RSC Advances

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Efficient Synthesis of 2,4-Disubstituted Quinolines: Calix[*n*]arene-Catalyzed Povarov-Hydrogen-Transfer Reaction Cascade

Juliana Baptista Simões^{*a,b*}, Ângelo de Fátima^{*c*}, Adão Aparecido Sabino^{*c*}, Luiz Claudio Almeida Barbosa^{*c*}, Sergio Antonio Fernandes^{*a*,*}

s Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

A cascade process involving the Povarov reaction and hydrogen transfer catalyzed with *p*-sulfonic acid calix[4]arene was disclosed and afforded the synthesis of 2,4-disubstituted quinolines in good yields under appropriate conditions in a single pot process.

10 Introduction

The quinoline nucleus is a common heterocyclic system found in natural and synthetic compounds, many of which have interesting biological properties.¹ Quinolines have generally been synthesized using classical reactions, including the Skraup,²

- ¹⁵ Doebner-von Miller,³ Friedländer,⁴ Pfitzinger⁵ and Combes syntheses.⁶ Although many of these classical syntheses were developed many decades ago, they are still frequently used for the preparation of pharmaceutical agents and other new quinoline derivatives. Despite the many methods available, there are still
- ²⁰ limitations, especially with respect to obtaining an adequate variety of substituents on both rings.⁷ Recent developments in the chemistry of quinoline derivatives have demonstrated that an acid catalyzed cycloaddition of the appropriate precursors could compete with the classical syntheses in terms of efficacy and
- ²⁵ speed.⁸ The development of multicomponent reactions (MCRs) in this field has shown interesting advantages typical of an ideal reaction, such as atom and step economy, convergence, and exploratory power.⁹
- Some 2,4-disubstituted quinolines have been reported as ³⁰ anthelmintics¹⁰ and have been effective in the treatment of
- leishmaniasis, a widespread protozoan disease in tropical areas of South America.^{11g} The synthesis of 2,4-disubstituted quinolines remains poorly explored¹¹, especially regarding synthetic methods involving MCRs.¹²
- ³⁵ A typical multicomponent Povarov reaction can be used to prepare tetrahydroquinolines through the reaction of arylimines, which are generated *in situ* by the condensation of an amine and an aldehyde, with an electron-rich alkene. The tetrahydroquinolines that are formed may be transformed into ⁴⁰ quinolines by oxidation.¹³ One example of this Povarov reaction
- ⁴⁰ quinolines by oxidation.¹⁵ One example of this Povarov reaction utilizes an arylimine as the oxidant in the cascade process.¹⁴ The efficiency of the Povarov reaction is primarily associated with the nature of the alkene. The most commonly used alkenes are vinyl ethers because they are very nucleophilic.¹⁵ The use of
- ⁴⁵ less nucleophilic alkenes, such as styrene and its derivatives, in the Povarov reaction has been rarely reported in the literature due

to the lower reactivities of these alkenes compared with vinyl ethers. 13a,16

- Another important factor in the Povarov reaction is the catalyst ⁵⁰ employed. In recent years, our group and others have initiated the use of calix[*n*]arenes as catalysts in certain selective reactions,¹⁷ including a Povarov reaction designed for the synthesis of julolidines.¹⁸ Taking advantage of calix[*n*]arenes as catalysts, we report an unprecedented tandem multicomponent synthesis of
- ⁵⁵ 2,4-disubstituted quinoline derivatives via a Povarov reaction in this study. As shown in **Scheme 1**, the process involves initial production of the tetrahydroquinoline derivative catalyzed by *p*-sulfonic acid calix[4]arene (CX4SO₃H). This intermediate is then dehydrogenated *in situ* by the imine generated by condensation of ⁶⁰ aniline and aldehyde and/or the acetonitrile, used as the solvent, to afford the desired quinoline derivatives in a one pot process.

Scheme 1 Tandem Multicomponent Synthesis of 2,4-Disubstuted Quinoline Derivatives via a Povarov Reaction

Results and Discussion

For the initial investigation of the use of CX4SO₃H as a catalyst in this process, 4-bromoaniline (1a), benzaldehyde (2) and styrene (3) were employed as the substrates. The results for 70 optimization of the solvent, reaction time and catalyst concentration are presented in **Table 1**. The use of acetonitrile provided the desired 2,4-disubstuted quinoline 4a in 54% yield (entry 1).

Biodegradable green solvents, such as diethyl carbonate and ethyl ⁷⁵ lactate, and common solvents, such as tetrahydrofuran, dimethylsulfoxide and chloroform, did not provide good yields of the desired product (**entries 2-6**). With the exception of ethyl lactate, other solvents resulted in the formation of the imine **7a** in moderate to good yields (41-80%).

^{*a*}The reaction of an aniline **1a** (1 mmol), benzaldehyde **2** (1.2 mmol), and styrene **3** (1.5 mmol) was performed at 80 °C. ^{*b*}Isolated yield. ^{*c*}Sum of the % yields of **4a-7a**.^{*d*}Reaction time of 12 hours. ^{*c*}Diastereomeric excess = 5 60% *cis*.

When the reaction was carried out in toluene, water, ethanol or without solvent, mixtures of products **4a-7a** were obtained, including the desired quinoline in low yields (8-25%) (entries 7-

10 10). As shown in **entries 8-9**, the use of polar protic solvents (ethanol and water) favored the formation of the intermediate tetrahydroquinoline in 46-49% yield.

The catalyst concentration was reduced to 1 mol% with only a slight decrease in the yield (entries 11-16); however, an increase 15 in the reaction time led to an increase in the yield even with

smaller amounts of catalyst (**entries 17-18**). We further investigated the effect of the acid catalyst on the

product distributions (Table 2). The use of a macrocycle consisting of six phenolic units, *p*-sulfonic acid calix[6]arene,

- ²⁰ (CX6SO₃H) afforded the desired quinoline in 63% yield, which was similar to the result obtained with CX4SO₃H (65%). However, the use of the monomer 4-hydroxysulfonic acid (PHA) as the catalyst resulted in only a 12% yield of the desired quinoline (**Table 2**, entries 1-3). These results indicate that the
- ²⁵ sulfonic and phenolic groups on the calix[n]arene structures are not solely responsible for its catalytic effect. Among the other Brønsted acids tested (**Table 2**, entries 4-6), only trifluoroacetic acid resulted in a yield comparable to those obtained with calix[n]arenes. However, the calix[n]arenes have the advantage of
- ³⁰ been easily recovered and reused.^{17,18,19} Among the organic acids tested, lactic, oxalic and citric acids afforded the desired quinoline in 9%, 33% and 24% yields, respectively (entries 7-11).

 Table 2. Effect of Different Brønsted Acid Catalysts on the Povarov

 35 Reaction^a

Entry	Catalyst	Yield $(\%)^c$				
	$(\text{mol }\%)^b$	4a	5a	6a	7a	Total ^d
1	CX4SO ₃ H (1.0)	65	-	34	-	99
2	CX6SO ₃ H (0.7)	63	8	18	7	96
3	PHA (4.0)	12	-	-	53	65
4	CF ₃ CO ₂ H (4.0)	64	-	33	-	97
5	CH ₃ CO ₂ H(4.0)	-	-	-	73	73
6	$H_2SO_4(2.0)$	7	-	-	70	77
7	Lactic acid (4.0)	29	trace	58	-	87
9	Succinic acid (2.0)	-	-	8	30	38
10	Oxalic acid (2.0)	33	-	trace	40	73
11	Citric acid (13)	24	trace	50	trace	74

11 Citric acid (1.3) 24 trace 50 trace 74 ^aThe reaction of an aniline **1a** (1 mmol), benzaldehyde **2** (1.2 mmol), and styrene **3** (1.5 mmol) was performed at 80 °C. ^bThe concentration of H⁺ was kept constant. ^cIsolated yield. ^dSum of the %yields of **4a-7a**.

- ⁴⁰ To investigate the scope of this auto-tandem catalysis in a Povarov-hydrogen-transfer reaction cascade, several anilines were subjected to the optimized conditions (acetonitrile as the solvent, 1 mol% of CX4SO₃H, 80 °C, 12 h). The results are provided in Figure 1.
- ⁴⁵ The use of anilines with weak electron-withdrawing groups (4a-4c) or electron-donating substituents (4d-4g) resulted in better yields than the use of anilines with strong electron-withdrawing substituents (4h-4i). Quinolines that were di- and tri-substituted on the aniline component were also obtained (4j-4l). The reaction ⁵⁰ of *meta*-substituted anilines gave single regioisomers (4m-4n).

Fig. 1 The Scope of Auto-Tandem Catalysis in a Povarov Hydrogen-Transfer Cascade

amine 6a.

As we have demonstrated so far, under the conditions described, the Povarov reaction can afford, in one pot, the corresponding quinoline instead of the commonly obtained 1,2,3,4-tetrahydroquinoline.¹³ The oxidation of 1,2-dihydroquinoline has

- ⁵ already been investigated in detail, and it has been demonstrated that this type of oxidation can be achieved through the use of oxygen, Fe³⁺, and organic oxidants, such as benzaldehyde, imines and enones.²⁰ The disproportionation of 1,2-dihydroquinoline can also occur in the presence of HCl.²¹ The aromatization of some
- ¹⁰ Povarov adducts has been reported, but in such cases, oxidizing agents such as Br₂, DDQ and NaIO₄ were used.^{13d} To the best of our knowledge, only one report on the successive dehydrogenation of Povarov-produced tetrahydroquinoline into quinoline has been reported, but in that case, the process was
- ¹⁵ mediated by excess imine in the presence of acid.^{13b} In our method, we used 1.0 equivalent of the aniline and 1.2 equivalent of the aldehyde. Therefore, if quinoline formation occurred through dehydrogenation mediated by the imine the maximum quinoline yield would be 33%, which is much lower than the
- ²⁰ yields observed in most instances. Thus, we hypothesized that acetonitrile is acting as a hydride acceptor. We then examined the details of the oxidation of the isolated tetrahydroquinoline (Scheme 2).
- The oxidation of tetrahydroquinoline **5a** under an oxygen ²⁵ atmosphere at 80 °C for 12 h in the absence of the catalyst results in less than 5% conversion to quinoline **4a**; however, in the presence of the catalyst, the conversion was 11%. On the other hand, a 25% conversion of tetrahydroquinoline **5a** to quinoline **4a** was observed at 80 °C for 12 h in the presence of 1 equivalent of
- ³⁰ imine **7a** and CX4SO₃H (1 mol%). However, in the absence of the catalyst, no hydrogen-transfer occurred. These results suggest that the imine acts as an oxidant and CX4SO₃H acts as an auto-tandem catalyst activating two mechanistically distinct reactions in the Povarov hydrogen-transfer reaction cascade. To verify that
- ³⁵ the acetonitrile reaction solvent also acts as an oxidant, the reaction was conducted under the same experimental conditions but with an inert atmosphere; the conversion of tetrahydroquinoline 5a to quinoline 4a was 19%. This result indicates the participation of acetonitrile in the oxidation process, 40 which had not previously been reported.

Scheme 2 Possible Oxidative Processes

After the tetrahydroquinoline is transformed into 1,2-45 dihydroquinolines *in situ*, it can be oxidized to the corresponding quinoline by a weak oxidizing agent. Based on the experimental results, we suggest that the first hydrogen-transfer might occur between the tetrahydroquinoline and acetonitrile or the imine. Further oxidation might proceed through disproportionation or 50 hydrogen abstraction from the imine formed by the initial reduction of acetonitrile.

Checking the participation of acetonitrile, the reaction of tetrahydroquinoline **5a** was carried in deuterated acetonitrile (CD₃CN) in presence of CX4SO₃H (1 mol%) and 1 equivalent of ⁵⁵ imine **7a**. The ¹H NMR spectrum (**Fig. 2b**) presents a signal in 4.3 ppm refers of CH₂ group due the reduction of imine **7a** to

7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 [1(pm)]

Fig. 2 a) ¹H NMR spectrum (300 MHz, CD₃CN) of 6a in presence of CX4SO₃H. b) ¹H NMR spectrum of reaction between 5a and 7a with CX4SO₃H. c) ¹H NMR spectrum of reaction of 5a in presence of CX4SO₃H. d) ¹H NMR spectrum of reaction of 5a in absence of CX4SO₃H. d) ¹H NMR spectrum of reaction of 5a in absence of CX4SO₃H.

⁶⁵ As shown in Figure 2 the ¹H NMR spectrum of reaction carried in presence of CX4SO₃H (1 mol %) without the imine 7a presents a large signal in 2.9 ppm (Fig. 2c). Whereas the ¹H NMR spectrum of tetrahydroquinoline 5a maintained under the same reaction conditions but in absence of cataly and imine (Fig. ⁷⁰ 2d), not present this signal, we conclude that this signal is due to the reduction of acetonitrile that occurs only presence of catalyst.

Conclusions

In conclusion, we have developed a cascade process involving an efficient three-component reaction followed by oxidative ⁷⁵ aromatization for the synthesis of 2,4-disubstuted quinolines using *p*-sulfonic acid calix[4]arene (CX4SO₃H) as a catalyst. We have verified that in addition to the participation of the imine and oxygen, acetonitrile participates in the process of oxidizing the tetrahydroquinolines to quinolines. The developed method ⁸⁰ affords 2,4-disubstuted quinolines with electron donating or electron withdrawing groups from the aniline component. Further applications of this methodology are under investigation and will be reported in due time.

Acknowledgment

We thank the Brazilian agency CNPq for research fellowships (AF, LCAB, SAF) and the Brazilian agencies FAPEMIG and CAPES for their financial support.

5 Notes and references

- ^{*a*} Departamento de Química, CCE, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
- ^b Departamento de Ensino de Ciências, Instituito Federal de Educação Ciência e Tecnologia Fluminense, Itaperuna, RJ, 28300-000, Brazil.
- ¹⁰ ^c Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
 - santonio@ufv.br or sefernandes@gmail.com
 - [†] Electronic Supplementary Information (ESI) available: Including experimental data and characterization data (Melting point, IR, ¹H NMR,
- ¹³C NMR and ESI-MS) for all compounds. See DOI: 10.1039/b000000x/
- (a) R. C. Bernotas, R. R. Singhaus, D. H. Kaufman, *Bioorg. Med. Chem. Lett.* 2010, **20**, 209; (b) C. Venkateswarlu, P. V. Balaji, K. De, B. Crousse, B. Figadère, J. Legros, *J. Fluorine Chem.* 2013, **152**, 94.
- 20 2 R. H. F. Manske, M. Kukla, Org. React. 1953, 7, 59.
- 3 F. W. Bergstrom, Chem. Rev. 1944, 35, 153.
- 4 C. C. Cheng, S. J. Yan, Org. React. 1982, 28, 37.
- G. Jones, In *The Chemistry of Heterocyclic Compounds*; Weissberger, A.; Taylor, E. C., Eds.; John Wiley and Sons:
 Chichester, **1977**, Vol. 32, Part I, p. 318.
- 6 F. W. Bergstrom, Chem. Rev. 1944, 35, 156.
- G. Jones, In *Comprehensive Heterocyclic Chemistry*; A. R. Katritzky,
 C. W. Rees, E. E. Scriven, Eds.; Pergamon Press: Oxford, 1996, Vol.
 5, Ch. 5.05, p. 167.
- 30 8 V. V. Kouznetsov, L. Y. V. Méndez, C. M. M. Gómez, Curr. Org. Chem. 2005, 9, 141.
 - 9 J. Zhu, H. Bienaymé, Eds. Multicomponent Reactions; Wiley-VCH: Weinheim, Germany, 2005, p. 76.
- 10 (a) S. Rossiter, J. M. Péron, , P. J. K. WhitfieldcJones, Bioorg. Med.
- 35 Chem. Lett. 2005, **15**, 4806; (b) A. Fournet, B. Vagneur, P. Richomme, J. Bruneton, Can. J. Chem. 1989, **67**, 2116.
- (a) M. J. Sandelier, P. de Shon, Org. Lett. 2007, 9, 3209; (b) R. P. Korivi, C. H. Cheng, J. Org. Chem. 2006, 71, 7079; I. M. Baltork, S. Tangestaninejad, M. Moghadam, V. Mirkhani, S. Anvar, A.
- Mirjafari, Synlett 2010, 20, 3104; (c) A. Arcadia, F. Marinelli, E. Rossi, Tetrahedron, 1999, 55, 13233; (d) K. Kobayashi, K. Yoneda, K. Miyamoto, O. Morikawa, H. Konishi, Tetrahedron 2004, 60, 11639; (e) G. Cabarrocas, M. Ventura, M. Maestro, J. Mahía, J. M. Villalgordo, Tetrahedron: Asymmetry 2001, 12, 1851; (f) R.
- 45 Devakaram, D. S. Black, N. Kumar, *Tetrahedron Lett.* 2012, **53**, 2269.
- Iqbal, *Tetrahedron Lett.* 2002, 43, 6485; (d) K. Cao, F. M. Zhang, Y. Q. Tu, X. T. Zhuo, C. A. Fan, *Chem. Eur. J.* 2009, 15, 6332; (e) S. Rotzoll, B. Willy, J. Schönhaber, F. Rominger, T. J. J. Müller, *Eur. J. Org. Chem.* 2010, 3516.
- 13 (a) N. Shindoh, H. Tokuyama, Y. Takemoto, K. Takasu, J. Org. Chem. 2008, 73, 7451; (b) N. Shindoh, H. Tokuyama, K. Takasu, Tetrahedron Lett.. 2007, 48, 4749; (c) V. Sridharan, C. Avendaño, J. C. Menéndez, Tetrahedron, 2009, 65, 2087; (d) A. A. Kudale, J. Kendall, D. O. Miller, J. L. Collins, G. J. Bodwell, J. Org. Chem. 2008, 73, 8437.
- 60 14 (a) R. Leardini, D. Nanni, A. Tundo, G. Zanardi, F. Ruggieri, J. Org. Chem. 1992, 57, 1842; (b) K. Pericherla, A. Kumar, A. Jha, Org. Lett. 2013, 15, 4078.
 - 15 V. V. Kouznetsov, *Tetrahedron*, 2009, **65**, 2721.
- 16 (a) V. V. Kouznetsov, A. R. Bohórquez, E. E. Stashenko,
- 65 Tetrahedron Lett. 2007, 48, 8855; (b) D. R. M. Arenas, F. A. R. Ruíz, V. V. Kouznetsov, Tetrahedron Lett. 2011, 52, 1388.

- 17 (a) J. B. Simões, D. L. da Silva, A. de Fátima, S. A. Fernandes, *Curr. Org. Chem.* 2012, 16, 949; (b) D. L. da Silva, S. A. Fernandes, A. A. Sabino, A. de Fátima, *Tetrahedron Lett.* 2011, 52, 6328; (c) S. A.
- Fernandes, R. Natalino, P. A. R. Gazolla, M. J. da Silva, G. N. Jham, *Tetrahedron Lett.*, 2012, 53, 1630.
 J. B. Simões, A. de Fátima, A. A. Sabino, F. J. T. de Aquino, D. L. da
- 18 J. B. Simões, A. de Fatima, A. A. Sabino, F. J. T. de Aquino, D. L. da Silva, L. C. A. Barbosa, S. A. Fernandes, *Org. Biomol. Chem.* 2013, 11, 5069.
- 75 19 The CX4SO₃H was recovered and reused in successive reactions for three cycles, presents 8% reduction in catalyst recovery and a marginal loss in yield of 7%. For details see Supporting Information.
 - 20 (a) S. Tanaka, M. Yasuda, A. Baba, *J. Org. Chem.* 2006, **71**, 800; (b) A. V. Tarantin, V. A. Glushkov, O. A. Mayorova, I. A. Shcherbinina,
- A. G. Tolstikov, *Mendeleev Commun.* 2008, **18**, 188; (c) Y. Ogata, A. Kawasaki, S. Suyama, *Tethraedron* 1969, **25**, 1361.
- 21 (a) C. D. Smith, J. I. Gavrilyuk, A. J. Lough, R. A. Batey, J. Org. Chem. 2010, 75, 702; (b) E. Vicente-García, F. Catti, R. Ramón, R. Lavilla, Org. Lett. 2010, 12, 860.

RSC Advances Accepted Manuscript