This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Synthesis of Novel Ferrocenyl N/O-Heterocycles, Chiral P, N-Ligand and α-dehydro-β-amino acid Derived Short Peptides from Morita-Baylis-Hillman Adducts of Ferrocenealdehyde

Suchithra Madhavan*, Ponnusamy Shanmugam* and Ramavarma Luxmi Varma*
The ‘golden triangle’ of Fe, OH/NH, COO moieties created by classical/aza-MBH reaction of ferrocene-aldehyde has been exploited for the first time to the synthesis of novel multisubstituted ferrocenyl N/O heterocycles, chiral P,N ligand and ferrocenylo-dehydro-β-peptides.

Ferrocene (Fc), the fascinating organometallic sandwich compound and its derivatives have received increasing interest of chemists due to its applications in asymmetric catalysis,1 materials chemistry,2 bio-organometallics3 and medicine.4 The unique structure of ferrocene is responsible for the ubiquity of variety of chiral ferroceny phosphine ligands, one of the most successful classes of ligands in asymmetric catalysis. Development of structurally innovative chiral ferrocene ligands for known asymmetric reactions and/or new applications from these ligands is a thriving area in synthetic organic chemistry. In the quest for novel hemilabile ligands, ferrocenyl pyrrolidines attained special attention which are proven efficient ortho-directing groups leading to the synthesis of chiral ferrocenyl P,N-ligands.5 Substituted dihydrofurans are key structural units in many natural products and also serve as useful synthetic intermediates.6 Hence, synthesis of multi substituted ferrocenyl N/O heterocycles is of high interest which will provide interesting scaffolds for the design of chiral ligands. Furthermore, ferrocene has recently been recognized as a reliable organometallic scaffold for its ability to induce secondary structures and supramolecular arrangements to its peptide conjugates. This bioorganometallic chemistry is envisioned to provide not only a peptidomimetic basis for protein folding, but also pharmacologically useful compounds, artificial receptors, asymmetric catalysts, new materials with functional properties, electrochemical sensor devices and immunoassay reagents.7

Stimulated by the lack of precedents for exploiting the ‘golden triangle’ of Fe, NH/OH, COO of ferrocenyl Morita-Baylis-Hillman (MBH) adducts8 together with our ongoing interest in synthetic applications of MBH adducts9 we embarked upon the synthesis of ferrocenyl N/O heterocycles, chiral P, N-ligand and highly strained metallo β-peptides from MBH adducts of Fe-CHO and the results are presented in this communication.

Synthesis of ferrocenyl N/O heterocycles: The synthetic precursor’s of ferrocenyl heterocycles viz. ferrocenyl MBH adducts 2-7 were prepared8,10 by classical and aza-MBH reaction of Fe-CHO, 1 (Scheme 1).

Initially, ferrocenyl MBH adduct 2 on alkylation with K₂CO₃/allyl bromide afforded N-allylated adduct 8 in 88% yield. Ring closing metathesis (RCM) of 8 in toluene with 10 mol% Grubbs II generation catalyst yielded 2-ferrocenyl-3-cyano-pyrroline 11 in 48% yield. Similarly, ester derivatives of ferrocene appended pyrrolines 12 and 13 were also prepared from MBH adducts 3 and 4 in moderate yields (Scheme 2). On the other hand, the classical MBH adduct 7 underwent O-allylation followed by RCM to yield 2-ferrocenyl-2-cyano-dihydrofuran 16 in 40% yield.11 After the successful synthesis of ferrocenyl pyrroline and dihydrofuran derivatives, next we focussed on the synthesis of ferrocenyl piperidine derivative 14. Gratifyingly, [4+2]-annulation reaction12 of MBH adduct 4 with methyl vinyl ketone in presence of DBU afforded an inseparable diastereomeric mixture of tetrasubstituted ferrocenyl piperidine derivative 14 (dr. 1:0.5) in 78% yield (Scheme 2).

Scheme 2 Synthesis of ferrocenyl N/O heterocycles 11-14 and 16

Synthesis of ferrocenyl P/N ligands: Next, keeping the goal of synthesis of structurally varied chiral ligands in mind, we investigated the directive orthometatilating ability of NTs group attached to the ferrocene backbone of ferrocenyl MBH adducts. To our dismay, the lithiation of N-protected MBH adduct 17 with TMEDA and n-BuLi followed by quenching with phosphinyl chloride afforded the phosphine substituted product 19 instead of the expected acyclic chiral ligand 18 in 92% yield (Scheme 3). N-allyl substitution in the MBH adduct 10 didn’t alter the reaction which also yielded the phosphine substituted product 19 (Table 1, entry 1). Evidently, the rearranged MBH adduct 20 remained unaffected under the lithiation-phosphinylation condition (Table 1, entry 2).

Scheme 3 Attempted synthesis of acyclic chiral ligand 18

Metallation followed by phosphorylation reaction of unprotected MBH adduct 4, afforded rearranged N-phosphinylated product 21 along with 19 (Table1, entry 3). The unprotected rearranged MBH adduct 6 also underwent same sort of reaction resulting into compounds 21 and 19 (Table 1, entry 4). On the basis of the above experiments, we concluded that planarity of Fe stabilises the rearranged product having NH moiety away from the Fe backbone,
hence failed to direct the metallation to ortho position of
cyclopentadiene ring, which jeopardized our efforts towards
the synthesis of chiral ferrocenyl ligands. However, the
method offers novel N-phosphinylated ferrocenyl derivatives
very good yield.

Table 1 Efforts to synthesise acyclic chiral ligands from
MBH adducts

<table>
<thead>
<tr>
<th>Entry</th>
<th>MBH adduct</th>
<th>Product (Yield %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. i). TMEDA (1.3 equiv.), n-Bu Li (2.5 equiv.), THF, -78 ºC, 1 h;

Then we turned our attention towards the ferrocenyl
hetereocycles, where the N/O pendant responsible for planar
chiral induction is fixed in the cyclic framework attached to
the Fe-scaffold. The ferrocene matrix bearing pyrrolidine
peptide 13 was chosen as the model substrate and its ability
to undergo diastereoselective ortholithiation-phosphinylation
was first investigated. Thus, treatment of THF solution of
the MBH adduct 4 and rearranged adduct 5 under basic

Synthesis of ferrocenyl-α-dehydro-β-peptides and β-lactam:

α-Dehydro amino acids are important precursors of unnatural
peptides that are capable to induce β-bends in small peptide
sequences with enhanced biological activities and selectivity.

In this scenario, we prepared two types of ferrocenyl
α-dehydro-β-amino acids 23 and 24 by hydrolysis of the
ferrocenyl MBH adduct 4 and rearranged adduct 5 under basic
with acid 24. The structures of chiral ferrocenyl ligand 22 were established
by spectroscopic (1H NMR, IR and Mass), multinuclear
(13C(1H), 31P(1H)) and 2D NMR techniques. The 1H NMR
spectrum clearly showed signals for the unsubstituted
cyclopentadienyl protons as a singlet for five protons at δ 4.20 ppm and 1.2 disubstituted cyclopentadienyl protons as three mutually coupled multiplets at δ 4.17-4.11, 3.71-3.49 and 3.28-3.19 ppm. Interestingly, the ester methylene protons
appeared as two well separated multiplets due to the
interaction with phosphine moiety. The 31P(1H)NMR
spectrum displayed a resonance at δP -16.17 ppm.

Scheme 5 Synthesis of ferrocenyl amino acids 23 and 24

The α-dehydro-β-amino acid 24 was converted into dipeptide
26 with glycine ester hydrochloride by solution phase
coupling reaction using EDC as coupling agent (Scheme 6).

Scheme 6 Synthesis of ferrocenyl short peptide 26

For maximum use the conformational constrain exerted by the dehydro residue, L-proline having a constrained backbone dihedral angle has been utilized to prepare the

This journal is © The Royal Society of Chemistry 2012
phosphinic chloride (BOPCl) at room temperature (Table 2, entry 5). Indeed, these simple easy to prepare MBH derived strained ferrocenyl-β-amino acids can be coupled with PNA’s and biogenic peptides like enkephalin and bradykinin analogues for organometallic labelling like Sonogashira and click reaction.

Table 2 Synthesis of ferrocenyl short peptides 27-29 and β-lactam 30

<table>
<thead>
<tr>
<th>Entry</th>
<th>Fe-amino acid</th>
<th>Amino acid</th>
<th>Dipeptide</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fe HCl.H-(L) Pro-OMe</td>
<td>HCl.H-(L) Pro-OMe</td>
<td>24</td>
<td>88</td>
</tr>
<tr>
<td>2</td>
<td>Fe HCl.H-Gly-OMe</td>
<td>HCl.H-Gly-OMe</td>
<td>23</td>
<td>86</td>
</tr>
<tr>
<td>3</td>
<td>Fe HCl.H-(L) Pro-OMe</td>
<td>HCl.H-(L) Pro-OMe</td>
<td>29</td>
<td>70</td>
</tr>
<tr>
<td>4</td>
<td>Fe HCl.H-(L) Pro-OMe</td>
<td>HCl.H-(L) Pro-OMe</td>
<td>30</td>
<td>86</td>
</tr>
</tbody>
</table>

*amino acid (1 equiv.), EDC.HCl (3 equiv.), HOBt.H₂O (3 equiv.), DIPEA (5 equiv.), DCM: DMF (1:1; 0 °C-rt, 12 h; BOPCl (1.5 equiv.), DIPEA (1.5 equiv.), THF, rt, 12 h.

Conclusions

In conclusion, the synthesis of novel multsubstituted ferrocenyl pyrrolidines, furan and piperidine from MBH adducts of ferrocenealdehyde have been achieved. Ferrocenyl P.N ligand with multiple chirality has been synthesised involving a highly diastereoselective ortholithiation (de >99), adding new class of privileged ligands to the current repertoire. A short synthesis of novel ferrocenyl α-dehydro-β-peptides, a new entry for de novo peptide design has also been reported herein. Efforts to synthesise and study the catalytic activity of analogues ligands from ferrocenyl MBH adducts are in progress.

Acknowledgements

PS thanks the Directors of NIIST and CLRI for providing infrastructure facilities. SM (NIIST) thanks CSIR (New Delhi) for the award of SRF. Financial support from CSIR 12th five year project CSC 0201 is acknowledged. Thanks are due to Mrs. Viji and Mr. Adarsh B for recording mass and NMR spectra, respectively.

Notes and references

Synthesis of Novel Ferrocenyl N/O-Heterocycles, Chiral P, N-Ligand and α-Dehydro-β-amino acid Derived Short Peptides from Morita-Baylis-Hillman Adducts of Ferrocenealdehyde

Suchithra Madhavana, Ponnusamy Shanmugama, b and Ramavarma Luxmi Varmaa

Abstract: The ‘golden triangle’ of Fc, OH/NH, COO- moieties created by classical/aza- MBH reaction of ferrocenealdehyde has been exploited for the first time to the synthesis of novel multisubstituted ferrocenyl N/O heterocycles, chiral P,N ligand and ferrocenyl α-dehydro-β-peptides.