reaction under room temperature, the 
APTES functionalized Aurod@SiO2 (denoted as Aurod@SiO2@NH2) 
was obtained by centrifugation at 15,000 rpm for 10 min to remove 
supernatant, washed with ethanol for four times, and dried under 
vacuum. After that, polyacrylic acid (PAA, MW=1,800) was further 
covalently attached to the surface of Aurod@SiO2@NH2 using EDC 
coupling chemistry with the aim to obtain carboxylate-functinalized 
Aurod@SiO2 (denoted as Aurod@SiO2@COOH). Briefly, 0.03 g of 
PAA dissolved in 2 mL of MES buffer (pH =6.0) was first activated 
with the help of 1 mg of EDC. Then, 5 mg of the obtained 
Aurod@SiO2@NH2 was added into the above solution, and the 
reaction lasted for 30 min. Next, the resultant was purified by 
centrifugation and subsequently washed with PBS buffer for at least 
3 times. For further PEGylation, 100 μL of EDC (10 mg/mL) and 
100 μL of NHS (10 mg/mL) were separately added to 2 mL of 
aqueous solution containing 5 mg of Aurod@SiO2@COOH. After 
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0.059O)/H(OO)/H(O ++=ϕϕ    Equation 1 

the electrode potential of O2/H2O is proportional to the concentration 
of H+. In the above experiment, when using NH4NO3/CH3OH 
mixture as extraction solvent, the corresponding pH value of this 
system is 5.20,i.e., the concentration of H+ is about 10-5.2 M. As a 
contrast, the concentration of H+ in HCl/CH3OH is 0.25 M. 
Therefore, the oxidative capability of O2 for HCl/CH3OH is much 
higher than that for NH4NO3/CH3OH, indicating that Au nanorods 
are easily reshaped in the former case. Moreover, other research also 
suggests that Cl- from the HCl/CH3OH could effectively reduce the 
electron potential of the gold species,19 which accelerates the 
selective etching of elemental gold. In addition, as we know, most of 
the Au nanorods obtained in the presence of Ag (I) are in the nature 
of the single crystal grown along (001) direction. The side surfaces 
are surrounded by (110) and (100) facets, and the tips are enclosed 
by (111), (110) and (001) facets.20, 21 Due to the presence of CTAB 
molecules, (110) and (100) facets become more stable than (111) 
planes.22, 23 Therefore, that is why the tips with (111) facets might be 
preferentially etched in route A. On the other hand, high surface 
curvature would lead to less passivation of the CTAB molecules at 
the tip, which also enables the etching reagent (HCl/CH3OH) to 
more easily approach the tip for the reaction. 

 
Fig.7 UV-vis adsorption spectra of the DOX solution before being loaded 
into Aurod@SiO2 (a) and after being loaded into the Aurod@SiO2 treated with 
HCl/CH3OH (b) and with NH4NO3/CH3OH (c) 

To further evaluate the effect of two extraction solvents on the 
extraction efficiency of CTAB, FT-IR analysis was conducted to 
measure the amount of residue CTAB in Aurod@SiO2 after treatment 
with the above two extraction solvents. The curve a in Fig.6A shows 
the FT-IR adsorption spectrum of Aurod@SiO2 before HCl/CH3OH 
extraction. Two bands at ~2930 and ~2850 cm-1 are due to the 
asymmetric and symmetric vibrations of CH2 units from CTAB 
molecules, respectively. Therefore, the removal of CTAB could be 
confirmed by a comparison of the peak absorbance at~2930 or 
~2850 cm-1 during the extraction procedure. As shown in Fig 6A, 
after HCl/CH3OH extraction for 1 h, the intensity of these CH2- 
stretching vibration bands slightly weakens. While with the 
prolongation of extraction time from 1 to 24 h, no obvious decrease 
is seen for the intensity of 2930 and 2850 cm-1 band, indicating that 
there is still some residual CTAB inside the mesopore of siliceous 
framework. However, when using NH4NO3/CH3OH mixture as 
extraction solvent, as shown in Fig.6B, it can be seen that the 
intensity of those two CH2- stretching vibration bands significantly 
decrease as the extraction time reaches 8 h, which implies that most 
of CTAB has been successfully extracted. When the extraction time 
is extended to 24 h, both of CH2- stretching vibration bands almost 

disappear, suggesting that CTAB has been completely removed from 
Aurod@SiO2. As mentioned above, the purpose of introduction of 
NH4NO3 or HCl in methanol is to break the electrostatic force 
between the oligomeric silicate anions and cationic headgroups 
(CTA+) of the CTAB. According to the previous study,24 the NH4

+ 

ion can directly spread to the internal mesopore of siliceous 
framework and exchange with the CTA+ due to a weak interaction 
between the NH4

+ ions and SiO- groups at the surface of the 
mesopore, followed with the consequent desorption of ammonia 
from the extracted samples, which is probably generated by heating 
NH4

+ ions in the Aurod@SiO2. So such behavior allows more NH4
+ 

ions to further exchange with CTA+ as long as there are CTAB 
molecules left inside the mesopore of Aurod@SiO2. As a control, ion 
exchange rate between H+ and CTA+ has been reported to be 
comparatively slower, therefore decreasing the extraction efficiency 
of CTAB. In addition, the structure transformation of Aurod@SiO2 
during the solvent extraction may be also presumably responsible for 
the lower extraction efficiency of CTAB removal considering the 
fact that the reshaped Au nanorod in the inner core could block the 
channel for the free spread of proton, which further makes the ion 
exchange between proton and CTA+ even more difficult. 

As previously stated in the introduction section, one of the 
potential applications of Aurod@SiO2 is to be used as drug carrier. 
Therefore, we further investigate the effect of two extraction 
solvents on the drug loading capacity of the resulting Aurod@SiO2. 
Fig.7 gives the UV-vis adsorption spectra of the original DOX 
solution (a), the residual DOX solution after being absorbed by 
Aurod@SiO2 treated with HCl/CH3OH (b) or with NH4NO3/CH3OH 
(c), respectively. It can be seen that the adsorption intensity of DOX 
decrease greatly after interaction with Aurod@SiO2, 

  
Fig.8 FT-IR spectra of Aurod@SiO2 after NH4NO3/CH3OH extraction (a) and  
PEGylated Aurod@SiO2 (b). 

 
Fig.9 Zeta potential of Aurod@SiO2, Aurod@SiO2@NH2, 
Aurod@SiO2@COOH and  Aurod@SiO2@PEG. 
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Fig.10 Fluorescence images of Calcein-AM/propidium iodide co-stained YCC-2 cells after the same PTT treatment.  a: control experiment, without the 
addition of any Aurod@SiO2; b: YCC-2 cells incubated with Aurod@SiO2 treated with HCl/CH3OH extraction; c: YCC-2 cells incubated with Aurod@SiO2 
treated with NH4NO3/CH3OH extraction. 
indicating that DOX molecules can be loaded into Aurod@SiO2. 
Further comparison between Aurod@SiO2 treated with different 
extraction solvents shows that Aurod@SiO2 treated with 
NH4NO3/CH3OH possesses a larger drug loading capacity than that 
treated with HCl/CH3OH. According to the decrement of 
absorbance of DOX, the loading efficiency of Aurod@SiO2 treated 
with NH4NO3/CH3OH and HCl/CH3OH reach 82.5% and 71.1%, 
respectively. Such loading efficiency difference maybe explained 
as follows: firstly, NH4NO3/CH3OH extraction route possesses 
higher extraction efficiency, therefore leading to more open 
internal channel after the removal of CTAB, which in turn results 
in an enhanced drug loading capacity. Secondly, the long-time 
extraction with HCl/CH3OH would undoubtedly cause the non-
negligible pore contraction, which also leads to a poorer drug 
loading capacity compared with samples treated with 
NH4NO3/CH3OH. So it can be expected that Aurod@SiO2 treated 
with NH4NO3/CH3OH would possess much larger drug loading 
capacity than that treated with HCl/methanol. 

To further improve the biocompatibility of Aurod@SiO2 to be 
used for photo-thermal therapy, their surface was also 
functionalized with α-mPEG-ω-amine group. Fig.8 gives the FT-IR 
adsorption spectra of Aurod@SiO2 (a) and PEGylated Aurod@SiO2 
(b), respectively, it can be seen that after the linkage of PEG group 
to the surface of Aurod@SiO2, the Aurod@SiO2@PEG shows the 
typical C-H mode at 2850~2930 cm-1 and 1462 cm-1, which should 
be associated with C-H bonds in the PEG block. In addition, a peak 
at 1650 cm-1 can be assigned to the amide carbonyl groups, 
indicating the successful linkage of mPEG10000-NH2 to the surface 
of Aurod@SiO2@COOH via amidation reaction. In order to further 
track the evolvement of linked groups on the surface of 
Aurod@SiO2, the zeta potential characterization was also conducted. 
As shown in Fig.9, the zeta potential of Aurod@SiO2 is -15.6 mV 
before APTES functionalization, showing the existence of a lot of 
silanol groups. Meanwhile, amine-functionalized Aurod@SiO2 
presents a positive zeta potential of +15.6 mV. After grafting with 

PAA, the potential of Aurod@SiO2@COOH decreases to -32.0 mV, 
indicating the existence of a great amount of carboxyl groups on 
the surface of PAA modified Aurod@SiO2. As an evidence for the 
successful conjugation of mPEG10000-NH2, the zeta potential of 
Aurod@SiO2@PEG increases from -32.0 to -6.0 mV, suggesting 
that most of carbonyl groups from the surface of 
Aurod@SiO2@COOH have reacted with mPEG10000-NH2. Taking 
all the above results together, it can be concluded that PEGylated 
Aurod@SiO2 is obtained. 

Finally, we studied the enhanced in vitro photo-thermal therapy 
efficiency of Aurod@SiO2 after treatment with two extraction 
solvents by Calcein-AM/Propidium iodide double staining assay. 
As we know, Calcein AM, a live cell stain, is a nonfluorescent dye 
that can permeate the cell membrane and be further hydrolyzed by 
intracellular esterases to a green fluorescent calcein dye in live cells. 
Propidium iodide, a dead cell staining, is membrane nonpermeable 
and generally excluded from viable cells. And it can bind to the 
DNA of dead cells by intrabase intercalation, generating red 
fluorescence.25 Fig.10a gives the fluorescence images of negative 
control after irradiation at selected time (1, 2, 4 min), all the YCC-2 
cells remain healthy with green calcein fluorescence even we 
extend the irradiation time to 4 min, suggesting that 808 laser 
irradiation alone is not harmful for cells. However, remarkably 
enhanced cancer cell killing efficiency can be observed for the 
YCC-2 cells cultured with PEGylated Aurod@SiO2 treated with 
NH4NO3/CH3OH (Fig.10c) when the irradiation time is 2 min. As a 
control, the same light irradiation induces no cellular damage for 
cells cultured with PEGylated Aurod@SiO2 treated with 
HCl/CH3OH (Fig.10b) even we extend the irradiation time to 4 min. 
Such cancer killing efficiency difference can be explained as 
follows: Aurod@SiO2 treated with NH4NO3/CH3OH well maintains 
the original structure of Au nanorod, whereas the original structure 
of Au nanorod in Aurod@SiO2 is completely damaged when treated 
with HCl/CH3OH. Therefore, photo-thermal conversion efficiency 
of the Aurod@SiO2 treated with NH4NO3/CH3OH is greater than 
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that treated with HCl/CH3OH, which in turn leads to an enhanced 
cancer cells killing efficiency. Our results collectively demonstrate 
that the selection of extraction solvent for the removal of CTAB 
from Aurod@SiO2 could have great impact on its photothermal 
conversion property, which further influences its efficacy as a 
theranostic platform. 

Conclusions 
In summary, this paper emphatically studied the effect of template 
removal on both the morphology of Aurod@SiO2 and its biomedical 
application such as drug loading and in vitro photo-thermal therapy. 
And we have found that when using NH4NO3/CH3OH as the 
extraction solvent it only takes 8 h to remove most of CTAB from 
the pores of Aurod@SiO2 without damaging the morphology of the 
internal Au nanorod. And the LSPR of Au nanorod doesn’t show 
any obvious peak broadening after the extraction. However, 
Aurod@SiO2 treated with HCl/CH3OH suffers from both poor 
extraction efficiency and shape transformation of the internal Au 
nanorod, which is presumably associated with oxidation etching 
during the extraction. After 24 h extraction in this case, the LSPR 
peak of Au nanorods nearly disappears from the absorption spectra 
and becomes a shoulder of the TSPR peak. The consequent drug 
loading experiment shows that Aurod@SiO2 treated with 
NH4NO3/CH3OH has a larger drug loading capacity than that 
treated with HCl/CH3OH, with a loading efficiency of 82.5%. 
Furthermore, the in vitro photo-thermal therapy experiment shows 
that Aurod@SiO2 treated with NH4NO3/CH3OH is much more 
efficient in killing the YCC-2 gastric cancer cells as compared with 
that extracted by HCl/CH3OH. All these above results have laid a 
solid foundation for the application of Aurod@SiO2 in both photo-
thermal therapy and drug delivery. 

Acknowledgements 
This work was supported by the State key Basic Research 
Program of the PRC (2014CB744501, 2010CB933903), and 
the NSF of China (61271056). 
 
Notes and references 
a School of Chemistry and Chemical Engineering, Southeast University, 
Nanjing, 211189, China. Email: zfwang@seu.edu.cn 
bSchool of Biological Science and Medical Engineering, Southeast 
University, Nanjing, 210096,  China. Email: nyhe1958@163.com 
 
1 G. Kickelbick, In Hybrid Materials: Synthesis, Characterisation 

and Applications,   Wiley-VCH: Weinheim, Germany, 2007. 
2 Z. Wang, S. Zong, J. Yang, J. Li and Y. Cui, Biosens. Bioelectron., 

2011, 26, 2883. 
3 J. Qian, L. Jiang, F. Cai, D. Wang and S. He, Biomaterials, 2011, 

32, 1601. 
4 D. K. Yi, I. C. Sun, J. H. Ryu, H. Koo, C. W. Park, I. C. Youn, K. 

Choi, I. C. Kwon, K. Kim and  C. H. Ahn, Bioconjug. Chem., 2010, 
21, 2173. 

5 T. B. Huff, L. Tong, Y. Zhao, M. N. Hansen, J.-X. Cheng and A. 
Wei, Nanomedicine, 2007, 2, 125. 

6 W. X. Mai and H. Meng, Integr. Biol., 2013, 5, 19. 
7 Y. Chen, H. Chen and J. Shi, Adv. Mater., 2013, 25, 3144. 
8 I. Gorelikov and N. Matsuura, Nano Lett., 2008, 8, 369. 
9 M. T. Keene, R. D. Gougeon, R. Denoyel, R. K. Harris, J. 

Rouquerol and P. L. Llewellyn, J. Mater. Chem., 1999, 9, 2843. 
10 C. Urata, Y. Aoyama, A. Tonegawa, Y. Yamauchi and K. Kuroda, 

Chem. Commun., 2009, 34, 5094. 
11 H. Ji, Y. Fan, W. Jin, C. Chen and N. Xu, J. Non-Cryst. Solids, 

2008, 354, 2010. 
12 N. R. Jana, L. Gearheart, S. O. Obare and C. J. Murphy, Langmuir, 

2002, 18, 922. 

13 C.-K. Tsung, X. Kou, Q. Shi, J. Zhang, M. H. Yeung, J. Wang and 
G. D. Stucky, J. Am. Chem. Soc., 2006, 128, 5352. 

14 R. Zou, X. Guo, J. Yang, D. Li, F. Peng, L. Zhang, H. Wang and H. 
Yu, CrystEngComm, 2009, 11, 2797-2803. 

15 T. Sreeprasad, A. Samal and T. Pradeep, Langmuir, 2007, 23, 9463. 
16 B. Van de Broek, N. Devoogdt, A. D’Hollander, H.-L. Gijs, K. Jans, 

L. Lagae, S. Muyldermans, G. Maes and G. Borghs, ACS nano, 
2011, 5, 4319. 

17 S. Link, M. Mohamed and M. El-Sayed, J. Phys.Chem. B, 1999, 
103, 3073. 

18 K. Caswell, J. N. Wilson, U. H. Bunz and C. J. Murphy, J. Am. 
Chem. Soc., 2003, 125, 13914. 

19 J. A. Dean, Lange’s Handbook of Chemistry, 15th edn., McGraw-
Hill, 1999. 

20 Y. Xiang, X. Wu, D. Liu, L. Feng, K. Zhang, W. Chu, W. Zhou and 
S. Xie, J. Phys. Chem. C, 2008, 112, 3203. 

21 X. Kou, S. Zhang, C. K. Tsung, Z. Yang, M. H. Yeung, G. D. 
Stucky, L. Sun, J. Wang and C. Yan, Chem. Eur. J., 2007, 13, 
2929. 

22 R. T. Tom, A. Samal, T. Sreeprasad and T. Pradeep, Langmuir, 
2007, 23, 1320. 

23 C. J. Johnson, E. Dujardin, S. A. Davis, C. J. Murphy and S. Mann, 
J. Mater. Chem., 2002, 12, 1765. 

24 N. Lang and A. Tuel, Chem. Mater., 2004, 16, 1961. 
25 D. K. Kirui, D. A. Rey and C. A. Batt, Nanotechnology, 2010, 21, 

105105. 

Page 7 of 7 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t


