

Nanoflaky MnO2 grown in situ on carbon microbead as anode materials for high-performance lithium-ion batteries

Journal:	RSC Advances
Manuscript ID:	RA-COM-03-2014-001922.R2
Article Type:	Communication
Date Submitted by the Author:	02-May-2014
Complete List of Authors:	Wang, Hao; Xiangtan University, School of Chemistry Liu, Jing; Xiangtan University, School of Chemistry wang, xianyou; Xiangtan University, shool of chemistry Wu, Chun; Xiangtan University, School of Chemistry Zhao, Qinglan; Xiangtan University, School of Chemistry Fu, Yanqing; Xiangtan University, School of Chemistry yang, xiukang; Xiangtan University, School of Chemistry Shu, Hongbo; Xiangtan University, School of Chemistry

SCHOLARONE[™] Manuscripts

1 Nanoflaky MnO₂ grown *in situ* on carbon microbead as anode

2

materials for high-performance lithium-ion batteries

3 Hao Wang, Jing Liu, Xianyou Wang*, Chun Wu, Qinglan Zhao, Yanqing Fu, Xiukang Yang, Hongbo Shu*

Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, School of
 Chemistry, Xiangtan University, Hunan, Xiangtan 411105, China

Abstract: Flower-like MnO_2 encapsulated carbon microbead ($MnO_2@CMB$) 6 nanocomposite is firstly synthesized via an *in situ* nucleation and growth of 7 8 birnessite-type MnO₂ on the surface of monodisperse carbon microbead. The structure, morphology and performance of the samples are characterized by powder X-ray 9 diffraction (XRD), scanning electron microscopy (SEM), and galvanostatic 10 charge/discharge. The results reveal that the flower texture MnO₂@CMB 11 nanocomposite is composed of CMB core and nanosheet MnO₂ shell. As the anode 12 material for lithium-ion batteries, the MnO₂@CMB nanocomposite exhibits excellent 13 electrochemical performances. It shows a good rate capability of 230 mAh g⁻¹ at the 14 current density of 1500 mA g⁻¹ and a large reversible capacity of 620 mAh g⁻¹ without 15 capacity fade for the 80th cycles at 100 mA g⁻¹, which is much better than those of 16 pure MnO₂ and graphite. The superior electrochemical performance can be attributed 17 to the unique hierarchical architecture and the combinative effects of the nanosheet 18 MnO₂ and carbon matrices. 19

Keywords: Lithium-ion batteries; Composite materials; Manganese oxide; Carbon
microbeads; Anode

^{*} Corresponding author: Xianyou Wang Tel: +86 731 58292060; fax: +86 731 58292061.

E-mail address: wxianyou@yahoo.com (X. Wang).

^{*} Corresponding author: hongboshuxtu@gmail.com

22 1. Introduction

Recently, some transition metal oxides (TMOs) have been considered to be promising 23 anode materials for LIBs owing to their high theoretical capacity and low cost ^{1, 2}. 24 Among all of the TMOs, MnO₂ has attracted great attention due to its natural 25 abundance, environmental friendliness and low cost³. As an anode material, MnO₂ 26 has many advantages compared with currently commercially used graphite, such as its 27 relatively high theoretical capacity (about 755 mAh g⁻¹) and low overpotential ⁴. 28 29 Therefore, the MnO₂ samples with various crystallographic structure (such as α , β , γ , 30 and δ) and morphology (including rods, wires, tubes, and urchin-like microstructures) have been synthesized ⁵. However, there still exist many challenges in the applications 31 of MnO₂-based electrodes, such as the less reversible capacity and faster capacity fade 32 ⁶. Usually, these problems can be attributed to its poor electronic conductivity, low ion 33 34 diffusion constant, large volume expansion and others. Extensive researches have been done to solve these problems. Among these studies, the MnO₂/C nanocomposite 35 36 is considered to be one of the most realistic approaches, such as MnO_2/C core-shell nanorodes ⁷, coaxial MnO₂/C nanotubes ⁸ and MnO₂/C hybrids ⁹. Although many 37 38 composites have been designed and studied, most of these studies focused on the method, in which the surface of MnO_2 is covered with electrically conductive carbon 39 layers. These materials still suffer from electrochemical stability problems 40

In this paper, a facile hydrothermal method has been designed to synthesize flower texture MnO₂@CMB with the MnO₂ shell and the CMB core. As KMnO₄ is reduced by carbon in CMB, the resultant MnO₂ is *in situ* nucleating on the surface of

- CMB, and then the MnO₂@CMB nanocomposite is formed via a hydrothermal
 process. The obtained MnO₂@CMB is explored as the anode for LIBs, and the
 electrochemical performances are investigated in details.
- 47 **2. Experimental**
- 48 2.1. Sample synthesis

All the reagents were of analytical grade and used without further purification. The
CMB was prepared by a hydrothermal method reported in our previous literature and
activated in 16 M HNO₃ solution at 70 °C for 24 h¹⁰. For comparison, pure MnO₂
nanoparticles were also prepared as in Ref. ¹¹.

A simple process of the synthesis of flower texture MnO₂@CMB nanocomposite 53 54 is described as follows: designed amount CMB and KMnO₄ were mixed in 75 ml deionized water, followed by stirring for 1 h. Then the mixture were transferred into a 55 56 Teflon-lined autoclave (100 ml), sealed and put in an electric oven at 160 °C for 10 h. After the mixtures were naturally cooled to room temperature, the precipitation was 57 58 filtered and washed with distilled water. Finally, the MnO₂@CMB samples were dried at 80 °C for 10 h in the air and dried further in order to remove crystal water. The 59 60 analysis for composition of MnO_2 (2) CMB nanocomposite was carried out by means of atomic absorption spectroscopy (AAS) and TGA measurement. 61

62 *2.2. Physical and electrochemical measurements*

Morphology of sample was characterized by scanning electron microscopy (SEM)
(Hitachi S-3500N). The morphology and structure of the MnO₂@CMB were further
investigated by transmission electron microscopy (TEM) (JEM-2100F, JEOL). The

3

66 crystallographic analyses of samples were carried out by X-ray diffraction (XRD) 67 (D/max-2550 Rigaku, Japan). The contents of CMB in the nanocomposite were determined by thermogravimetric analysis (TGA) (WRT-3P, Shanghai China). 68 69 The electrodes were prepared by the mixed slurry containing active materials (75 wt%), acetylene black (15 wt%) and polyvinylidene fluoride (PVDF 10 wt%) in 70 71 N-methyl-2-pyrrolidone (NMP). The slurry was pasted on the Cu foil and dried for 12 h at 110 °C in the vacuum. The electrolyte was consisted of 1 M LiPF₆ in ethylene 72 73 carbonate (EC) and dimethyl carbonate (DMC) (1:1, V/V). Half cells using pure Li 74 foil as both counter and reference electrodes were assembled by a 2025 coin-type cell. 75 Charge/discharge measurement was carried out in Neware battery test system 76 BTS-XWJ-6.44S-00052 (Newell, China). The electrochemical impedance 77 spectroscopys (EIS) of the cells were measured on a VersaSTAT3 electrochemical 78 workstation (Princeton, America) in the frequency range of 10 kHz to 10 mHz with an 79 AC voltage of 5 mV.

3. Results and discussion

Fig. 1(a-d) exhibits the morphology of the CMB, pure MnO₂ and MnO₂@CMB nanocomposite. It has been known from chemical analysis that the MnO₂@CMB nanocomposite is composed of 9 wt.% CMB and 91 wt.% MnO₂. As shown in Fig. 1a and b, CMB shows a good sphericity and a smooth surface, and the pure MnO₂ exhibit a flower texture. The microstructure of MnO₂@CMB nanocomposite is showed in Fig. 1c. The flower texture MnO₂ layer with highly porous structure is uniformly deposited on the surface of CMB. By comparing Fig. 1b with c, it is found

88	that the MnO ₂ @CMB nanocomposite is very similar to pure MnO ₂ in morphology. A
89	fragment of bulky MnO ₂ @CMB nanocomposite was selected and displayed in Fig. 1d
90	to observe the internal structure of MnO2@CMB nanocomposite clearly and
91	demonstrate its formation mechanism. The bulky CMB fragment is surrounded by the
92	nanosheet MnO_2 with the drawn white curve as a rough separation. Within the white
93	curve it is the bulky CMB fragment, and the appearance is the nanosheet MnO ₂ . It is
94	evident that as the MnO_2 is growing on the CMB, the CMB surface is slightly
95	corroded. The detailed morphology of MnO2@CMB nanocomposite can be further
96	confirmed by TEM (Fig. 1e) and HRTEM (Fig. 1f). It can be observed from TEM
97	image in Fig. 1e that CMB is covered uniformly by a thick layer of MnO ₂ nanosheet
98	with a good morphology. Besides, the size of the CMB in the nanocomposite is
99	slightly less than the one of the original CMB. This can probably be attributed to the
100	corrosion of CMB in the process of formation of MnO ₂ nanosheet. The interplanar
101	spacing of MnO_2 nanoflake measured from the HRTEM image is 0.68 nm on average,
102	which is in good agreement with approximately 0.7 nm reported in the literature for
103	birnessite-type MnO_2 ¹² .

104

Fig. 1 SEM images of (a) the pristine CMB, (b) the pure MnO₂ nanosheet, (c) the flower
texture MnO₂@CMB, (d) the fragment of bulky MnO₂@CMB; (e) TEM image of the CMB
coated with MnO₂ nanosheet; (f) HRTEM image of the MnO₂ nanosheet grown on the surface of
CMB

109

The XRD patterns of the as-prepared CMB, pure MnO_2 and $MnO_2@CMB$ nanocomposite are showed in Fig. 2a. There are two broad diffraction peaks positioned at around 23° and 43° in the XRD pattern of CMB, which correspond to the diffraction bands (002) and (100/101) of graphite respectively ¹³. Besides, all the marked peaks of pure MnO_2 can be indexed to the monoclinic potassium birnessite (JCPDS 80-1098) that consists of 2D, edge-shared MnO_6 octahedral layers with K⁺ cations and water molecules in the interlayer space ¹⁴. Moreover, the XRD pattern of

123

flower texture $MnO_2@CMB$ nanocomposite has all the characteristic peaks of pure MnO₂ phase without any impurities. The contents of CMB in MnO₂@CMB nanocomposite were evaluated by TGA measurement, as shown in Fig. 2b. The 9% weight loss is ascribed to the oxidation of the CMB between 450-550 °C in air. Therefore, the content of CMB in flower texture MnO₂@CMB nanocomposite is about 9%.

Fig. 2 (a) XRD patterns of CMB, pure MnO₂ and MnO₂@CMB; (b) TGA curve of the
 MnO₂@CMB.

As for the growth mechanism of the MnO₂@CMB, it is considered that the CMB 126 is first dispersed in the KMnO₄ solution, then the mixed solution undergoes a 127 hydrothermal process, Mn^{7+} is reduced into Mn^{4+} , finally the flower texture MnO_2 is 128 129 formed on the surface of CMB. At the beginning, the nanocrystalline MnO₂ is formed on the surface of the CMB through the redox process given by Eq $(1)^{15}$, which 130 promotes the decomposition of $KMnO_4$ given by Eq (2) ¹⁶. However, the CMB is 131 eroded obviously as detected from Fig. 1d, which indicates that the redox process still 132 133 exists in the consequent reaction along with the decomposition of KMnO₄. With the 134 MnO_2 growing on the surface of CMB, the contacted surface of CMB with KMnO₄ solution decreases. Then, the formation of MnO₂ through decomposition of KMnO₄ 135

can be dominant in the following hydrothermal process. Consequently, the flower
texture MnO₂@CMB nanocomposite is easily formed via this simple hydrothermal
method.

143 The electrochemical performances of the as-prepared flower texture $MnO_2(a)CMB$ 144 nanocomposite and flower texture pure MnO_2 as anode material were investigated by galvanostatic charge/discharge measurement. Fig. 3(a, b) show that the representative 145 voltage profiles of the 1st, 2th, 10th and 50th cycles for the MnO2@CMB 146 nanocomposite and the pure MnO_2 electrodes, which are cycled between 0.01V and 3 147 V at a current density of 100 mA g⁻¹. The first discharge and charge capacity of 148 MnO₂@CMB nanocomposite are 1480 mAh g⁻¹ and 698 mAh g⁻¹, respectively, 149 whereas in the case of the pure MnO_2 anode the first discharge and charge capacity 150 are 1210 mAh g⁻¹ and 523 mAh g⁻¹, respectively. The large irreversible capacity can 151 152 be mainly attributed to the formation of a solid electrolyte interface film on the surface of the electrode materials 17 . Besides, it can be seen that the MnO₂@CMB 153 154 electrode exhibits a much smaller irreversible capacity than the pure MnO₂ electrode after the first cycle. Fig. 3c shows that the comparison of the cyclic performance of 155

156 the MnO₂@CMB electrode with that of the pure MnO₂ electrode, cycled between 0.01V and 3V at the current density of 100 mA g⁻¹ for 100 cycles. Moreover, for the 157 pure MnO_2 electrode, the reversible capacity continuously decays as the cyclic 158 number increases before 20 cycles, after 40 cycles the capacity fades fast, and its 159 capacity only remains 205 mAh g⁻¹ after 100 cycles. The pure CMB exhibits the 160 discharge capacity of about 100 mAh g⁻¹ after 100 cycles. However, the MnO₂@CMB 161 electrode exhibits a reversible capacity of around 620 mAh g⁻¹ until 80 cycles and 162 retains 525 mAh g⁻¹ after 100 cycles. 163

164 In order to discuss the effect of the composition on the performance of MnO₂@CMB nanocomposite, the rate performances of the MnO₂@CMB 165 nanocomposites with different CMB contents (MnO₂@CMB1 is about 9 wt.% CMB, 166 167 and MnO₂@CMB2 is about 15 wt.% CMB) and pure MnO₂ electrodes were evaluated 168 at different current densities, as shown in Fig. 3d. With the current density increasing, the discharge capacity remains 640-700, 530-550, 360-390, 280-290, 225-230 mAh 169 g⁻¹ at the current densities of 100, 200, 500, 1000, 1500 mA g⁻¹, respectively. When 170 the current is returned to 100 mA g⁻¹, the MnO₂@CMB electrode returns its initial 171 capacity, indicating that the excellent rate performance of MnO₂@CMB anode is 172 173 better than those of the pure MnO_2 . Moreover, with the increase of the CMB the rate performance of the nanocomposite will be improved, but the discharge capacity will 174 175 be slightly reduced.

176

Fig. 3 Typical discharge/charge voltage profiles of (a) MnO₂@CMB and (b) pure MnO₂ at a current density of 100 mA g⁻¹; (c) Comparative cycling performance of MnO₂@CMB pure MnO₂ and CMB at a current density of 100 mA g⁻¹; (d) Comparison of rate capability of MnO₂@CMB with different CMB contents (9 wt.%, 15wt.%) and pure MnO₂.

182 Electrochemical impedance spectroscopy (EIS) was carried out to measure the $MnO_2(a)CMB$ reaction resistance. The Nyquist plots of $MnO_2(a)CMB$ and pure MnO_2 183 184 are shown in Fig.4. The both Nyquist plots show the similar shape, they are consisted of a semicircle at the high frequency and an inclined line following at the low 185 frequency, which corresponds 186 to the charge-transfer resistance the at electrode/electrolyte interface and the lithium ion-diffusion process within electrodes. 187 Obviously, it can be found that the reaction resistance of MnO₂@CMB is much less 188 than that of pure MnO₂. 189

10

190 191

Fig. 4 Nyquist plots for MnO₂@CMB and pure MnO₂.

4. Conclusions

193 By using CMB as the carbon precursor, the flower texture MnO₂@CMB 194 nanocomposite with a CMB core and nanosheet MnO₂ shell has been synthesized. As 195 the anode material for LIBs, the MnO₂@CMB nanocomposite exhibits a high 196 reversible capacity, good cycle performance and excellent rate capability. Compared 197 to that of pure MnO₂ with similar morphology, higher lithium storage performance of 198 the MnO₂@CMB nanocomposite can be attributed to its novel hierarchical 199 architecture that can enhance ion and electron transport. Therefore, the MnO₂@CMB 200 nanocomposite could be a promising electrode material for LIBs and other 201 applications such as catalysis and supercapacitors.

202 Acknowledgements

This work is funded by the National Natural Science Foundation of China under project No. 51272221, Scientific and Technical Achievement Transformation Fund of Hunan Province under project No. 2012CK1006, Key Project of Strategic New Industry of Hunan Province under project No. 2013GK4018, and Science and 207 Technology plan Foundation of Hunan Province under project no. 2013FJ4062.

208 **References**

- 209 1 C.X. Zu, H. Li, Energy Environ. Sci. 2011, 4, 2614.
- 210 2 J. Xie, W. Song, G. Cao, T. Zhu, X. Zhao, S. Zhang, RSC Adv. 2014, 4, 7703.
- 211 3 L. Li, A.G.O. Raji, J.M. Tour, Adv. Mater. 2013, 25. 6298.
- 4 Y. Liu, X. Zhao, F. Li, D. Xia, Electrochim. Acta 2011, 56, 6448.
- ²¹³ 5 H. Chen, J. He, C. Zhang, H. He, J. Phys. Chem. C 2007, 111, 18033.
- 6 S. Lee, J. Ha, H. Cheng, J.W. Lee, T.S. Jang, Y.G. Jung, Y. Huang, J.A. Rogers, U.
- 215 Paik, Adv. Energy Mater. 2014, 4, 1.
- 216 7 B. Sun, Z. Chen, H.S. Kim, H. Ahn, G. Wang, J. Power Sources 2011, 196, 3346.
- 217 8 Y. Hou, Y. Cheng, T. Hobson, J Liu, Nano Lett. 2010, 10, 2727.
- 218 9 Y. Cao, Z. Wei, J. He, J. Zang, Q. Zhang, M. Zheng, Q. Dong, Energy Environ. Sci.
- 219 2012, 5, 9765.
- 220 10 C. Wu, X. Wang, B. Ju, X. Zhang, L. Jiang, H. Wu, Int. J. Hydrogen Energy 2012,
- **221 37**, 14365.
- 222 11 F. Cheng, Y. Su, J. Liang, Z. Tao, J. Chen, Chem. Mater. 2009, 22, 898.
- 12 H.T. Zhu, J. Luo, H.X. Yang, J.K. Liang, G.H. Rao, J.B. Li, Z.M, Du, J. Phys.
- 224 Chem. C 2008, 112, 17089.
- 225 13 H. Wu, X. Wang, X. Wang, X. Zhang, L. Jiang, B. Hu, Y. Wang, J. Solid State
- Electrochem. 2012, 16, 2941.
- 227 14 H. Xia, M.O. Lai, L. Lu, J. Mater. Chem. 2010, 20, 6896.
- 228 15 J.G. Wang, Y. Yang, Z.H. Huang, F. Kang, J. Power Sources 2013, 224, 86.

- 229 16 C.X. Guo, M. Wang, T. Chen, X.W. Lou, C.M. Li, Adv. Energy Mater. 2011, 1 736.
- 230 17 J. Zhang, T. Huang, Z. Liu, A. Yu, Electrochem. Commun. 2013, 29, 17.