

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

1	Multicomponent Diversity-Oriented Synthesis of Symmetrical and
2	Unsymmetrical 1,4-dihydropyridines in Recyclable Glycine Nitrate
3	(GlyNO ₃) Ionic Liquid: A Mechanistic Insight Using Q-TOF, ESI-
4	MS/MS**
5 6	Rajesh Kumar, ^{a, b} Nitin H. Andhare, ^c Amit Shard, ^a Richa, ^a and Arun Kumar Sinha* ^{a, b, c}
7	^a Natural Plant Products Division, CSIR-Institute of Himalayan Bioresource Technology,
8	Palampur-176061 (H.P.) India
9	^b Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
10	^c Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute,
11	BS10/1, Sector 10, Janakipuram extension, Sitapur road, Lucknow-226031(U.P), India,
12	E mail*: <u>aksinha08@rediffmail.com</u>
13	** Some part of work carried our at CSIR-IHBT, Palampur (H.P)
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	

RSC Advances Accepted Manuscript

23 Abstract

24 Multicomponent reactions are eve-catching strategies to generate chemically diverse set 25 of multifunctionalized heterocyclic motifs with high atom economy manner which render 26 the transformations green. These strategies can further become more prolific if catalyst 27 recyclability, compatibility and exploration of exact mechanistic pathway are taken into 28 account. To this end, an inexpensive and recyclable glycine nitrate ($GlyNO_3$) ionic liquid 29 has been efficiently employed to access diversely substituted symmetrical and 30 unsymmetrical 1,4-dihydropyridines up to 93% yields via three and four components 31 respectively. The catalyst recyclability and compatibility to access both symmetrical and 32 unsymmetrical 1,4 DHPs under identical reaction conditions, are added benefits to its 33 practical utility. Furthermore, progress of the reaction was monitored by O-TOF, direct 34 infusion electrospray ionization mass spectrometry (ESI-MS) and key cationic 35 intermediate involved in reaction have been further identified by tandem MS experiment 36 (Q-TOF, ESI-MS/MS) which served as proof-of-concept to the mechanistic model. This 37 is the first report which revealed that the Hantzsch reaction predominately follow 38 diketone path way among four competing reaction pathways.

39

40 Keywords

41 1,4-dihydropyridines; ionic liquid; mass spectrometry; multicomponent reaction; reaction
42 mechanism

43

44

46 Introduction

The creation of multiple carbon-carbon or carbon-hetero bonds in one pot helps in minimization of waste, time and energy. These benefits broadly encompassed under the periphery of green chemistry and generally accomplished by multicomponent reaction (MCRs).¹ In the recent year MCRs have been utilized for the preparation of structurally diverse drug-like compounds;² as a consequence, they have emerged as significant tool in organic synthesis.³

53 One prominent MCR that produces an interesting class of nitrogen based 54 heterocycles is the venerable Hantzsch reaction providing 1,4-dihydropyridines (1,4-DHPs) as privileged pharmacophores.⁴ DHPs derivatives exhibit a wide ranging 55 pharmacological properties.⁵ Initially these molecules recognized as calcium channel 56 57 modulator but latter on developed as cardiovascular and antihypertensive drugs, which includes, amlodipine, felodipine, nicardipine and nifedipine.⁶ (Figure 1) Beside this, these 58 structural motifs are also credited with versatile biological properties like anticonvulsant,⁷ 59 radioprotective,⁸ selective antagonism of adenosine-A3 receptor,⁹ anticancer,¹⁰ HIV 60 protease inhibition,¹¹ and treatment of Alzheimer disease.¹² 61

Conventionally, 1,4-DHPs accessed through Hantzsch reaction, reduction of pyridines, addition to pyridines, or cycloaddition etc.¹³ which suffer from the drawbacks like low to moderate yields besides harsh conditions and longer reaction times. Consequently, several modifications have been developed for the classical Hantzsch approach.¹⁴ However, in spite of their potential utility many of these methods still involve expensive and /or toxic catalysts, cumbersome product isolation procedures and incompatibility with certain functional groups, thus are not closer to principles of green chemistry. Hence,

RSC Advances Accepted Manuscript

69 the challenge for a sustainable environment calls for more general and viable routes 70 which would be of great relevance to both synthetic and medicinal chemists. 71 In this context, ionic liquids (ILs) hailed as green solvent of the future which increases 72 the portfolio of environmentally benign organic synthesis due to their particular properties such as undetectable vapour pressure, ease of recovery and reuse.¹⁵ So far, ILs 73 with cations derived from imidazolium and guanidinium based ILs have been used as 74 catalysts for Hantzsch reaction.¹⁶ Though these ILs help to reduce the risk of air pollution, 75 76 concerns are being raised over their potential toxicity to aquatic environments and inaccessible biodegradability.¹⁷ 77 78 Therefore, the development of bio-degradable ILs based on amino acids and their 79 derivatives to replace the above cations is another promising approach because amino 80 acids and their derivatives are the most abundant natural source of quaternary nitrogen precursors.¹⁸ Moreover, low cost, easy preparation, and their properties to act as both 81 anions and cations are added advantage of these amino acid ionic liquids^{18b, e, 19} (AAILs). 82

In continuation of our ongoing endeavours in developing novel and practical multicomponent reactions to synthesized useful heterocyclic compounds,²⁰ we herein present the catalytic efficiency of glycine nitrate (GlyNO₃) ionic liquid under microwave irradiation (MW) for multicomponent synthesis of aromatic/heterocyclic symmetrical and unsymmetrical 1,4-DHPs under identical reaction condition (Scheme 1). Furthermore, detailed Q-TOF, ESI-MS and ESI-MS/MS based mechanistic study revealed that reaction predominately follow diketone path way among four competing pathways.

90

91

92 Results and Discussi

94 After an initial survey of reaction conditions, a mixture of 4-chlorobenzaldehyde (1a, 0.5 95 mmol), methylacetoacetate (2a, 2 equiv), ammonium acetate (3a, 2 equiv) and GlyNO₃ 96 (0.4 equiv) as a catalyst was irradiated under focused monomode microwave (CEM, P = 100 W, 90 °C) for 20 min. in EtOH (0.5 mL) affording 1,4-dihydropyrimidinone 4a in 97 98 45% yield (Table 1, entry 1). To further increase the yield of 4a, different source of 99 ammonium salt were screened (Table 1 entries 2-5) wherein satisfactory yield of 4a up to 100 73% was obtained with ammonium carbonate (Table 1 entry 5). Thereafter the effect of 101 amount of catalyst (Table 1, entries 6-7) was taken into account and yield of 82 % was 102 obtained with 0.5 equiv. GlyNO₃ (Table 1, entry 6).

Further increase in amount of catalyst could not exert any positive influence on the yields of **4a** (Table 1, entry 7). Gratifyingly, the yield was improved to 87% with the increased in volume of EtOH up to 1mL (Table 1, entry 8). Further increase in volume of EtOH fails to enhance the yields of **4a**. Thereafter effects of different solvents and cosolvent (Table 1, entries 9-13), catalysts (Table 1, entries 14-17) were studied, but inferior yields were obtained compared to table 1, entry 8.

The control experiments in the absence of solvent and catalyst (Table 1, entries 18-19) afforded **4a** in low yield demonstrated the crucial role of solvent and catalyst. The reaction under conventional condition by refluxing the reaction mixture for 5h fails to improved the yield of **4a** (Table 1, entry 20). Surprisingly, a experiment with glycine (Table 1, entry 21) and HNO₃ (Table 1, entry 22) resulted drastic decrease in yield of **4a**, which emphasized the importance of GlyNO₃ IL in catalysis.

RSC Advances Accepted Manuscript

115 With the optimized reaction conditions in hand for synthesis of symmetrical 1.4-DHPs 116 (Table 1, entry 8), the generality and scope of this one pot three component Hantzsch 117 reaction was then explored. For this, a wide range of substituted benzaldehyde including 118 heterocyclic moieties (1a-i), methylacetoacetate (2a), and ammonium acetate (3a) was 119 irradiated under focused MW (P = 100W, 90°C) for 20 min. which produced the 120 corresponding 1,4-DHPs 4a in good to excellent yields (Table 1, entries 4a-i). During the 121 substrate scope study, it has been observed that the catalyst exhibited remarkable activity 122 for heterocyclic substituted benzaldehydes particularly for thiophene containing moiety 123 (Table 1, entries 4d-i). Therefore, we further extended our substrate scope by utilizing 124 different dicarbonyl compound in congestion with thiophene-2-carboxaldehyde and 125 ammonium carbonate, which afforded the desired compound in good yield (Table 1, 126 entries 4j-l).

127 After the successful synthesis of three components symmetrical 1,4-DHPs, our 128 goal was to synthesize four component unsymmetrical 1,4-DHPs (also known as 129 polyhydroquinoline) which enjoy the status of being privileged motifs in terms of their 130 diverse biological profiles compared to symmetrical 1,4-DHPs.²¹

131 Recently, these motifs have been recognized as lead molecules in antidiabetic 132 drug discovery.²² There are plethora of reagents and catalyst reported in the literature for 133 the synthesis of unsymmetrical 1,4-DHPs²³ however some of these suffer from 134 limitations like usage of precious class of metal catalyst, longer reaction time (6-11h), 135 two step synthesis, cumbersome product isolation, selectivity and recyclability issues

Recently Rajesh at el.^{23x} have also reported hydromagnesite as a heterogeneous solid
based catalyst for the synthesis of 1,4-DHPs. Despite promising results, this methodology
has limited substrate scope due to non involvement of any heterocyclic benzaldehydes.

To the best of our knowledge, there are only few reports available in literature where synthesis of unsymmetrical and symmetrical 1,4-DHPs carried out under identical reaction condition which suffer from drawbacks like longer reaction time, poor substrate scope and tedious synthesis of catalyst.²⁴ Keeping in mind the sheer importance of unsymmetrical 1,4-DHPs, we were also intrigued to investigate whether our developed catalytic system could efficiently result in the synthesis of unsymmetrical 1,4-DHPs by overcoming the existing lacunae of reported protocols.²³

Pleasingly, the mixture of 5-bromothiophene-2- carboxaldehyde (1a), methyl
acetoacetate (2a), 5, 5-dimethyl-1, 3-cyclohexanedione (2b) and ammonium acetate (3a)
successfully condensed in one pot under similar reaction condition²⁵ providing 5a in
83 % yield. Thereafter, different substituted aromatic or heterocyclic benzaldehydes (1ai) were condensed with 2a, 2b and 3a to afford unsymmetrical 1,4-DHPs (Table 3, 5b-i)
in excellent yields.

From an economical point of view, the recyclability of GlyNO₃ was also taken into account. The IL retained high reactivity up to six cycles (Scheme 2).

154 Mechanistic Study

Mechanistically, it was presumed that there are four plausible pathways²⁶ for the synthesis of symmetrical 1,4-DHPs (Figure 2) These are i) enamine ii) diketone, iii) dienamine and iv) imine pathways (Figure 2 and see the supporting information).

In order to proven the feasibility of exact pathway among four competing mechanism involved in the synthesis of 1,4- dihydropyridines, preferably used Q-TOF electrospray ionization mass spectrometry (ESI-MS) technique for studying reaction intermediate because of its ability to "fish" ionic or ionized intermediates directly from reaction solutions into the gas phase, with high speed and sensitivity.²⁷ Moreover, its tandem version ESI-MS/MS is rapidly becoming the technique of choice for solution-phase mechanistic studies in chemistry.²⁸

Therefore, we performed Q-TOF ESI (+ve) MS studies on aliquots of samples withdrawn after 10 min from GlyNO₃ catalyzed reaction of **1g**, **2a** and **3a** (Scheme 3)²⁹ at capillary voltage (3100 V), cone voltage (25 V), dissolution temp. (200°C) and source temp. (80°C).

170 The total ion chromatogram (TIC) revealed the presence of ions at m/z 308.26 (m_1) , 325.29 (m_2) , 344.31 (m_3) , 327.31 (m_4) , 224.15 (m_5) , ³⁰ 211.16 (m_6) , 179.09 (m_7) , and 171 117.13 (m₈) corresponding to $[4g + H]^+$, $[4g + NH_3 + H]^+$, $[11a + H]^+$, $[10a + H]^+$, $[19a + H]^+$, $[10a + H]^+$, 172 H_{a}^{\dagger} , $[7a + H]_{a}^{\dagger}$, $[7a - OMe]_{a}^{\dagger}$ and $[2a + H]_{a}^{\dagger}$ respectively. The presence of characteristic 173 peaks $m_3 = [11a + H]^+$, $m_4 = [10a + H]^+$ and $m_6 = [7a + H]^+$ in figure 3 revealed the 174 175 possibility of diketone pathway (Figure 2) and absence of key intermediate **6a** (enamine) 13a (dienamine) and 17a (imine) (Scheme 4) in the TIC (Figure 3) ruled out the 176 177 possibility of enamine, dienamine and imine pathways.

For further structure elucidation in context of diketone pathway and product formation, tandem MS/MS experiments were carried out for few selected ions observed in TIC (Figure 3) at m/z 308.17 = m₁, 325.29 = m₂, 344.31 = m₃ and 327.31 = m₄. The MS/MS or MS² spectra derived from the ion of m/z 308.17 = m₁ showed peak at m/z 182 276.14 and 224.15 assigned as $[4g - OCH_3]^+$ and $[4g - C_4H_3S + H]^+$ (Figure 4), 183 confirmed the product formation.

In case of m₂, the MS² spectra (Figure 5) exhibited the parent ion m₂ = $[4g + NH_3 + H]^+$ and daughter ion with *m/z* 308.17, 224.28 corresponded to $[4g - NH_3 + H]^+$ and [4g - C₄H₃S + H]⁺ respectively, confirmed the ammoniated adduct of desired product i.e. 4g (Scheme 3).

To further confirm the presence of intermediate (m_3) in context of diketone pathway, the MS² experiment was carried out of $m_3 = [11a + H]^+$ ion (Figure 6). The MS/MS spectra revealed the presence of ion with m/z 327.34, 309.31, 295.29 and 211.21 which are diagnose as $[11a - NH_2]^+$, $[11a - NH_2 - H_2O]^+$, $[11a - NH_2 - H_2O - CH_3]^+$ and $[11a - NH_2 - H_2O - CH_3 - C_4H_4O_2]^+$ respectively, confirmed the fragments of m_3 and their involvement in diketone pathway.

Most importantly, the key intermediate involved in diketone pathway $m_4 = [10a + H]^+$ was also ascertain by MS² experiment. The MS² spectra (Figure 7) exhibited the parent ion $m_4 = [10a + H]^+$ and daughter ions with *m/z* 295.18, 243.21 and 211.13 correspond to $[10a - OCH_3]^+$, $[10a - C_4H_3S]^+$ and $[10a - C_5H_7O_3]^+$ respectively, confirmed the fragments of ion m_4 and their involvement in diketone pathway.

199 On the basis of Q-TOF, ESI -MS/MS studies, it comes to know that GlyNO₃ IL 200 catalyzed three component Hantzsch reaction follows diketone pathway among four 201 competing mechanistic pathways (Figure 2).

On the other hand the possibility of enamines pathway cannot be ignored because of observation of peak $m_6 = [7a+H]^+$ (Figure 3) during the analysis of aliquots of samples withdrawn after 10 min, which is also one of the intermediate of enamine pathway

RSC Advances Accepted Manuscript

(Figure 2). Therefore two control experiments or experiments to validate our perception regarding diketone pathway were carried out in sequential one-pot two step ways (Scheme 5 and 6). The results revealed that 61% of product yield (Scheme 5) was obtained *via* diketone pathway compared to 22% yield *via* enamine pathway (Scheme 6).

At last on the basis of control experiments and Q-TOF, ESI-MS/MS study, we can say that the most predominant pathway for the synthesis of symmetrical 1,4-DHPs is diketone rather then enamine, dienamine and imine. This is the first report which proved the participation of diketone pathway in synthesis of symmetrical 1,4-DHPs using Q-TOF, ESI-MS/MS study.

214 Conclusion

215

216 In summary, an operationally simple and highly efficient one-pot multicomponent 217 reaction for the synthesis of symmetrical and unsymmetrical 1.4 DHPs have been 218 developed which have sheer importance in synthetic and medicinal chemistry. The 219 methodology is practical, recyclable and economical besides being flexible since it also 220 allows heterocyclic benzaldehydes to participate in synthesis of both symmetrical and 221 unsymmetrical 1,4 DHPs under identical reaction condition. In addition the mechanistic 222 study using O-TOF, ESI-MS/MS revealed that the synthesis of symmetrical 1.4 DHPs 223 predominate follow diketone pathway among four competing reaction pathways. At last, 224 we anticipate that this catalytic system will find applications in academia and industry. 225 The Q-TOF, ESI-MS/MS based study may also helpful to unveil the mechanistic study of 226 many other reactions. The mechanistic study related to unsymmetrical 1,4 DHPs is 227 currently under investigation.

230	Experimental Section
-----	-----------------------------

229

232 General procedure for the synthesis of symmetrical 1,4-dihydropyridins from 233 substituted benzaldehydes (Table 2, 4a-l): Substituted benzaldehyde (0.5 mmol), 234 dicarbonyl compound (2 equiv.), ammonium carbonate (2 equiv.) and glycine nitrate (0.5 235 equiv.) were taken in 1 mL ethanol in a round bottom flask and the reaction mixture was subjected to microwave irradiation using CEM monomode microwave at P = 100 W, 236 237 90°C for 20 min. After completion of reaction, the crude reaction mixture 238 was filtered to obtain GlyNO₃. The filtrate was vacuum evaporated and then 239 recrystallization from water-methanol which gave an isolated yield of 4a-l in the range of 52-93 % yields. Products were identified and confirmed by their ¹H, ¹³C NMR spectra 240 and HRMS values. 241

General procedure for the synthesis of unsymmetrical 1,4-dihydropyridins from 242 243 substituted benzaldehydes (Table 3, 5a-i): Substituted benzaldehyde (0.5 mmol), 244 methyl acetoacetate (1 equiv.), 5, 5-dimethyl-1, 3-cyclohexanedione (1 equiv.), 245 ammonium carbonate (2 equiv.) and glycine nitrate (0.5 equiv.) were taken in 1 mL 246 ethanol in a round bottom flask and the reaction mixture was subjected to microwave irradiation using CEM monomode microwave at P = 100 W, 90°C for 20 min. After 247 248 completion of reaction, the crude reaction mixture 249 was filtered to obtain GlyNO₃. The filtrate was vacuum evaporated and then 250 recrystallization from water-methanol which gave an isolated yield of 5a-i in the range of 52-93 % yields. Products were identified and confirmed by their ¹H, ¹³C NMR spectra 251 252 and HRMS values.

RSC Advances Accepted Manuscript

253

255

254 Acknowledgements

- 256 RK, NHA and AS are indebted to CSIR, New Delhi, for the award of research
- 257 fellowships. The authors gratefully acknowledge Director, IHBT, Palampur and Director,
- 258 CDRI, Lucknow for their kind cooperation and encouragement. This work was supported
- 259 by Council of Scientific and Industrial Research (project CSC-0108 and ORIGIN).
- 260 Thanks to Mr. Shiv Kumar and Pawan Kumar for providing spectral data.

261 Electronic Supplementary Information (ESI) available:

- ¹H and ¹³C NMR data and spectra of symmetrical and unsymmetrical 1,4-DHPs
- 263

265

264 **References**

- (a) B. B. Toure and D. G. Hall, Chem. Rev., 2009, 109, 4439-4486; (b) J. D. 266 1 Sunderhaus and S. F. Martin, Chem. Eur. J., 2009, 15, 1300-1308; (c) B. Ganem, 267 268 Acc. Chem. Res., 2009, 42, 463–472; (d) N. Ismabery and R. Lavila, Chem.-Eur. 269 J., 2008, 14, 8444–8454; (e) D. M. D. Souza and T. J. J. Mueller, Chem. Soc. Rev., 270 2007, 36, 1095-1108; (f) B. Jang, F. Shi and S.-T. Tu, Curr. Org. Chem., 2010, 271 14, 357–378; (g) B. Jiang, T. Rajale, W. Wever, S.-J. Tu and G. Li, Chem. Asian 272 J., 2010, 5, 2318–2335; (h) A. Domling, Chem. Rev., 2006, 106, 17-89; (i) J. 273 Zhu, Eur. J. Org. Chem., 2003, 1133-1144; (j) D. J. Ramon and M. Yus, Angew. 274 Chem., Int. Ed., 2005, 44, 1602-1634; (k) N. Isambert and R. Lavilla, Chem. Eur. 275 J., 2008, 14, 8444 – 8454; (1) Y. Gu, Green Chem., 2012, 14, 2091-2128. 276 2 (a) Ugi, A. Domling and W. Horl, *Endeavour*, 1994, **18**, 115–122; (b) L. F. Tietze 277 and A. Modi, Med. Res. Rev., 2000, 20, 304-322; (c) R. V. A. Orru and M. D. 278 Greef, Synthesis, 2003, 1471–1499. 279 3 (a) A. Pinto, L. Neuville and J. Zhu, Angew. Chem. Int. Ed., 2007, 46, 3291-3295;
- 280 (b) M. R. M. Huettl, Angew. Chem. Int. Ed., 2007, 46, 1570-1581; (c) L. F. Tietze,
- 281 N. Rackelmann, Pure Appl. Chem., 2004, 76, 1967-1983; (d) L. F. Tietze, Chem.

282		Rev., 1996, 96, 115-136; (e) P. Arya, R. Joseph and D. T. H. Chou, Chem. Biol.,
283		2002, 9, 145-156.
284	4	JP. Wan and Y. Liu, RSC Advances, 2012, 2, 9763–9777.
285	5	(a) A. Hilgeroth and H. Lilie, Eur. J. Med. Chem., 2003, 38, 495-499; (b) C.
286		Avendano and J. C. Menendez, Curr. Med. Chem., 2002, 9, 159-193; (c) C.
287		Avendano and J. C. Menendez, Med. Chem. Rev., 2004, 1, 419-444; (d) A.
288		Boumendjel, H. B. Cortay, D. Trompier, T. Perrotton and A. D. Pietro, Med. Res.
289		Rev., 2005, 25, 453-472; (e) I. O. Donkor, X. Zhou, J. Schmidt, K. C. Agrawal
290		and V. Kishore, Bioorg. Med. Chem., 1998, 6, 563-566; (f) K. S. Atwal, B. N.
291		Swanson, S. E. Unger, D. M. Floyd, S. Mereland, A. Hedberg and B. C. O'Reilly,
292		J. Med. Chem., 1991, 34 , 806-811.
293	6	(a) G. C. Rovnyak, S. D. Kimball, B. Beyer, G. Cucinotta, J. D. Dimarco, J.
294		Gougoutas, A. Hedberg, M. Malley, J. P. MaCarthy, R. Zhang and S. Mereland, J.
295		Med. Chem., 1995, 38, 119-129; (b) C. O. Kappe, W. M. F. Fabian and M. A.
296		Semones, Tetrahedron, 1997, 53, 2803-2816; (c) K. Aouam, A. Berdeaux,
297		Therapiem, 2003, 58, 333-339; (d) A. Hilgeroth, Mini-Rev. Med. Chem. 2002, 2,
298		235-247.
299	7	K. K. Borowicz, M. Gasior, Z. Kleinrok and S. J. Czuczwar, Eur. J. Pharmacol.,
300		1997, 323 , 45–51.
301	8	I. O. Donkor, X. Zhou, J. Schmidt, K. C. Agrawal and V. Kishore, Bioorg. Med.
302		<i>Chem.</i> , 1998, 6 , 563–568.
303	9	H. Li, S. Moro, N. Forsyth, N. Melman, XD. Ji and K. A. Jacobson, J. Med.
304		Chem., 1999, 42 , 706–721.
305	10	(a) S. R. M. D. Morshed, K. Hashimoto, Y. Murotani, M. Kawase, A. Shah,
306		K. Satoh, H. Kikuchi, H. Nishikawa, J. Maki and H. Sakagami, Anticancer Res.,
307		2005, 25, 2033-2038; (b) H. A. S. Abbas, W. A. El Sayed and N. M. Fathy, Eur.
308		J. Med. Chem., 2010, 45, 973-982; (c) X. Zhou, L. Zhang, E. Tseng, E. Scott-
309		Ramsay, J. J. Schentag, R. A. Coburn and M. E. Morris, Drug Metab. Dispos.,
310		2005, 33, 321-328; (d) L. Bazargan, S. Fouladdel, A. Shafiee, M. Amini, S. M.
311		Ghaffari and E. Azizi, Cell Biol. Toxicol., 2008, 24, 165-174.

312	11	(a) A. Hilgeroth, Mini-Rev. Med. Chem., 2002, 2, 235; (b) A. Hilgeroth and H.
313		Lilie, Eur. J. Med. Chem., 2003, 38, 495-503; (c) A. Hilgeroth, M. Wiese and A.
314		Billich, J. Med. Chem., 1999, 42, 4729-4732.
315	12	J. Marco-Counntelles, R. Leon, C. de los Rios, A. Guglietta, J. Terencio, M .G.
316		Lopez, A. G. Garcia and M. Villarroya, J. Med. Chem., 2006, 49, 7607-7610.
317	13	(a) U. Eisner and J. Kuthan, Chem. Rev., 1972, 72, 1-42; (b) D. M. Stout and A.
318		I. Meyers, Chem. Rev., 1982, 82, 223-243; (c) A. Sausins and G. Duburs,
319		Heterocycles, 1988, 27, 269–289.
320	14	(a) N. Koukabi, E. Kolvari, A. Khazaei, M. A. Zolfigol, B. S. Shaghasemi and
321		H. R. Khavasi, Chem. Commun., 2011, 47, 9230-9232; (b) R. Ananthakrishnan
322		and S. Gazi, Catal. Sci. Technol., 2012, 2, 1463-1471; (c) L. Shen, S. Cao, J. Wu,
323		J Zhang, H. Li, N. Liu and X. Qian, Green Chem., 2009, 11, 1414-1420; (d) M.
324		MAghayan, R. Boukherroub, M. Nemati and M. Rahimifard, Tetrahedron Lett.,
325		2012, 53, 2473-2475; (e) A. Debache, R. Boulcina, A. Belfaitah, S. Rhouti and B.
326		Carboni, Synlett, 2008, 509-512; (f) S. Thakrar, A. Bavishi, D. Bhavsar, S. Parekh,
327		H. Vala, A. Radadiya, M. Parmar and M. Savant, Synth. Commun., 2012, 42,
328		3269-3278; (g) S. Rostamnia and K. lamei, Chin. Chem. Lett., 2012, 23, 930-932;
329		(h) A. Kuraitheerthakumaran, S. Pazhamalai and M. Gopalakrishnan, Chin. Chem.
330		Lett., 2011, 22, 1199-1202; (i) A. Debache, W. Ghalem, R. Boulcina, A. Belfaitah,
331		S. Rhouati and B. Carboni, Tetrahedron Lett., 2009, 50, 5248-5250; (j) F.
332		Tamaddon, Z. Razmi and A. A. Jafari, Tetrahedron Lett., 2010, 51, 1187-1189;
333		(k) R. S. Varma and D. Kumar, Tetrahedron Lett., 1999, 40, 21-24; (l) H. Salehi
334		and QX. Guo, Synth. Commun., 2004, 34, 4349-4357; (m) M. Kidwai, S. Saxena,
335		R. Mohan and R. Venkataramanan, J. Chem. Soc., Perkin Trans. 1, 2002, 1845-
336		1846; (n) G. Sabitha, G. S. K. K. Reddy, C. S. Reddy and J. S. Yadav,
337		Tetrahedron Lett., 2003, 44, 4129-4131; (o) A. Dondoni, A. Massi, E.
338		Minghini and V. Bertolasi, Tetrahedron Lett., 2004, 60, 2311-2326; (p) R. K.
339		Vohra, C. Bruneau and JL. Renaud, Adv. Synth. Catal., 2006, 348, 2571-2574;
340		(q) N. Koukabi, E. Kolvari, M. A. Zolfigol, A. Khazaei, B. S. Shaghasemi and B.
341		Fasahati, Adv. Synth. Catal., 2012, 354, 2001-2008

RSC Advances

342	15	(a) R. D. Rogers and K. R. Seddon, <i>Science</i> , 2003, 302 , 792–793; (b) J. P. Hallett
343		and T. Welton, Chem. Rev., 2011, 111, 3508-3576; (c) P. Hapiot and C.
344		Lagrost, Chem. Rev., 2008, 108, 2238-2264; (d) T. L. Greaves and C. J.
345		Drummond, Chem. Rev., 2008, 108, 206-237; (e) J. Dupont, R. F. de Souza
346		and P. A. Z. Suarez, Chem. Rev., 2002, 102, 3667-3692.
347	16	(a) JC, Legeay, J. J. V. Eynde and J. P. Bazureau, Tetrahedron, 2005, 61, 12386-
348		12397; (b) L. Ming, G. WSi, W. LRong, L. Y Feng and Y. H Zheng, J.
349		Mol. Catal. A: Chem., 2006, 258, 133-138; (c) A. Shaabani, A. H. Rezayan and
350		A. Rahmati, Monatshefte für Chemie/Chemical Monthly, 2006, 137, 77-81; (d) J.
351		S. Yadav, B. V. S. Reddy, A. K. Basak and A.V. Narsaish, Green Chem., 2003,
352		5 , 60-63.
353	17	(a) K. S. Egorova and V. P. Ananikov, ChemSusChem, 2014, 7, 336-360; (b) R. P.
354		Swatloski, J. D. Holbrey and Robin D. Rogers, Green Chem., 2003, 5, 361-363;
355		(c) N. Gathergood, M. T. Garcia, and P. J. Scammells, Green Chem., 2004, 6,
356		166-176; (d) GH. Tao, L. He, WS. Liu, L. Xu, W. Xiong, T. Wang and Yuan
357		Kou, Green Chem., 2006, 8, 639-646.
358	18	(a) W. Bao, Z. Wang and Y. Li, J. Org. Chem., 2003, 68, 591-593; (b) K.
359		Fukumoto and H. Ohno, Chem. Commun., 2006, 3081–3083; (b) K. Fukumoto, M.
360		Yoshizawa and H. Ohno, J. Am. Chem. Soc., 2005, 127, 2398-2399; (c) L. C.
361		Branco, P. M. P. Gois, N. M. T. Lourenco, V. B. Kurteva and C. A. M. Afonso,
362		Chem. Commun., 2006, 2371–2372; (d) G. H. Tao, L. He, N. Sun and Y. Kou,
363		Chem. Commun., 2005, 3562-3564; (e) G. H. Tao, L. He, W. S. Liu, L. Xu, W.
364		Xiong, T. Wang and Y. Kou, Green Chem., 2006, 8, 639-646.
365	19	(a) H. Ohno and K. Fukumoto, Acc. Chem. Res., 2007, 40, 1122–1129.
366	20	(a) R. Kumar, Richa, N. H. Andhare, A. Shard and A. K. Sinha, Chem. Eur. J.
367		2013, 19, 14798 – 14803; (b) N. Sharma, U. K. Sharma, R. Kumar, Richa and A.
368		K. Sinha, RSC Advances, 2012, 2, 10648–10651; (c) U. K. Sharma, N. Sharma, R.
369		Kumar and A. K. Sinha, Amino Acids, 2013, 44, 1031–1037.
370	21	One of the main advantage of unsymmetrical 1,4-DHPs is utilization of two
371		different dicarbonyl compounds which result increased in diversified

derivative of 1,4 DHPs compared to symmetrical 1,4-DHPs where two similar

RSC Advances Accepted Manuscript

RSC Advances

- dicarbonyl are utilized. Overall the possibility of discovering new biologicalentities increased.
- 375 22 (a) A. Kumar, S. Sharma, V. D. Tripathi, R. A. Maurya, S. P. Srivastava, G.
 376 Bhatia, A. K. Tamrakar and A. K. Srivastava, *Bioorg. Med. Chem.*, 2010, 18,
 377 4138-4148; (b) L. E. Hinkel, *J. Chem. Soc. Trans.*, 1920, 117, 137-140.
- 378 23 (a) L. Saikia, D. Dutta and D. K. Dutta, *Catal. Commun.*, 2012, **19**, 1-4; (b) L.-M. 379 Wang, J. Sheng, L. Zang, J.-W. Han, Z.-Y. Fan, H. Tian and C.-T. Qian, 380 Tetrahedron, 2005, 61, 1539-1543; (c) S. K. Kumar and K. N. Singh, J. 381 Heterocycl. Chem., 2010, 47, 194-197; (d) M. Maheswara, V. Siddaiah, G. L. V. 382 Damu and C. V. Rao, ARKIVOC, 2006, ii, 201-206; (e) M. Kidwai, R. Chauhan, 383 D. Bhatnagar, A. K. Singh, B. Mishra and S. Dey, Montash Chem., 2012, 143, 384 1675-1680; (f) D. S. Raghuvanshi and K. N. Singh, Indian J. Chem., 2013, 52B, 385 1218-1223; (g) K. A. Undale, T. S. Shaikh, D. S. Gaikwad and D. M. Pore, C. R. 386 Chimie., 2011, 14, 511-515; (h) J. P. Nirmal, P. V. Dadhaniya, M. P. Patel and R. 387 G. Patel, Indian J. Chem., 2010, 49B, 587-592; (i) A. Rajendran, C. Karthikeyan 388 and K. Rajathi, Int. J. Chem Tech. Res., 2011, 3, 810-816; (j) E. Rajanarendar, M. 389 N. Reddy and S. Raju, Indian J. Chem. Sect B, 2011, 50, 751-755; (k) W. H. 390 Correa and J. L. Scott, Green Chem., 2001, 3, 296-301; (1) J. L. Donelson, R. A. 391 Gibas and S. K. De, J. Mol. Catal. A: Chem., 2006, 256, 309-311; (m) A. Kumar 392 and R. A. Maurya, Tetrahedron Lett., 2007, 48, 3887-3890; (n) S. Ko and C.-F. 393 Yao, Tetrahedron, 2006, 62, 7293-7299; (o) M. M. Heravi, K. Bakhtiari, N. M. 394 Javadi, F. F. Bamoharram, M. SEADI and H. A. Oskooie, J. Mol. Catal. A: 395 Chem., 2007, 264, 50-52; (p) J. C. Legeay, J. Y. Goujon, J. J. V. Eynde, L. 396 Toupet and J. P. Bazureau, J. Comb. Chem., 2006, 8, 829-833; (q) S. Ko, M. N. 397 V. Sastry, C. Lin and C.-F. Yao, *Tetrahedron Lett.*, 2005, 46, 5771-5774; (r) M. 398 Tajbakhsh, H. Alinezhsd, M. Norouzi, S. Baghery and M. Akbari, J. Mol. Liq., 399 2013, 177, 44-48; (s) A. Kumar and R. A. Maurya, Tetrahedron, 2007, 63, 400 1946-1952; (t) N. N. Karade, V. H. Budhewar, S. V. Shinde and W. N. Jadhav, 401 Lett. Org. Chem., 2007, 4, 16-19; (u) G. Song and B. Wang, Synth. Commun.,
- 402 2005, **35**, 2875-2878; (v) S. R. Cherkupally and R. Mekala, *Chem. Pharm. Bull.*,
- 403 2008, 56, 1002-1004; (w) X.-L. Zhang, S.-R. Sheng, X.-L. Lu and X.-L. Liu,

404		ARKIVOC, 2007, xiii, 79-86; (x) U. C. Rajesh, S. Manohar and D. S. Rawat Adv.
405		Synth. Catal., 2013, 355, 3170-3178; (y) M. M. Heravi , M. Saeedi , N. Karimi, M.
406		Zakeri, Y. S. Beheshtiha, A. Davoodnia, Synth. Commun. , 2010, 40, 523-529,
407	24	(a) R. F. Affeldf, E. V. Benveutti and D. Russowsky, New J. Chem., 2012, 36,
408		1502-15011; (b) M. N. Esfahani, S. J. Hoseini, M. Montazerozohori and R.
409		Mehrabi, H. Nasrabadi, J. Mol. Catal A: Chem., 2014, 382, 99-105; (c) P. P.
410		Ghosh, S. Paul and A. R. Das, Tetrahedron Lett., 2013, 54, 138-142.
411	25	The synthesis of four component unsymmetrical 1,4 DHPs carried out under
412		similar reaction condition as adopted for three components synthesis of
413		symmetrical 1,4 DHPs (Table 1, entry 8). The difference is only in the
414		utilization of methylacetoacetate and dimedone (1:1 equiv) instead of 2 equiv
415		of methylacetoacetate.
416	26	(a) A. R. Katritzky, D. L. Ostercamp and T. I. Yousaf, Tetrahedron, 1986, 42,
417		5729- 5738; (b) A. Saini, S. Kumar and J. S. Sandhu, J. Sci. Ind. Res., 2008, 67,
418		95-111; (c) A.R. Katritzky, D. L. Ostercamp and T. I. Yousaf, Tetrahedron, 1987,
419		43, 5171-5186; (d) J. A. Berson and E. Brown, J. Am. Chem. Soc., 1955, 77, 444-
420		447; (e) B. Singh and G. Y. Lesher, J. Heterocycl. Chem., 1980, 17, 1109-1110;
421		(f) P. A. Hopes, A. J. Parker and I. Patel, Org. Process Res. Dev., 2006, 10,
422		808-813.
423	27	(a) J. B. Fenn, M. Mann, C. K. Meng, S. F. Wong and C. M. Whitehouse,
424		Science, 1989, 246, 64-71; (b) D. Schroder, Acc. Chem. Res., 2012, 45, 1521-
425		1532; (c) L. S. Santos, Eur. J. Org. Chem., 2008, 235-253; (d) M. Schafer,
426		M. Drayß, A. Springer, P. Zacharias and K. Meerholz, Eur. J. Org. Chem., 2007,
427		5162-5174; (e) J. B. Fenn, Electrospray Wings for Molecular Elephants (Nobel
428		Lecture). Angew. Chem. Int. Ed., 2003, 42, 3871-3894; (f) R. B. Cole, J. Mass.
429		Spectrom., 2000, 35 , 763–772.
430	28	C. Silvestri and J. S. Brodbelt, Mass Spectrometry Reviews, 2013, 32, 247-266.
431	29	Thiophene-2-carboxaldehyde was taken as model substrate for mechanistic
432		study because of following region i) gave maximum yield of product, ii) their
433		better solubility in EtOH and iii) ease in Q-TOF, ESI-MS analysis.

444 Graphical Abstract

- Glycine nitrate ionic liquid (GlyNO₃) has been explored for the synthesis of symmetrical and
 unsymmetrical 1,4-DHPs in good to excellent yield under identical reaction condition. Moreover,
 Q-TOF, ESI-MS/MS based mechanistic study revealed the diketone as predominate pathway for
- 450 the synthesis of symmetrical1,4-DHPs.

15	7
45	1
τJ	/

458

Table 1. Optimization study for the synthesis of 1,4-dihydropyridins ^a

CI La	CHO 0 0 + + - 2a	Ammonium salt 3a	Ionic liquids MW, 20 min Solvent	
S. No.	Ammonium salt	Solvent	Ionic Liquid	Yield ^[b] (%)
1	NH₄OAc	EtOH	GlyNO ₃	45
2	NH_4BF_4	EtOH	GlyNO ₃	30
3	NH ₄ CI	EtOH	GlyNO ₃	20
4	NH ₄ HCO ₃	EtOH	GlyNO ₃	70
5	(NH ₄) ₂ CO ₃	EtOH	GlyNO ₃	73
6 ^c	(NH ₄) ₂ CO ₃	EtOH	GlyNO ₃	82
7 ^d	(NH ₄) ₂ CO ₃	EtOH	GlyNO ₃	80
8 ^e	(NH ₄) ₂ CO ₃	EtOH	GlyNO ₃	87
9	(NH ₄) ₂ CO ₃	H ₂ O	GlyNO ₃	19
10	(NH ₄) ₂ CO ₃	DCM	GlyNO ₃	34
11	(NH ₄) ₂ CO ₃	DMSO	GlyNO ₃	20
12	(NH ₄) ₂ CO ₃	PEG 400	GlyNO ₃	30
13	(NH ₄) ₂ CO ₃	EtOH:H ₂ O	GlyNO ₃	40
14	(NH ₄) ₂ CO ₃	EtOH	GlySO ₄	66
15	(NH ₄) ₂ CO ₃	EtOH	GlyTFA	40
16	(NH ₄) ₂ CO ₃	EtOH	GlyOAc	59
17	(NH ₄) ₂ CO ₃	EtOH	GlyCl	57
18	(NH ₄) ₂ CO ₃	-	GlyNO ₃	29
19	(NH ₄) ₂ CO ₃	EtOH	-	26
20 ^f	(NH ₄) ₂ CO ₃	EtOH	GlyNO ₃	55
21	(NH ₄) ₂ CO ₃	EtOH	Glycine	65
22	(NH ₄) ₂ CO ₃	EtOH	HNO ₃	20

^a Experimental conditions: 0.5 mmol of 4-chlorobenzaldehyde, methylacetoacetate (2 equiv), (NH₄)₂CO₃ (2 equiv), GlyNO₃ (0.5 equiv) in 1 mL of EtOH under MW at P = 100 W, 90°C for 20 min, ^b Isolated yield (after recrystallization in water and methanol).
^c GlyNO₃ (0.5 equiv), ^d GlyNO₃ (0.6 equiv) ^e EtOH (1mL), ^f reflux for 5h. For entries 1-7 EtOH = 0.5 mL, entries 8-22 solvent = 1 mL.

4	6	6
	v	v

468 **Table 2**. Substrate scope of $GlyNO_3$ catalyzed synthesis of symmetrical 1,4-469 dihydropyridines ^a

^a Experimental conditions: 0.5 mmol of substituted benzaldehyde, methylacetoacetate (2 equiv), $(NH_4)_2CO_3$ (2 equiv), $GlyNO_3$ (0.5 equiv) in 1 mL of EtOH under MW at P = 100 W, 90°C for 20 min, ^b Isolated yield (after recrystallization in water & methanol).

478 Table 3. Substrate scope of *GlyNO*₃ catalyzed synthesis of unsymmetrical 1,4 479 dihydropyridines^a

^a Experimental conditions: 0.5 mmol of substituted benzaldehyde, 2a (1 equiv), 3a (1 equiv), (NH₄)₂CO₃ (2 equiv), GlyNO₃ (0.5 equiv) in 1mL of EtOH under MW at P = 100
W, 90°C, for 20 min. ^b Isolated yield (after recrystallization in water & methanol).

RSC Advances Accepted Manuscrip

502 Scheme 3. The one-pot three component Hantzsch reaction

503

501

490

4g

RSC Advances

Figure 2. Different plausible pathways for the synthesis of 1, 4-dihydropyridines.

533 Figure 3. TIC of Q-TOF, ESI (+) MS of sample withdraw after 10 min for three-component 534 Hantzsch reaction of 1g, 2a and 3a catalyzed by GlyNO₃.

Figure 4. On line Q-TOF, ESI (+) MS/MS of peak $m_1 = 308.17$ as shown in figure 2.

541 Figure 6. On line Q-TOF, ESI (+) MS/MS of peak $m_3 = 344.31$ as shown in figure 2.

Figure 7. On line Q-TOF, ESI (+) MS/MS of peak $m_4 = 327.31$ as shown in figure 2.