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Unusual silylcarbonylation of aldehyde through CO insertion 
into a C=O double bond induced by a metal–silicon complex has 
been discovered: Treatment of an (η3-α-
silabenzyl)carbonylmolybdenum complex with alkylaldehydes 10 

afforded isolable O-silylated Mo–C–O three-membered-ring 
complexes, and one of them was subsequently converted to an η3-
oxaallyl complex at room temperature through CO insertion into 
the metallacycle C–O bond and incorporation of a CO molecule. 

Carbon monoxide is a simple and widely-used C1 building 15 

block for production of organic compounds such as 
hydroformylation of unsaturated organic molecules catalysed 
by transition-metal complexes.1 As a catalytic transformation 
reaction involving incorporation of not only a CO molecule 
but also a silyl group into organic molecules, Murai et al. have 20 

developed silylformylation of aldehydes catalysed by a 
Co2(CO)8/PPh3 mixture where aldehydes react with tertiary 
silane and CO to give α-(siloxy)aldehydes (Scheme 1).2 
Wright et al. then found that some rhodium complexes are 
also catalytically active for the silylformylation.3 A 25 

reasonable mechanism for these catalytic reactions involves 
CO insertion into an M–C(OSiR3) (M = Co or Rh) bond of an 
α-(siloxy)alkyl complex, which is formed by migratory 
insertion of an aldehyde C=O double bond into an M–SiR3 
bond of a silyl-complex intermediate.2,3 In this study, we 30 

discovered a new stoichiometric silylcarbonylation reaction of 
aldehyde induced by a metal–silicon complex, which proceeds 
through insertion of a CO molecule into an aldehyde C=O 
double bond (Scheme 1). 

 35 
Scheme 1 Illustrations of catalytic silylformylation of aldehydes (top)2,3 
and silylcarbonylation of aldehyde via CO insertion into a C=O double 
bond developed in this work (bottom). 
 We are investigating the synthesis and reactivity of an (η3-
α-silabenzyl)carbonylmolybdenum complex 40 

Cp*Mo(CO)2{η3(Si,C,C)-Si(p-Tol)3} (1; Cp* = η5-C5Me5, p-
Tol = p-C6H4Me) bearing a unique η3-coordination of silicon 

and two aromatic carbons to molybdenum.4 Since the 
coordinated arene moiety of 1 is labile, complex 1 serves as a 
synthetic equivalent of a reactive, coordinatively unsaturated 45 

silyl complex Cp*Mo(CO)2{Si(p-Tol)3} (1´) (Scheme 2).4 

 
Scheme 2 Complex 1 as a synthetic equivalent of coordinatively 
unsaturated complex 1´. 
 This time, we examined the reactions of 1 with 50 

alkylaldehydes. Complex 1 reacted with RCHO (R = i-Pr and 
t-Bu) quickly at room temperature in toluene to give Mo–C–O 
three-membered-ring complexes Cp*Mo(CO)2{η2(C,O)-
CH(R)OSi(p-Tol)3} (2: R = i-Pr and 3: R = t-Bu) in 83% and 
76% yields, respectively (Scheme 3). Complex 2 was obtained 55 

as a mixture of two diastereomers 2a (major) and 2b (minor) 
in a 5:1 molar ratio (determined by 1H NMR spectroscopy in 
CD2Cl2 at –33 ºC),5 whereas complex 3 was obtained as a 
single diastereomer. Although a few O-silylated M–C–O 
three-membered-ring complexes have previously been 60 

reported,6 2 and 3 are the first examples of this type of 
complex synthesised by reactions of metal–silicon complexes 
with carbonyl compounds. 
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Scheme 3 Synthesis of Mo–C–O three-membered-ring complexes 2,3 and 65 
conversion of 3 to η3-oxaallyl complex 4. Conditions: (i) toluene, r.t., 1 
min. (ii) toluene, r.t., 5 h. 
 Recrystallization of a mixture of 2a and 2b from hexane at 
–35 ºC afforded an orange single crystal involving only 2a. 
The X-ray crystal structure analysis of 2a revealed the 70 

existence of a Mo–C–O three-membered ring on which the i-
Pr group is anti to the Cp* ligand (Fig. 1).‡ The Mo(1)–C(3) 
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and Mo(1)–O(1) distances [2.167(6) and 2.175(4) Å, 
respectively]7 support the η2-coordination of the siloxymethyl 
ligand.8 

 
Fig. 1 Crystal structure of 2a. One of the two independent molecules 2a-5 
A and 2a-B in the asymmetric unit, i.e., molecule 2a-A, is depicted. 
Selected interatomic distances (Å) and angles (º): Mo(1)–O(1) 2.175(4), 
Mo(1)–C(3) 2.167(6), O(1)–C(3) 1.434(7), O(1)–Mo(1)–C(3) 38.56(19).7 
 Each of the 1H NMR spectra of 2a, 2b and 3 in C6D6 at 
room temperature shows a doublet (for 2a,b) or a singlet (for 10 

3) signal assignable to the methine proton on the metallacycle 
carbon at δ 3.49, 4.12 and 3.94, respectively. These chemical 
shifts are close to those of the corresponding signals for 
related O-alkylated Mo–C–O three-membered-ring complexes 
(η5-C5H4R´)Mo(CO)2{η2(C,O)-cyclo-CH(CH2)3O} (A) [δ 15 

4.22 (R´ = H) and 4.05 (R´ = Me)].8b In the 13C{1H} NMR 
spectra of 2a and 3 in CD2Cl2 at –33 ºC, a signal assignable to 
the metallacycle carbon appears at δ 87.5 (2a) and 93.8 (3). 
These signals are shifted downfield in comparison with that of 
the methine carbon of the α-siloxyalkyl ligand in 20 

CpMo(CO)2(PPh3){CH(OSiHPh2)(CH3)} (δ 69.24)9 and those 
of the corresponding carbons for metallacycles A [δ 75.6 (R´ 
= H) and 77.6 (R´ = Me)].8b This implies that the metallacycle 
carbons in 2 and 3 have some carbene character as drawn in 
Scheme 4 by a resonance between two canonical forms, i.e., 25 

alkyl(silylether) form B and carbene(siloxy) form C. 

 
Scheme 4 Two possible canonical forms of Mo–C–O three-membered-
ring complexes 2 (R = i-Pr) and 3 (R = t-Bu). 
 To determine the stereochemistry of diastereomers 2a and 30 

2b, the 1H-1H NOESY spectrum of the mixture was measured 
at –33 ºC. The major isomer 2a shows a pair of NOE cross 
peaks between the 1H signals of the metallacycle C–H (δ 3.16) 
and Cp* (δ 1.65), indicating that these protons are spatially 
close to each other. Thus, the i-Pr group on the metallacycle 35 

carbon in 2a is anti to the Cp* ligand, and this arrangement 
agrees with that of the molecule in the crystal (Fig. 1). The 
NOESY spectrum of 3 at –33 ºC exhibits a pair of strong cross 
peaks between the metallacycle C–H (δ 3.62) and the Cp* (δ 
1.60) signals together with weak cross peaks between the t-Bu 40 

(δ 0.71) and the Cp* signals. This implies that the geometric 

arrangement of substituents on the metallacycle of 3 is the 
same as that of 2a. 
 Complexes 2 and 3 are thermally unstable both in solution 
and in the solid state at room temperature. Although products 45 

of the thermal conversion of 2 were not characterised, the 
main product of that of 3 was isolated and structurally 
determined. When the reaction of 1 with 2,2-dimethylpropanal 
was performed at room temperature for a longer period (5 h), 
the colour of the solution initially changed from dark purple 50 

of 1 to orange of 3, and then gradually changed to dark-red of 
4. A siloxy-substituted η3-oxaallyl complex 
Cp*Mo(CO)2[η3(O,C,C)-OC{OSi(p-Tol)3}CH(t-Bu)] (4) was 
isolated as reddish purple crystals from the reaction mixture in 
40% yield (Scheme 3).10 The yield of 4 was improved to 75% 55 

NMR yield when the same reaction was carried out under CO 
atmosphere (1 atm) in C6D6 (see ESI† for details). This result 
as well as the structure of 4 clearly indicates that one 
molecule of CO is incorporated to 3 either from another 
molecule of 3 or by the reaction with free CO to form 4. The 60 

NMR-tube reaction of isolated 3 in C6D6 at room temperature 
also afforded complex 4 in 41% NMR yield, which confirms 
that 3 is an intermediate for the formation of 4 (see ESI†). 
 Single crystal X-ray analysis revealed that 4 adopts a four-
legged piano-stool geometry composed of η5-C5Me5, two 65 

carbonyl and η3-oxaallyl ligands (Fig. 2).‡ The Mo(1)–O(3), 
Mo(1)–C(3) and Mo(1)–C(4) distances (2.186(4), 2.396(5) 
and 2.343(6) Å, respectively)7 for the oxaallyl ligand clearly 
indicate its η3-coordination.11 The O(3)–C(3) and C(3)–C(4) 
distances (1.284(7) and 1.403(9) Å, respectively)7 are also 70 

close to the corresponding distances (1.302(4) and 1.435(5) Å, 
respectively) for an (η3-oxaallyl)tungsten complex 
CpW(CO)2{η3(O,C,C)-OC(NEt2)CH2}.11a 

 
Fig. 2 Crystal structure of 4. One of the two independent molecules 4-A 75 
and 4-B in the asymmetric unit, i.e., molecule 4-A, is depicted. Selected 
interatomic distances (Å) and angles (º): Mo(1)–O(3) 2.186(4), Mo(1)–
C(3) 2.396(5), Mo(1)–C(4) 2.343(6), O(3)–C(3) 1.284(7), O(4)–C(3) 
1.355(7), C(3)–C(4) 1.403(9), O(3)–Mo(1)–C(4) 61.27(18).7 
 The 1H NMR spectrum of 4 shows a signal for the methine 80 

proton of the oxaallyl ligand at δ 2.30. This chemical shift is 
in the range of those for η3-oxaallyl complexes of 
molybdenum and tungsten (δ 1.72–3.72).11a In the 13C{1H} 
NMR spectrum of 4, signals assignable to the central and 
terminal carbons of the oxaallyl ligand appear at δ 155.0 and 85 

63.7, respectively.11 These observations also support the 
structure of 4 bearing an η3-oxaallyl ligand. 
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 A possible mechanism for the reaction of 1 with 
alkylaldehydes leading to complexes 2,3 and subsequent 
conversion of 3 to complex 4 is illustrated in Scheme 5. 
Dissociation of the coordinated aryl carbons in 1 to generate 
1´ (see Scheme 2) followed by η2-coordination of an aldehyde 5 

molecule to molybdenum gives silyl complex D. The silyl 
ligand in D then migrates to the oxygen of the aldehyde to 
yield complexes 2 and 3. In the case of 3, the metallacycle C–
O bond is cleaved to generate carbene(siloxy) complex E. A 
closely related cleavage of a carbon–sulfur bond in S-silylated 10 

Fe–C–S three-membered-ring intermediates has recently been 
proposed by Nakazawa et al. in the reduction of thioamides 
with hydrosilanes catalysed by an iron complex 
CpFe(CO)2Me.12 The carbene ligand then couples with a CO 
ligand in E to produce an η2-ketene complex F.13 Finally, 15 

migration of the siloxy ligand in F to the carbonyl carbon of 
the ketene ligand (forming G) followed by incorporation of 
CO as a ligand gives complex 4. By this reaction mechanism, 
a CO molecule is inserted into an aldehyde C=O double bond. 

 20 

Scheme 5 A possible formation mechanism of Mo–C–O three-
membered-ring complexes 2,3 and η3-oxaallyl complex 4 
 In summary, stoichiometric silylcarbonylation of aldehyde 
induced by (η3-α-silabenzyl)carbonylmolybdenum complex 1 
gave η3-oxaallyl complex 4 via an O-silylated Mo–C–O three-25 

membered-ring intermediate 3. This result implies that metal–
silicon complex 1 is potentially useful as a reagent 
transforming carbonyl compounds through cleavage of their 
C=O double bonds. 
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