

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

Target-Responsive dumbbell probe-mediated rolling circle amplification strategy for highly sensitive Hg²⁺ detection

Qingwang Xue^a, Yanqin Lv^a, Yuanfu Zhang^a, Shuling Xu^a, Qiaoli Yue^a, Rui Li

^a, Lei Wang ^a, Haibo Li ^a, Xiaohong Gu ^b, Shuqiu Zhang^b, Jifeng Liu ^a*

^a Department of Chemistry, Liaocheng University, Liaocheng, 252059, Shandong,

China.

^bShandong Provincial Key Lab of Test Technology on Food Quality and Safety, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.

Scheme 1 Schematic representation of the process of the label-free fluorescent sensing system based on target-responsive dumbbell probe-mediated rolling circle amplification (D-RCA) for detection of mercuric ion.

1	Target-Responsive dumbbell probe-mediated rolling circle
2	amplification strategy for highly sensitive Hg ²⁺ detection
3	
4	Qingwang Xue ^a , Yanqin Lv ^a , Yuanfu Zhang ^a , Shuling Xu ^a , Qiaoli Yue ^a , Rui Li
5	^a , Lei Wang ^a , Haibo Li ^a , Xiaohong Gu ^b , Shuqiu Zhang ^b , Jifeng Liu ^a *
6	^a Department of Chemistry, Liaocheng University, Liaocheng, 252059, Shandong,
7	China.
8	^b Shandong Provincial Key Lab of Test Technology on Food Quality and Safety,
9	Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	Corresponding author:
20	Tel: +86-635-8239001; fax: +86-635-8239001. Email: liujifeng111@gmail.com
21	
22	

23

Abstract: 24

25	A novel label-free amplified fluorescent sensing scheme based on
26	target-responsive dumbbell probe-mediated rolling circle amplification (D-RCA) has
27	been developed for sensitive and selective detection of mercuric ion. In this strategy,
28	we reported an ingeniously designed dumbbell-shaped DNA probe (D-DNA) that
29	integrates target-binding, amplification and signaling within one multifunctional
30	design. An Hg ²⁺ -primer DNA (Hg ²⁺ -p-DNA) was designed to complementary to the
31	region of D-DNA but with T-T mismatches. The mismatched Hg ²⁺ -primer cannot
32	initiate the RCA reaction in the absence of Hg^{2+} . Stable T- Hg^{2+} -T can be formed in
33	the presence of target Hg^{2+} , thus induces the elongation and amplification reaction by
34	a RCA mechanism, resulting in numerous cascade dumbbell probes with duplex
35	G-rich quadruplex structure oligomer. Upon the addition of N-methyl mesoporphyrin
36	IX (NMM), the signal reporter, the strong interaction between the G-quadruplex and
37	NMM brings about a great fluorescence enhancement. In this way, we successfully
38	converted each Hg ²⁺ -triggered D-RCA reaction event into the detectable fluorescent
39	signals, which were significantly amplified by RCA in an isothermal fashion. This
40	approach can detect 80 fM mercuric ions, much lower than those of previously
41	reported biosensors, and exhibits high discrimination ability. More significantly, the
42	dynamic range of D-RCA is extremely large, covering 5 orders of magnitude. We also
43	demonstrate Hg ²⁺ quantification with this highly sensitive and selective D-RCA
44	strategy in real samples.

Keyword: Hg²⁺ detection; G-quadruplex; label-free; dumbbell probe-mediated rolling
circle amplification.

47 **1. Introduction**

Mercuric ion (Hg²⁺), one of the most toxic heavy metal ions and a severe 48 49 environmental pollutant that is not biodegradable, has serious deleterious effects on human health, especially in the central nervous system, even at low concentration^{1,2}. 50 51 So far, several modern analytical techniques for mercury detection have been established, such as atomic absorption/emission spectroscopy³, selective cold vapor 52 atomic fluorescence spectrometry^{4, 5} and inductively coupled plasma mass 53 spectrometry (ICP-MS)⁶. However, most of them require expensive and sophisticated 54 instrumentation and/or complicated sample preparation processes. Alternatively, 55 chemical sensors based on small organic fluorophores for Hg²⁺ are easy and rapid to 56 operate.⁷⁻¹⁰ But many of these systems are limited in practical use, due to their poor 57 sensitivity^{11, 12}, strong dependence on organic solvents ^{13, 14} and cross-sensitivities 58 toward other metal ions¹⁵. 59

The recent discovery of Hg2+-mediated thymine-thymine (T-T) DNA 60 61 base-pairing provides an efficient platform for constructing highly selective sensing systems for highly selective Hg²⁺detection by using T-containing oligonucleotides¹⁵⁻¹⁷. 62 Numerous Hg²⁺ detection methods including fluorescent^{18, 19}, colorimetric, and 63 electrochemical biosensor have been developed²⁰⁻²⁴. Among them, the development of 64 homogeneous fluorescence sensors is one of the most attractive and interesting areas 65 due to its simplicity and rapidness ²⁵⁻²⁸. Recently, several fluorescent sensing systems 66 based on molecular beacon²⁹, linear quencher-fluorophore probes,^{30, 31} graphene 67

RSC Advances Accepted Manuscript

oxide ³² , gold nanorods ³³ , conjugates polymers and carbon nanomaterial ^{34, 35} have
been reported for Hg ²⁺ assay. These methods mainly relied on the fluorescence
resonance energy transfer (FRET) process. Although these methods possess high
sensitivity and selectivity, these methods require at least one end tag modification of
DNA probe. The requirement of fluorescently labeled probes increases the
experimental cost and the design complexity, making the assays time-consuming,
laborious and cost-intensive. ^{36, 37} To circumvent the aforementioned limitations, a
kind of DNA intercalators (SYBR Green I, TOTO-3 and YOYO-1), specific
fluorometric dyes, were used to develop label-free Hg ²⁺ sensor ³⁸ . Recently, Xing
developed a new label-free Hg ²⁺ ions assay with polymerase assisted fluorescence
amplification, resulting in a low detection limit of 40 pM and high specificity ³⁹ .
However, there is a dispute about the toxicity of some intercalation dyes. In theory,
intercalation dyes are not safe enough and may be a threat to the health of the
operators ²⁹ . Recently, Feng et al developed a novel label-free fluorescent sensor for
Hg ²⁺ based on target-induced structure-switching of G-quadruplex. ⁴⁰ Although the
label-free fluorescence method does not require any chemical modification for DNA,
it shows poor detection limits with 25 nM, which can hardly meet the demanded
sensitivity which is below 10 nM (the maximum contamination level defined by the
US Environmental Protection Agency (EPA)). Consequently, the development of a
novel, label-free and signal-amplified approach for further improving sensitivity and
selectivity is highly desirable.

More recently, an isothermal amplification method designated as rolling circle

RSC Advances

90	amplification (RCA), has gained considerable attention as a novel tool to amplify the
91	recognition events detections. Due to the simplicity, robustness and high signal
92	amplification of RCA, numerous novel methods based on RCA has been popularly
93	employed in DNA, ⁴¹ RNA, ⁴² and protein ⁴³ detection. Xing firstly reported a novel
94	electrochemiluminescent sensor for Hg ²⁺ detection by using padlock probe-based
95	RCA, resulting in a detection limit of 100 pM. ⁴⁴ Although the assay exhibits
96	acceptable sensitivity and high specificity, the approaches need the complex labeling
97	procedure and chemical modification for DNA, making the assays time-consuming,
98	laborious and cost-intensive. Consequently, the development of a novel, label-free and
99	signal-amplified approach for further improving sensitivity and selectivity is highly
100	desirable.

101 In this study, we developed a novel label-free fluorescent amplification sensing 102 scheme based on target-triggered dumbbell probe-mediated rolling circle 103 amplification (D-RCA)-responsive G-quadruplex formation for highly sensitive and selective detection of Hg²⁺. A dumbbell-shaped DNA probe (D-DNA) that integrates 104 105 target-binding, amplification and signaling within one multifunctional design was ingeniously designed. Hg²⁺-primer DNA (Hg²⁺-p-DNA) was designed to 106 107 complementary to the region of D-DNA but with T-T mismatches. It can initiate rolling circle amplification (D-RCA) in the presence of Hg²⁺ target, resulting in 108 109 numerous cascade dumbbell probes with duplex G-rich quadruplex structure oligomer. 110 Upon the addition of N-methyl mesoporphyrin IX (NMM), the strong interaction 111 between the G-quadruplex and NMM brings about a great fluorescence enhancement

RSC Advances Accepted Manuscript

for Hg²⁺ detection. The scheme takes advantage of the highly specific T-Hg²⁺-T 112 113 complex-dependence of the DNA hybridization, the powerful signal amplification capability of RCA and the significant increase of the fluorescence signal from the 114 115 interaction between N-methyl mesoporphyrin IX (NMM) and G-quadruplexes. NMM 116 is a commercially available unsymmetrical anionic porphyrin characterized by a pronounced structural selectivity for G-quadruplex forms. It is weakly fluorescent, but 117 118 exhibits a prominent enhancement in its fluorescence upon binding to G-quadruplex DNA. We aim to improve the sensitivity of Hg²⁺ detection via RCA and the 119 selectivity by using the dumbbell probe to reduce non-specific amplification and the 120 highly specific T-Hg²⁺-T complex-dependence of the DNA hybridization. In addition, 121 122 we achieve the label-free by the strong interaction between the G-quadruplex and 123 NMM.

124

Scheme 1

125

126 2. EXPERIMENTAL SECTION

127 **2.1 Materials and Reagents**

Phi29 DNA polymerase, T4 DNA ligase, and dNTP were obtained from
Fermentas (Lithuania). The oligonucleotides with the following sequences were
obtained from Shanghai Sangon Biological Engineering Technology & Services Co.,
Ltd. (China): the dumbbell probe (D-DNA): 5'-TCTTTCTTCCGA CATCAACCCA
AAACCCAAAA CCCAAAAC CCAAG ATGTCGC ACGCTAAA CCC AAA ACCC
AA AACCCAAAAC CCAATA GCGT GGTGTTTCCT-3'. Hg²⁺- specific primer

134	DNA (Hg ²⁺ -p-DNA): 5'-CTTGTTTGTT GGTTTCTC-3'. The Hg ²⁺ stock solution
135	$(1.0 \times 10^{-3} \text{ M})$ was prepared in ultrapure water with 2 drops of concentrated nitric acid.
136	Other chemicals (analytical grade) were obtained from standard reagent suppliers.
137	Water (\geq 18.2M) was used and sterilized throughout the experiments. N-methyl
138	mesoporphyrin IX (NMM) was purchased from J&K Scientific Ltd. (Beijing, China).

139 **2.2 Apparatus**

All the fluorescence measurements were performed on a Hitachi F-7000 spectrofluorimeter (Hitachi, Japan). The excitation wavelength was 399 nm, and the spectra are recorded between 600 and 620 nm. The fluorescence emission intensity was measured at 608 nm.

144

145 **2.3 Ligation reactions**

146 The ligation reaction was carried out with 20 µl of a reaction mixture [40 mM Tris-HCl, 10 mM MgCl₂, 10 mM dithiothreitol (DTT) (pH 7.8), 500 mM ATP, 75 nM 147 the dumbbell probe (D-DNA) and 25 nM Hg²⁺-p-DNA]. Before adding T4 DNA 148 ligase, the oligonucleotide mixture was firstly denatured at 95 °C for 3min, and 149 150 cooled slowly to room temperature over a 10-min period. Then, the reaction mixture was incubated to hybridize at 37 °C for 30 min in the presence of 5 μ L Hg²⁺ solution 151 of different concentration. Then, 1 µL (5 U) T4 DNA ligase was added to the mixture 152 153 and incubated at 37 °C for 2 h. The full hybridization equilibrium between the D-DNA and p-DNA is a key factor for ensuring effcient ligation reaction. Therefore, 154 155 the effect of molar ratio of the D-DNA to p-DNA was evaluated in Fig. S1(see 156 supporting information).

157 2.5 RCA reactions

For RCA, the aforementioned ligation product was mixed with 4 μ L 10 × reaction buffer [330 mM Tris-acetate, 100 mM Mg(Ac)₂, 660 mM Potassium Acetate (KAc), 1% Tween 20 and 10 mM DTT (pH 7.9)], 2 μ L (10 u/ μ L) phi29 DNA polymerase and 8 μ l 10 mM dNTPs. The reaction mixture was incubated at 37 °C for 120 min.

163 **2.6 Measurement of fluorescent spectra**

The RCA amplification product was mixed with 5 μ L 250 μ M N-methyl mesoporphyrin IX (NMM) and 5 μ L 470 mM KCl, final volume of 50 μ l. The reaction mixture was incubated at 37 °C for 30 min. The fluorescent spectra were measured using a spectrofluorophotometer. The excitation wavelength was 399 nm, and the spectra are recorded between 600 and 620 nm. The fluorescence emission intensity was measured at 608 nm.

170

171 **3. Results and discussion**

172 **3.1 Sensing strategy**

The designed strategy is conceptually depicted in Scheme 1. The dumbbell padlock probe (D-DNA) with two stem-loop structures was chosen as RCA unit for the amplified sensing system based on its high sensitivity and selectivity. The D-DNA three kinds of domains, a Hg^{2+} -specific primer-binding domain (Hg^{2+} -PBD), a stem domain and two loop domains. Hg^{2+} -specific primer (Hg^{2+} -p-DNA) can be hybridized

178	to the dumbbell padlock probe template in the presence of Hg^{2+} based on T- Hg^{2+} -T
179	construction. Phi29 DNA polymerase can initiate the RCA reaction, resulting in
180	numerous cascade dumbbell probes with duplex G-rich oligomer. This G-rich
181	oligomer fold into a quadruplex structure with monovalent ions. Upon the addition of
182	NMM, the signal reporter, the strong interaction between the "activated"
183	G-quadruplex and NMM brings about a great fluorescence enhancement. Eventually,
184	RCA provides an amplified detection signal for the target Hg ²⁺ . In contrast, in the
185	absence of target Hg ²⁺ , Hg ²⁺ -p-DNA can not be hybridized to the template D-DNA,
186	and the RCA process could not proceed. Therefore, there was no fluorescence. In this
187	way, we successfully converted each Hg ²⁺ -triggered RCA reaction event into the
188	detectable fluorescent signals, which were significantly amplified by RCA in an
189	isothermal fashion.

3.2 The verification of the sensing strategy

191 In this novel strategy, RCA was a crucial step, which mediated the generation 192 and amplification of the fluorescence signal. To verify the amplification of the RCA 193 reaction, the agarose gel electrophoresis experiment was performed. The RCA 194 products were investigated by gel electrophoresis. It is observed that the RCA 195 products in lane 2-3 reaction show extremely low mobility in Fig. 1A. The anticipated 196 high molecular weight of RCA product was confirmed in lane 2, 3. Compared with 197 lane 2, 3, lane 1 displayed no bands in negative control experiment. These results give immediate evidence for the high molecular weight of these products, indicating Hg²⁺ 198 199 acted as a trigger of the RCA reaction and the signal enhancement had a positive

200	correlation with the Hg^{2+} level. In addition, the amplification of the RCA reaction was
201	also verified using fluorescent intensity. Typical fluorescence spectra characteristics
202	of the sensing strategy in response to Hg^{2+} are shown in Fig. 1B . Compared with the
203	background fluorescence of the NMM, 10 nM Hg ²⁺ resulted in a significant
204	fluorescence enhancement while a control experiment without Hg^{2+} only exhibited a
205	negligible fluorescence change. The result provided a convincing proof of the
206	detection mechanism of the proposed sensing strategy shown in Scheme1.

207

Fig. 1.

3.3 Optimization of parameters-dependent signal amplification of the sensing strategy

210 In order to achieve the system's best sensing performance, several experimental 211 parameters affecting RCA were investigated. The full hybridization equilibrium between the Hg²⁺-p-DNA and D-DNA is a key factor for ensuring RCA reaction. 212 Therefore, the effect of the concentration of Hg²⁺-p-DNA was evaluated. As shown in 213 214 Fig. S2A (see supporting information), the fluorescence intensity increased with the increase of the concentration of Hg²⁺-p-DNA. When the concentration of 215 Hg²⁺-p-DNA reached 10 nM, the maximum fluorescence intensity was achieved. 216 217 Thereafter, the fluorescence response exhibited a gradual decrease with a further increase of the concentration of Hg²⁺-p-DNA. This was probably because a large 218 excesses of Hg²⁺-p-DNA disturbed their hybridization with the D-DNA in a 219 head-to-tail fashion and the subsequent D-RCA reaction.⁴⁵ As a result, 10 nM was 220 selected as the optimal concentration of Hg²⁺-p-DNA due to its strongest fluorescence 221

222	intensity. In theory, more complementary copies (duplex G-quadruplexes DNA) of the
223	dumbbell probes template are generated with the elongation of RCA reaction time;
224	stronger signal amplification will be produced. So the effect of RCA reaction time on
225	the fluorescence signal was examined, which is shown in Fig. S2B (see supporting
226	information). The fluorescence intensity enhanced quickly with the increase in
227	reaction time, and nearly reached a plateau after 120 min. This might be attributed to
228	the fact that the RCA reaction had reached equilibrium caused by exhaustion of the
229	RCA substrates or inactivation of phi29 DNA polymerase. Therefore, 120 min was
230	chosen as the optimum time for the RCA reaction. This time was in agreement with
231	the reported RCA reaction time of 1-2 h.

To achieve the best sensing performance, the concentration of NMM and K^+ were also optimized. As shown in **Fig. S2C-D**(see supporting information). The experimental results indicated that a concentration of 100 mM of K^+ and 25 μ M of NMM could provide maximum S/N ratio for the sensing system.

3.4 The sensibility and detection range of the designed sensing system

In our study, we evaluated the sensitivity of the Hg^{2+} ions fluorescence sensor under optimized conditions. **Fig. 2A** illustrates fluorescence spectra of sensing system after addition of different concentrations of Hg^{2+} ions (0 - 10 nM) under the optimal conditions. Significantly, the fluorescence intensity gradually increased along with Hg^{2+} ions concentration, leading to an impressively large dynamic range that spans five orders of magnitude (0 to 10 nM). **Fig. 2B** shows the logarithmic relationship between the fluorescence response and the different concentrations of Hg^{2+} ions. The

244	linear concentration ranges were 100 fM up to 10 nM for Hg ²⁺ ions over a 6-decade
245	concentration range with a linear correlation coefficient of 0.992. The calculated limit
246	of low detection is 80 fM for Hg^{2+} ions in terms of the 3σ rule. The detection limit of
247	the newly designed Hg^{2+} ions sensing system is 2-3 orders of magnitude lower than
248	that of previously reported fluorescent methods ^{38, 39, 46} . The ultrahigh sensitivity was
249	attributed to the following factors. First, the introduction of Hg ²⁺ ions would trigger
250	the RCA reaction, and eventually RCA product with many tandem repeated duplex
251	G-quadruplexes was generated in large quantities by RCA, substantially amplifying
252	each target-triggered RCA reaction event. Second, free NMM and D-DNA showed
253	relatively low background fluorescence, which dramatically increased the
254	fluorescence signal-to-noise (S/N) ratio.
255	Fig. 2.
256	3.5 The selectivity of this sensing system
257	Fig. 3 .
258	To test the selectivity of this novel method for Hg ²⁺ ions detection, control
259	experiments were executed to evaluate whether other environmentally relevant metal
260	ions performed the similar function as the Hg ²⁺ ions in the current biosensor. As
261	revealed in Fig. 3, one can find that only the Hg^{2+} ions samples show a significant
262	higher fluorescence intensity relative to the competing metal ions samples at identical
263	conditions. The competing metal ions exhibited almost the same fluorescence
264	response as the blank solution without target, and did not induce any significant signal.

In addition, the co-existence of other metal ions with Hg^{2+} in the sample also did not

affect Hg^{2+} detection (**Fig.4**). This result obviously indicated that the proposed strategy had suffcient selectivity in Hg^{2+} ions detection. The high selectivity makes it promising for practical applications. The excellent specificity was attributed to using the dumbbell probe to reduce non-specific amplification and the highly specific T-Hg²⁺-T complex-dependence of the DNA hybridization.

271

Fig. 4.

3.6 Application of designed sensing system in the real samples

273 In order to verify the usefulness of the proposed sensor for the identification and detection of Hg^{2+} in practical applications, the detection of natural Hg^{2+} in real 274 275 samples (tap water, orange juice, and lake water) was demonstrated here by the use of 276 the designed sensing system. The samples collected were first centrifuged for 10 min 277 at 10000 rpm, then filtered through a 0.22 μ m membrane and detected according to 278 the general procedure with three replicates. Prior to the assay, the samples were diluted 10 times with ultrapure water so that the level of Hg²⁺ was within the linear 279 280 ranges. The results averaged from three determinations are summarized in Table 1 (in 281 supporting information). The data listed in **Table 1**(see supporting) indicated that the 282 obtained results were highly consistent with those from the atomic fluorescence spectrometry (AFS) method. Meanwhile, when the known amount of Hg²⁺ was added 283 in these samples, the recovery of Hg^{2+} ranged from 98% to 107%. These confirm that 284 285 the designed sensor has a high accuracy and sensitivity to meet the requirements of 286 the application.

Table 1

287

288 **4. Conclusions**

289 In summary, we have successfully demonstrated a novel label-free fluorescent 290 sensing scheme based on target-responsive dumbbell probe-mediated rolling circle amplification (D-RCA) for sensitive and selective detection of Hg²⁺ ions monitoring. 291 292 The label-free cascade fluorescence amplification strategy shows promising capabilities of specific and sensitive analysis for Hg²⁺ ions detection. The advantages 293 of the strategy include: (i) an extremely low detection limit as low as 80 fM for Hg^{2+} 294 295 ions is respectively achieved. More significantly, the dynamic range of the based on Hg²⁺-mediated D-RCA is extremely large, covering 6 orders of magnitude; (ii) this 296 297 label-free design does not require any chemical modification for DNA or 298 sophisticated equipments, which offers the advantages of simplicity and cost efficiency. (iii) The strong T-Hg²⁺-T interaction and the uniquely designed dumbbell 299 300 probe ensure the advantages of excellent specificity and reduce non-specific 301 amplification. In addition, the label-free cascade fluorescence amplification strategy 302 based on D-RCA strategy shows a high accuracy for the application. We expect that 303 this highly sensitive and inexpensive D-RCA strategy will become a promising 304 quantification method in both environmental and food safety fields.

305

306 Acknowledgements

This project was supported by the Natural Science Foundation of China for Funding (21305058, 21005036, 21075058, 21127006). This work was also supported by Natural Science Foundation (ZR2010BZ004, JQ201106, 2013SJGZ07). This work

310	was also	supported	by S	Shandong	Academy	of A	Agricultu	ral Sciences.	
		11	~	0	J		0		

References

314	1.	P. E. Koulouridakis and N. G. Kallithrakas-Kontos, Anal Chem, 2004, 76, 4315-4319.						
315	2.	L. Magos and T. W. Clarkson, Annals of clinical biochemistry, 2006, 43, 257-268.						
316	3.	J. V. Cizdziel and S. Gerstenberger, Talanta, 2004, 64, 918-921.						
317	4.	S. Diez and J. M. Bayona, Journal of chromatography, 2002, 963, 345-351.						
318	5.	K. Leopold, L. Harwardt, M. Schuster and G. Schlemmer, Talanta, 2008, 76, 382-388.						
319	6.	P. Jitaru and F. C. Adams, Journal of chromatography, 2004, 1055, 197-207.						
320	7.	R. Metivier, I. Leray and B. Valeur, Chemistry, 2004, 10, 4480-4490.						
321	8.	S. Pandey, A. Azam, S. Pandey and H. M. Chawla, Organic & biomolecular chemistry, 2009,						
322		7, 269-279.						
323	9.	H. N. Kim, M. H. Lee, H. J. Kim, J. S. Kim and J. Yoon, Chemical Society reviews, 2008, 37,						
324		1465-1472.						
325	10.	M. Kumar, N. Kumar, V. Bhalla, H. Singh, P. R. Sharma and T. Kaur, Organic letters, 2011, 13,						
326		1422-1425.						
327	11.	C. Y. Li, X. B. Zhang, L. Qiao, Y. Zhao, C. M. He, S. Y. Huan, L. M. Lu, L. X. Jian, G. L.						
328		Shen and R. Q. Yu, Anal Chem, 2009, 81, 9993-10001.						
329	12.	M. Tian and H. Ihmels, Chemical communications (Cambridge, England), 2009, 3175-3177.						
330	13.	Y. K. Yang, K. J. Yook and J. Tae, J Am Chem Soc, 2005, 127, 16760-16761.						
331	14.	J. Du, J. Fan, X. Peng, P. Sun, J. Wang, H. Li and S. Sun, Organic letters, 2010, 12, 476-479.						
332	15.	E. M. Nolan and S. J. Lippard, Chemical reviews, 2008, 108, 3443-3480.						
333	16.	A. Ono and H. Togashi, Angewandte Chemie (International ed, 2004, 43, 4300-4302.						
334	17.	Y. Tanaka, S. Oda, H. Yamaguchi, Y. Kondo, C. Kojima and A. Ono, J Am Chem Soc, 2007,						
335		129 , 244-245.						
336	18.	M. Kumar and P. Zhang, Biosensors & bioelectronics, 2012, 25, 2431-2435.						
337	19.	W. S. Han, H. Y. Lee, S. H. Jung, S. J. Lee and J. H. Jung, Chemical Society reviews, 2009, 38,						
338		1904-1915.						
339	20.	K. G. a. T. Sarkar, Supramolecular Chemistry, 2012, 24, 748.						
340	21.	A. W. Czarnik, ACS Symposium Series 538; American Chemical Society: Washington DC,,						
341		1993.						
342	22.	D. B. F. A. P. de Silva, A. J. Huxley and T. S. Moody, Coord., Chem. Rev, 2000, 205, 41.						
343	23.	J. M. K. L. N. Neupane, C. R. Lohani and K. H. Lee,, J. Mater. Chem., 2012, 22, 4003.						
344	24.	H. F. Wang and S. P. Wu, Tetrahedron, 2013, 69, 1965.						
345	25.	C. W. Liu, C. C. Huang and H. T. Chang, Anal Chem, 2009, 81, 2383-2387.						
346	26.	N. Dave, M. Y. Chan, P. J. Huang, B. D. Smith and J. Liu, J Am Chem Soc, 2010, 132,						
347		12668-12673.						
348	27.	H. Li, J. Zhai, J. Tian, Y. Luo and X. Sun, Biosensors & bioelectronics, 2011, 26, 4656-4660.						
349	28.	L. Zhang, T. Li, B. Li, J. Li and E. Wang, Chemical communications (Cambridge, England),						
350		2010, 46 , 1476-1478.						

351	29.	H. Xu, X. Zhu, H. Ye, L. Yu, X. Liu and G. Chen, <i>Chemical communications (Cambridge,</i>
352 252	20	Englana), 2011, 47, 12138-12160.
353 354	30.	G. Zhu, Y. Li and C. Y. Zhang, <i>Chemical communications (Cambriage, Englana)</i> , 2013, 50 , 572-574.
355	31.	J. Liu and Y. Lu, Angewandte Chemie (International ed, 2007, 46, 7587-7590.
356	32.	J. R. Zhang, W. T. Huang, W. Y. Xie, T. Wen, H. Q. Luo and N. B. Li, The Analyst, 2012, 137,
357		3300-3305.
358	33.	G. Chen, Y. Jin, L. Wang, J. Deng and C. Zhang, Chemical communications (Cambridge,
359		England), 2011, 47 , 12500-12502.
360	34.	Q. Wang, W. Wang, J. Lei, N. Xu, F. Gao and H. Ju, Anal Chem, 2013, 85, 12182-12188.
361	35.	I. B. Kim and U. H. Bunz, J Am Chem Soc, 2006, 128, 2818-2819.
362	36.	Y. Wu, S. Zhan, L. Xu, W. Shi, T. Xi, X. Zhan and P. Zhou, Chemical communications
363		(Cambridge, England), 2011, 47 , 6027-6029.
364	37.	Q. Xue, L. Wang and W. Jiang, Chemical communications (Cambridge, England), 2013, 49,
365		2640-2642.
366	38.	B. Liu, Biosensors & bioelectronics, 2008, 24, 762-766.
367	39.	X. Zhu, X. Zhou and D. Xing, Biosensors & bioelectronics, 2011, 26, 2666-2669.
368	40.	Y. Bai, F. Feng, L. Zhao, Z. Chen, H. Wang, Y. Duan, Anal. Methods, 2014, 6, 662-665
369	41.	A. Cao and C. Y. Zhang, Anal Chem, 2012, 84, 6199-6205.
370	42.	Y. Zhou, Q. Huang, J. Gao, J. Lu, X. Shen and C. Fan, Nucleic Acids Res, 2010, 38, e156.
371	43.	Q. Xue, L. Wang and W. Jiang, Chemical communications (Cambridge, England), 2010, 48,
372		3930-3932.
373	44.	X. Zhou, Q. Su and D. Xing, Analytica chimica acta, 2012, 713, 45-49.
374	45.	Y. Zhao, L. Qi, F. Chen, Y. Dong, Y. Kong, Y. Wu and C. Fan, Chemical communications
375		(Cambridge, England), 2012, 48 , 3354-3356.
376	46.	L. Qi, Y. Zhao, H. Yuan, K. Bai, Y. Zhao, F. Chen, Y. Dong and Y. Wu, The Analyst, 2012, 137,
377		2799-2805.
378		
379		
380		
381		
382		
383		
384		
385		
386		
387		
388		
389		
390		
391		
392		
393		
394		

395 396	
397	Figure captions
398	Scheme 1 Schematic representation of the process of the label-free fluorescent
399	sensing system based on target-responsive dumbbell probe-mediated rolling circle
400	amplification (D-RCA) strategy for detection of mercuric ion.
401	
402	Fig. 1. (A) Agarose gel (0.7%) electrophoresis experiments. The products of RCA
403	reaction (1 h) (indicated by 1-3) were denatured at 95 °C for 5 min and quenched with
404	ice-cooled water for 10 min. The marker was indicated by M. Line 1, the control
405	without Hg^{2+} ; Line 2-3, the positive with Hg^{2+} . The high molecular weight RCA
406	products are observed in lines 2-3. (B) The fluorescent intensity and fluorescence
407	emission spectra under different conditions: NMM; Hg^{2+} -p-DNA + D-DNA + Hg^{2+}
408	(10 nM) + Phi29 DNA polymerase + dNTPs + NMM; Hg ²⁺ -p-DNA + D-DNA +
409	Phi29 DNA polymerase + dNTPs + NMM.
410	
411	Fig. 2. (A) Fluorescence emission spectra obtained in the dumbbell probe-mediated
412	RCA label-free cascade amplification strategy for detection of Hg ²⁺ ions with varying
413	concentrations from 0 - 10 nM. (B) Linear relationship between the fluorescent
414	intensity and the concentration of Hg^{2+} ions. Each data point represents an average of
415	6 measurements (each error bar indicates the standard deviation)
416	
417	

418 **Fig. 3.** Selectivity of the label-free cascade amplification strategy for Hg^{2+} ions 419 compared to other tested metal ions, respectively.

420	
421	Fig. 4. Fluorescence intensity obtained in the different solutions. (a) 10 nM Hg^{2+} in
422	the standard solution, (a') 10 nM Hg^{2+} in a mixture solution, (b) the standard solution
423	as control, (b') the mixture solution. The mixture solution containing a mixture of
424	other metal ions (Mix; Ni ²⁺ , Fe ²⁺ , Fe ³⁺ , Cd ²⁺ , Co ²⁺ , Cu ²⁺ , Mn ²⁺ , Pb ²⁺ and Zn ²⁺ (each
425	100 nM)).
426	Table 1. Real Detection and Recovery Test of Hg ²⁺ in Different Real Samples.
427	
428	
429	
430	
431	
432	
433	
434	
435	
436	
437	
438	
439	
440	
441	
442	
443	
444	
445	
446	
447	
448	
449	
450	
451	
452	
453	
454	
455	
456	

18

480

481

482 **Table 1.**

Table 1. Real Detection and Recovery Test of Hg ²⁺ in Different Samples								
sample	AFS	proposed	spiked	measured Hg ²⁺	recovery			
	method	method	Hg ²⁺	(pM)	(%)			
	$(pM)^{a}$	$(pM)^{b}$	(pM)					
Orange juice	10.02	1.13	1.0	1.02 ± 0.03	102			
Lake water	65.70	6.42	1.0	0.98 ± 0.02	98			
tap water	18.5	1.92	1.0	1.07 ± 0.05	107			

^aThe data represent natural Hg²⁺ levels detected by standard atomic fluorescence spectrometry.

^bThe Hg²⁺ concentrations were obtained after 10 times dilution with ultrapure water.

483