This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Patterned One-Dimensional Photonic Crystals with Acidic/alkali Vapor Responsibility†

Cihui Liu, Chong Yao, Yanxi Zhu, Jiaoyu Ren, Kang Lan, Hao Peng and Liqin Ge*

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

A series of patterning responsive one-dimensional photonic crystals (1DPCs) were developed by using a photolithography technique to etch the template for acidic/alkali vapor sensing by the naked eye through color change.

Chemical odors and volatile compound detection are a topic of great interest in physics and materials science, owing to concerns about environmental monitoring, industrial quality control and human health care. Ammonia and hydrochloric acid are easily found in many labs and factories, which are harmful to cause diseases. Thus, it is necessary for monitoring these compounds in air.

Fabricating suitable sensing devices with efficient responsibility is the key point in such efforts. Responsive photonic crystals (RPCs), which use stimulus-responsive material as elements can alter their diffraction wavelength or intensities upon exposure to physical or chemical stimuli, have been an express and flexible approach for stimuli sensing. Recent advances in several groups have led to a burst of activities on responsive photonic crystals to detect arrange of odors including water-vapor, CO$_2$, volatile organic compounds vapor and specific gas mixture. The inherent responsibility of RPCs can be monitored by measuring the shift of stopband position or observed by the remarkable color change. In this case, patterning photonic crystals can be treated as an effective option for their convenient detection signals read-out. Patterning photonic crystals can be fabricated by self-assembly, inkjet-printing, artificial lithography, and so on. Most of these strategies are limited by the structure, stability, high cost, and difficulties associated with template fabrication, together with complex responsive detection means of external stimuli. Therefore, it is highly desirable to carry out an easy fabrication responsive photonic crystals without using intricate fabrication and detection methods.

Currently, a few study points to new strategies to make responsive patterning 1DPCs which show their advantages in fast preparing process. 1DPCs are special kinds of crystal multilayer interference, which consist of alternating layers of high and low-refractive-index materials with planar interfaces between each pair of layers. In particular, most of responsive 1DPCs works are focused on manipulating layer optical thickness, while conducting polymers focus on tuning the refractive index. Odors can be adsorbed strongly on conducting polymers’ doping/de-doping process, leading to effective reflective index change at room temperature while some sensors need complicate facilities to monitor the changes. Making use of the simple ordered titanium dioxide (TiO$_2$) layer, 1DPCs are easily processed to achieve patterning with the help of state-of-the-art photolithography techniques.

In this article, an artificial patterning TiO$_2$/polyaniline (PANI) 1DPCs is fabricated and employed to detect environmental response to NH$_3$ and HCl vapor (see in Fig. 1a). The color of the as-prepared 1DPCs changes reversibly between green and red when they were placed in HCl and NH$_3$ atmospheres alternatively, which was derived from the shift of PC’s stopband because of the variation of the PANI’s refractive index in different acidic and alkali vapor environment, see in Fig. 1b. Compared with other traditional works, this method makes a combination
of chemistry with materials design and has a better responsibility. The remarkable color change in photolithography pattern makes the naked-eye sensing function a reality, which would be helpful for chemical and biological sensor applications in real-time monitoring of acidic and alkali vapor of optical signal, see in Fig. 1c.

Highly uniform, mechanically stable TiO$_2$/PANI 1DPCs with alternated layers of TiO$_2$ and PANI have been realized using the spin-coating method. TiO$_2$ can form a uniform film easily and has a higher refractive index compared with PANI layer.23 As the low index layer, we use porous conducting polymer EB form PANI, which allow the stimuli gas to flow through it and do not corrupt the ordered structures, allowing us to demonstrate the platform for developing colorimetric gas sensors. The photonic bandwidth becomes narrower and the intensity of the peak grows with increasing numbers of layers, which are in good agreement with previous theory of the thickness dependence of the optical response of photonic crystal slabs, see in Fig. 2a. The angle dependence results were determined by spectroscopic ellipsometry. When the incident angles are 75°, 60°, 45°, 30° and 15°, respectively, the corresponding Bragg peaks’ positions are 470 nm, 500 nm, 550 nm, 580 nm and 615 nm, see in Fig. S1. The structural colors get a blue shift as the incident angle raises. A change of the period also influences the optical properties of the 1DPCs. By increasing the period only, Bragg peak position will make a red shift, see in Fig. 2b. The Bragg peak can be manipulated in the full visible range from blue to red by choosing proper periods. The obvious photonic stopband and the vivid structure color can be easily obtained in several bilayers. The film is very uniform over a large area, see in Fig. 2b. The cross-sectional SEM image of a stacked film from which we can see that it possesses an ordered multilayer structure in a large area, see in Fig. 2c.

For a stimulus vapor response, PANI/TiO$_2$ 1DPCs were fabricated with their photonic band gaps in the visible spectrum region. When a stimuli gas molecule enters a 1DPC structure, an obvious refractive index change of the conducting polymer can be occurred and the photonic crystals’ optical period change at the same. These cooperative, fast structure properties variety leads to a significant gas sensing affinity. The responsive photonic crystals reported the gas sensitive event through a gradual shift of the position of the diffraction peak to long wavelength with an increase of the refractive index. This phenomenon can be explained by the formula, see in Supporting Information Formula.

During the process of stimuli gas sensing, the acidic vapor HCl binds to the porous PANI layers of the prepared 1DPCs. The obvious transformation from EB to ES is triggered by a reorganization of the electronic structure, which induces the change of the refractive index, Fig. 1b. As the refractive index of the ES form PANI is larger than that of EB form, the average refractive index increases which present a clear red shift of Bragg diffraction peak at normal incidence. However, in Fig. 3a, we observed a shift maximum of 60 nm which is larger than that caused by the change of refractive index only, see the calculation part in ESI. Thus, the additional shift should be attributed to the increase of the period, which is caused by the porous structure swelling of the PANI layers, see in ESI.

Figure 2. a) Reflection intensity of the 1DPCs with rising number of bilayers; b) Structural color variation and reflection spectrum of the
The porous PANI layers of the prepared 1DPC show excellent gas carrying capacity, the responsive vapor infiltrates into pores of the 1DPCs, see in Fig. 2d. During different sensing environments, TiO\textsubscript{2} layers keep their thicknesses and refractive index invariable. To summarize, the specific response of acidic vapor in the PANI/TiO\textsubscript{2} 1DPCs was mainly depends on the increase of average refractive index and the swelling of the porous PANI layers also contribute a little, both of which are reported by layer-by-layer 1DPCs through a red shift of the Bragg diffraction peak.

Figure 3. (a) The reflection spectrum of a PANI/TiO\textsubscript{2} 1DPCs exposed to HCl and then be irradiated by UV light. (b) The changing reflection spectrum of an HCl doped PANI/TiO\textsubscript{2} 1DPCs be irradiated by UV light in 20 min. (c) Digital photographs of the letter pattern displayed after the HCl doping process by UV light irradiated photolithography.
In conclusion, we have demonstrated a facile method to respond acidic/alkali vapor by the naked eye through color change based on patterning responsive 1DPCs. The distinct ‘SEU’ patterns were etched by photolithography technique by virtue of TiO₂. The responsive process is very fast and the repeatability is perfect. Considering the visible read-out, low-cost fabrication approach and easy packing without the aid of sophisticated instrumentation, our 1DPCs would be promising as economically colorful sensors in chemical and biological fields, and environmental monitoring.

Acknowledgments This work was supported by the Fundamental Research Funds for the Central Universities.

Notes and references
State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China. E-mail: lgge@seu.edu.cn
† Electronic Supplementary Information (ESI) available: I. Methods and Characterization; II. Bragg’s formula of 1DPCs; III. The performance of angle dependence; IV. photograph of 1DPCs without pattern; V. The sensor performance with pattern ‘E & U’. See DOI: 10.1039/b000000x/

