This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Graphical abstract of
Non-thermal plasma treated gold catalyst for CO oxidation

Huiyuan XU, Jingjie LUO,* Wei CHU*

Plasma under oxygen atmosphere is available for promoting the microporosity, the redox property, and the catalytic performance of gold nanoparticles.
Non-thermal plasma treated gold catalyst for CO oxidation

Huiyuan XU,a,b Jingjie LUO,*b,c Wei CHU*b

Abstract The CoO$_x$ doped silica and its supported gold nanoparticles were synthesized by conventional thermal treatment or plasma treatment. The activity for CO oxidation displayed 100% CO conversion at only 338 K over the O$_2$ plasma-treated Au/CoO$_x$/SiO$_2$-PO. The analyzing results suggested that, different from the traditional calcined gold catalyst, the metal particles in the plasma-treated samples tended to be smaller and homogeneous and highly dispersed on the surface of support. The microstructure such as large surface contact and the mesoporosity were more appropriate for the reactions. In addition, the O$_2$ atmosphere plasma treated samples obtained large amount of oxygen supply center, which in turn facilitated the proceeding of low-temperature CO oxidation. Plasma technique under oxygen atmosphere, was proved as an efficient treatment technique for gold catalysts.

1. Introduction

Plasma is one of the four fundamental states of subjects except the liquid, gas, and solid. It is a kind of gas consisted with charged particles. The ionization can be accomplished by means of many methods such as exposing gases under electronic filed.¹, ² During the past several decades, plasmas were applied for the treatment of materials in physics, chemistry, and biology fields.³, ⁴ The non-thermal plasmas usually possess low temperature, non-thermodynamic equilibrium, and low pressure,⁵ which is capable to resist the structure and crystal form destruction resulted from the high temperature. In the catalysis field, the corresponding thermal effects and chemical reactions may help to enhance the active sites-support interaction and facilitate the particle dispersion.⁶-⁸ The related researches of plasma impacting the structure, the performance, and the morphologies of materials demonstrated that the plasma technique should act as an efficient treatment for pretreating or synthesizing novel and useful materials.⁹-¹¹ Supported gold nanoparticles for a long time have been considered as one of the most efficient catalysts for CO oxidation. The attention paid on new catalysts related to gold materials is continuously incremental. The investigations on gold nanoparticles supported on silica were commonly reported in literatures although such material general performed unsatisfied activity, focusing on the understanding of reaction mechanism or seeking solutions for enhancing catalytic activity. On the other hand, the investigations such as impacts of different supports or additional active elements,¹²-¹⁴ the special treatments and synthesis techniques also become the prevalent solutions for purchasing high efficiency gold catalysts with great low-temperature activity with minimum energy and material costs.¹⁵, ¹⁶ However, as far as we know, the intersection between gold catalysts and non-thermal glow discharge plasma technique is still in minority. How the plasma technique impacts the gold-concerning materials and the possible performance for reactions such as CO oxidation still needs detailed supplementation.

In this work, the influence of plasma treatment on the properties and performances of CoO$_x$/SiO$_2$ and its supported gold nanoparticles were synthesized. The low-temperature CO oxidation was applied as probe. Combining the results from O$_2$-TPD, N$_2$ adsorption-desorption, FT-IR, SEM, XRD, TEM, and XPS techniques, the impacts of plasma treatment on the morphology, structure, size distribution and reducibility of gold nanoparticles were discussed in detail.

2. Experimental

2.1 Materials

The silica (Qingdao Haiyang Chemical Co., Ltd) modified with CoO$_x$ (6 wt% Co/SiO$_2$ molar ratio) by isometric impregnation method. The obtained sample powder was divided into two portions. The first portion was calcined under air at 533 K for 4 h, denoted as CoO$_x$/SiO$_2$-C. The chosen of calcination temperature was based on the results of thermal gravimetric analysis. The other portion was posed in the quartz tube and further went through plasma treatments under O$_2$ atmosphere without further calcination, respectively. The obtained sample was labeled as CoO$_x$/SiO$_2$-PO. The HAuCl$_4$
was applied as gold precursor and supported on the CoOx/SiO2 material (before calcination) by deposition-precipitation method. The HAuCl4·4H2O (Sinopharm Chemical Reagent Co. Ltd; Au content 47.8%) was utilized as the gold precursor. The HAuCl4·4H2O aqueous solution and the precipitation agent-ammonia were slowly co-added into a three-necked bottle containing CoOx/SiO2 at room temperature, with the pH value controlled between 8 and 9. The sample was stirred for 4 h, then filtered and washed for several times. The resulting powder was dried at 333 K for 24 h. The corresponding material was also divided into two portions: the first portion was calcined in air at 473 K for 4 h; the other portion was treated by plasmas under O2 without further calcination, respectively, and named as Au/CoOx/SiO2-PO. We also made the Au/SiO2-C sample by the same DP method as reference. The theoretical value of gold loading was 1.5 wt%. The mass content of gold detected by ICP-AES in Au/CoOx/SiO2-C and Au/CoOx/SiO2-PO catalysts was 1.48% and 1.50%, respectively.

2.2 Plasma treatment

The thermal plasma treatments of samples were processed under the GP 062DL3 type capacitive coupled high-frequency plasma generator (provided by Chengdu Institute of Organic Chemistry of Chinese Academy of Science). The air pressure was fixed at 40 Pa, and the radio frequency was 1312 MHz with 100 V voltage. The anode current and grid current were 90 mA, and 30 mA, respectively. The catalyst precursors were treated under O2 for 45 min. The above description was also added in the experimental part.

2.3 Characterization

The steps of O2-temperature programmed desorption (O2-TPD) were similar with our previous work. 200 mg of fresh catalyst was loaded, and adsorbed in O2 at 300 °C for 60 min. After the powder was cooled to 50 °C, it was blown by N2 for 120 min. The catalyst was then heated to 750 °C at a linear heating rate of 10 °C/min in the N2 flow. The effluent gas was analyzed with a mass spectrometer. The BET surface area and pore volume were measured on a NOVA1000e instrument of Quantachrome Company. To obtain surface textural details of the support, the morphology and structure of the catalysts were studied using a scanning electron microscope (SEM, JEOL/EO, JSM-5900). TEM measurement was performed on the JEOL-JEM-200CX transmission electron microscopy. The Fourier-transform infrared (FTIR) spectra were measured in a TENSOR27 spectrophotometer from Bruker Corporation. Operating parameters were: intervals of 4000-1000 cm⁻¹, a 4 cm⁻¹ resolution with 32 scans. The measurements were carried out by placing films of the samples mixing with KBr. The measured amount of tested sample was fixed at 10 mg each time. The phase purity of the sample was confirmed by X-ray diffraction (XRD) measurement. It was performed with an MPD type X’tal powder diffractometer equipped with Cu-Kα (λ= 1.54056 Å) radiation, which was operated at 40 kV and 30 mA for 20 angles ranging from 10° to 80°. The particle sizes were calculated by Scherrer equation. The XPS spectra were performed on the XSAM 800 spectrometer with an Al anode using Kα (1486.6 eV) radiation. The binding energies in XPS spectra were referenced with respect to the C 1s binding energy of adventitious carbon in the catalysts at 285.1 eV.

2.4 CO oxidation

The catalytic performance was evaluated with a fixed-bed flow reactor. 100 mg sample powder was used as catalyst. The reactant consisting of 1% CO and 21% O2 and 78% Ar was fed at a rate of 30 mL/min (18,000 mL h⁻¹ g⁻¹ cat). The composition of the effluent gas was detected with an online SC-200 gas chromatograph equipped with a TDX-01 column. The CO conversion was calculated from the change of CO concentration in the inlet and outlet gases.

3 Results and discussion

3.1 Catalytic activity and stability for CO oxidation

The low-temperature CO oxidation performances over different gold catalysts are displayed in Figure 1. It can be seen that the CoOx modified silica possesses the initial activity for CO oxidation. The CoOx/SiO2-C under conventional calcination shows poor catalytic activity. The light-off
temperature (temperature corresponding to 10% CO conversion) under current reaction condition over CoOx/SiO2-C is only 405 K, and 100% CO conversion is achieved at 478 K. Whilst after plasma treatment under O2 atmosphere, the activity of CoOx/SiO2-PO for CO oxidation are obviously enhanced, which is lighted off even under room temperature. The temperature related to complete CO oxidation over CoOx/SiO2-PO are only 410 K.

The CO conversion at room temperature over Au/CoOx/SiO2-C increases to 24%, and further reaches 100% at 410 K. For the sample after plasma treatment, the higher activities for CO oxidation are achieved over Au/CoOx/SiO2-PO sample. The CO conversion over the Au/CoOx/SiO2-PO arrives 40% and 100% at room temperature and 328 K respectively, exposing the great superiority of plasma treatment.

The long-term performance of Au/CoOx/SiO2-PO sample for CO oxidation is shown in Figure 2. During the tested 36 h, the CO conversion keeps at 100% after the stable of the catalyst, showing the steady catalytic activity of the O2 plasma treated sample.

3.2 Redox properties of catalysts

The activity of catalysts during oxidation reactions largely depends on the oxygen supply ability. The oxygen supply ability lies on the number of oxygen supply center and oxygen active sites. The reversible cycle of releasing and transferring the active oxygen species on the catalyst surface is responsible for the continuous proceeding of reaction. In general, the temperature of oxygen desorption peak reflects the activity of oxygen supply center, and the area of desorption peak is related to the number of oxygen supply center.

It has been reported that the balance of O2 (ads) ↔ O2- (ads) ↔ O- (surf) ↔ O22- (surf) ↔ O22- (lattice) existed on the surface of catalysts, where the adsorbed oxygen species, O2 (ads) and O2 (ads), were easy to be desorbed under low temperature. However, the O2- (lattice) species could only be desorbed under high temperature. The O2-TPD profiles of four different materials are shown in Figure 3. All the tested samples present two desorption peaks, one at lower temperature (marked as α peak), and another at higher temperature (marked as β peak). The α peak locates around 300-470 K with the peak area generally unchanged (Table 1), indicating the analogous desorption and supplementation ability of surface adsorbed oxygen species (O2, O2-). The high temperature desorption peak on the contrary, is totally different over the materials before and after gold loading. The related β peaks appear at 885 K and 817 K over CoOx/SiO2-C and CoOx/SiO2-PO, respectively.

![O2-TPD patterns](image)

Figure 3. O2-TPD patterns of the typical catalysts: CoOx/SiO2-C(a), CoOx/SiO2-PO(b), Au/CoOx/SiO2-C(c), and Au/CoOx/SiO2-PO(d).

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Temperature (K)</th>
<th>Peak area (α peak)</th>
<th>Peak area (β peak)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoOx/SiO2-C</td>
<td>342</td>
<td>885</td>
<td>4891</td>
</tr>
<tr>
<td>CoOx/SiO2-PO</td>
<td>363</td>
<td>817</td>
<td>4649</td>
</tr>
<tr>
<td>Au/CoOx/SiO2-C</td>
<td>373</td>
<td>577</td>
<td>5343</td>
</tr>
<tr>
<td>Au/CoOx/SiO2-PO</td>
<td>376</td>
<td>585</td>
<td>4748</td>
</tr>
</tbody>
</table>

Whilst after gold loading, the corresponding desorption peaks of Au/CoOx/SiO2-C and Au/CoOx/SiO2-PO samples are greatly lowered to 577 K and 585 K, respectively. The peak area is also largely increased after gold loading, especially for the gold catalyst treated by plasma under O2 atmosphere, in which the peak area increases about 62.5% comparing to the conventional Au/CoOx/SiO2-C sample, and 165.1% comparing to the CoOx/SiO2-PO without gold nanoparticles. That is, the plasma-treated gold catalyst possesses higher amount of oxygen supply center, which give the chance for accelerating the oxygen transformation through solid-gas phases, facilitating the moving of active oxygen species among the lattices, and benefiting the catalytic activity for CO oxidation in turn.

![Nitrogen adsorption-desorption](image)

Figure 4. Nitrogen adsorption-desorption isotherms and pore size distribution of four different catalysts: CoOx/SiO2-C(a), CoOx/SiO2-PO(b), Au/CoOx/SiO2-C(c) and Au/CoOx/SiO2-PO(d).

In addition, it was reported that the highly active oxygen species such as O2-, O-, and O22- species could be generated when the oxygen went through plasma treatment. The generated oxygen species on the one hand could help to disperse the active sites, and on the other hand react with the toxicants to form gaseous production. Under this circumstance, the O2 atmosphere plasma treatment can also help to remove the poisonous compounds such as Cl- from the
surface of gold catalysts other than the N$_2$ atmosphere, hence protecting the gold nanoparticles from growing into large aggregations.

3.3 Morphologies of catalysts

The N$_2$ adsorption-desorption isotherms and pore size distribution of CoO$_x$/SiO$_2$ samples before and after O$_2$ plasma treatment are illustrated in Figure 4(a-b).

According to the Brunauer classification standard, both of the two supports display the typical Langmuir IV isotherm. In the low pressure region, the adsorption amount rises with the incremental relative pressure; then intensely increases with the further increase of pressure after P/P$_0$ reaching 0.6 due to the capillary condensation.20 Whilst desorption procedure is irreversible from the adsorption procedure. The rapid desorption process caused the formation of hysteresis loop along with the decrease of relative pressure, indicating the existence of mesopores. The specific surface areas of two samples are calculated from BET equation. The surface area of CoO$_x$/SiO$_2$-C (251.5 m2/g) is slightly lower than that of the CoO$_x$/SiO$_2$-PO (265.3 m2/g). The relative pressure corresponding to the shitting of hysteresis loop reflects the mesopores distribution. That is, N$_2$ adsorption-desorption isotherm: the material with narrower size mesopore distribution is going to display larger distance between upper and lower closing points of the hysteresis loop. Directly from the N$_2$ adsorption-desorption isotherms, the CoO$_x$/SiO$_2$-PO sample under O$_2$ plasma treatment shows more uniform size distribution with average pore size of about 10 nm, whereas the CoO$_x$/SiO$_2$-C sample displays a broad size distribution with peak maximum around 10 nm and 18.2 nm, respectively.

Despite the decrescent opening of the hysteresis loop, the gold loading does not vary the isotherm obviously as shown in Figure 4(c-d). The two supported gold samples also display typical Langmuir IV type isotherm, indicating that the related materials possess mesoporous structure. Unlike the H2 type of hysteresis loops over CoO$_x$/SiO$_2$ and Au/CoO$_x$/SiO$_2$-PO-related to the ink-bottle like pores, the hysteresis loop of Au/CoO$_x$/SiO$_2$-C is a classical H4 type- corresponding to the uniform and slit-shaped porous structure. However, the surface area of Au/CoO$_x$/SiO$_2$-PO gently decreases to 252.1 m2/g comparing with the CoO$_x$/SiO$_2$-PO (265.3 m2/g), suggesting that the O$_2$ plasma treatment barely changes the porous structure of different samples. On the contrary, the surface area of Au/CoO$_x$/SiO$_2$-C is reduced to 206.2 m2/g after gold loading, illustrating the structure of material may transform after gold loading. Besides, a great portion of smaller pores appeared in the Au/CoO$_x$/SiO$_2$-C with gold loading, which should be caused by the blocking of gold nanoparticles into the mesoporous structure.

The SEM images of four typical samples are shown in Figure 5. The contrast in SEM images (Figure 5a-b) points out the location of CoO$_x$ particles (White spots) and silica (the gray basement). It can be seen obviously that the surface of silica in CoO$_x$/SiO$_2$-C is covered with heterogeneous CoO$_x$ particles. On the contrary, the more uniform particles can be found on the surface CoO$_x$/SiO$_2$-PO with plasma treatment under O$_2$ atmosphere. After the gold loading and calcination, the morphology of Au/CoO$_x$/SiO$_2$-C seems different. The gold species may spread on the surface of support, making the surface to be fluffy. The gold loading procedure may also induce the blocking of mesopores in this sample as revealed by Figure 4a and 4c due to the partial covering of gold particles. However, the Au/CoO$_x$/SiO$_2$-PO displays a totally different morphology with flocculent morphology and developed porous structure.

The transmission microscope (TEM) images of supported gold nanoparticles are illustrated in Figure 6. The gold nanoparticles are visualized as black spots. The gold particles of Au/CoO$_x$/SiO$_2$-C are heterogeneous and around 3-5 nm. The O$_2$ plasma-treated gold nanoparticles in Au/CoO$_x$/SiO$_2$-PO sample are highly distributed on the surface of support with sizes only around 1-3 nm. As it is mentioned previously, only gold nanoparticles small enough to lose the macroscopic properties could possess efficient activity for CO oxidation.21,22 The sizes of supported gold nanoparticles under different treatments all step into nano-scale > 5 nm, which are able to perform reasonable low-temperature CO oxidation activity.

The above results of morphologies of samples under different treatments evidence the efficiency of plasma for modifying the available contact surface, promoting the porosity development,
peaks of silica species and Co₃O₄ spinel of both Au/CoOₓ/SiO₂-C and Au/CoOₓ/SiO₂-PO are weakened. On the other hand, the samples with gold loading display very weak water absorption peak (1640 cm⁻¹), suggesting the better water-resistance ability.

The XRD spectra of different samples are profiled in Figure 8. The broad diffraction peak appears in all the samples at 22° is ascribed to the amorphous SiO₂ phase (JCPDS #27-0605). The diffraction peaks locating around 32°, 36°, 44°, 59°, and 66° in CoOₓ/SiO₂-C should be corresponding to the surface Co₃O₄ species (JCPDS #74-2120). The intensive and sharp diffraction peaks witnesses the existence of large crystallized Co₃O₄ particles. In the plasmas-treated CoOₓ/SiO₂-PO sample, the Co₃O₄ diffraction peaks are largely weakened and broadened, resulting from the high dispersion of CoOₓ species in these samples.³ The dispersed Co₃O₄ particles possess the opportunity to expose more active sites, and able to behave better performance for reactions such as CO oxidation.

The XRD profiles over gold catalysts under different treatments are shown in the right image of Figure 8. It can be seen again that the gold loading do not lead to serious change of the structure. Both the diffraction peaks of amorphous SiO₂ around 22° and metallic gold around 38° and 45° Au (JCPDS #65-8601) can be observed from the XRD profiles. None of the samples with gold loading present the peaks of Co₃O₄ species, which may be caused by the redispersal of CoOₓ species after gold loading.

The Co 2p XPS spectra over several typical samples are displayed in Figure 9. The peaks with binding energy around 781.0 eV and 796.0 eV can be assigned to Co 2p³/₂ and Co 2p₁/₂ peaks, with the satellite peak around 786.0 eV. Comparing to the traditional calcined CoOₓ/SiO₂-C, the binding energy of
CoO$_x$/SiO$_2$-PO slightly shifts to higher region.$^{24, 25}$ Although the Co$^{2+}$ and Co$^{3+}$ possesses the corresponding binding energy around 780.9-781.4 eV and 779.7-779.9 eV,24 it is still difficult to distinguish the main peak from CoO and Co$_3$O$_4$ phase due to very narrow distance. Combining with the results from XRD, the Co 2p$_{3/2}$ peak with a binding energy around 780.5 eV is inferred as a combination of two overlapped peaks. The corresponding Co 2p XPS profiles of Au/CoO$_x$/SiO$_2$-C and Au/CoO$_x$/SiO$_2$-PO samples are also shown in Figure 9. The binding energy of Co 2p$_{3/2}$ around 780.7 eV, suggesting the existence of Co$_3$O$_4$ spinel in both the catalysts with gold loading.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Surface composition %</th>
<th>Intensity ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Co Si O</td>
<td>Co/Si (10$^{-2}$)</td>
</tr>
<tr>
<td>CoO$_x$/SiO$_2$-C</td>
<td>1.88 25.92 72.20</td>
<td>0.73</td>
</tr>
<tr>
<td>CoO$_x$/SiO$_2$-PO</td>
<td>4.11 24.82 71.07</td>
<td>1.66</td>
</tr>
</tbody>
</table>

Besides, the CoO$_x$/SiO$_2$-PO shows larger area peak of Co 2p than CoO$_x$/SiO$_2$-C, indicating the higher amounts of CoO$_x$ species on the surface after plasma treatment (Table 2). This result, from another point of view, evidences the fact that plasma treatment facilitates the formation of higher amount of smaller CoO$_x$ particles. After gold loading, the CoO$_x$ spinel can be detected in both the Au/CoO$_x$/SiO$_2$-C and Au/CoO$_x$/SiO$_2$-PO samples from the XPS spectra (not shown).

The Au 4f spectra of the above two gold catalysts are presented in Figure 10. It was reported by Chen et al.26 that the binding energy of 4f$_{7/2}$ and Au 4f$_{5/2}$ of metallic Au0 should be appeared around 84.0 eV and 87.7 eV, respectively. While the peaks around 86.0 eV and 89.6 eV are due to the oxidized gold species (Au$^{3+}$). Directly from Figure 10, it can be seen that Au0 acts as the main gold species in both the catalysts. There is no clear observation of oxidized gold species in the samples, suggesting that there is no such kind of species or only trace amount exists (due to the fact that very few amount of gold species may be reduced during the XPS measurement). Generally speaking, the shifting of binding energy in the supported gold nanoparticles can be related to the sizes of gold nanoparticles. Lim et al.26 applied STM (scanning tunneling microscopy) and XPS techniques and found out that the binding energy of Au 4f shifted 0.8 eV to higher value along with the decreased particle size. Comparing with Au/CoO$_x$/SiO$_2$-C, the Au 4f$_{7/2}$ binding energy of Au/CoO$_x$/SiO$_2$-PO raises up about 0.5 eV, which can be viewed as an indication of smaller particle sizes in the plasma-treated Au/CoO$_x$/SiO$_2$-PO catalysts. This conclusion is in accordance with the results from TEM and XRD.

Conclusions

In this work, the CoO$_x$ doped silica was used as carrier for gold nanoparticles. The impact of plasma treatment under O$_2$ atmosphere over both the carrier and supported gold nanoparticles were discussed in detail. The O$_2$ plasma-treated sample displayed superior activity and stability for CO oxidation. By analysing the microstructures, morphologies, and the chemical compositions of typical samples, the enhancement of plasma treatment and how it works were exposed in detail. The following conclusions can be obtained.

- The variation of morphologies of plasma-treated samples evidenced the efficiency of plasma treatment on modifying the available contact surface, promoting the porosity development, preventing the pores from blocked.
- Only metallic Au0 species exist in the supported gold catalysts. The gold nanoparticles in the plasma-treated samples are smaller and homogeneous, which are even highly dispersed on the surface of support.
- The O$_2$ plasma treatment is helpful for enhancing the redox properties of materials, which modified the synergy between gold and cobalt particles, and in turn improve the redox properties, and facilitate the supply-supplementary circle of active oxygen species during reaction.

Acknowledgements

This work was supported by the Natural Science Foundation of China (20776089) and New Century Excellent Talent Project of China (NCET-05-0783).

Notes and references

Table 2 Surface analysis of two typical CoO$_x$/SiO$_2$ samples from XPS results.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Surface composition %</th>
<th>Intensity ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Co Si O</td>
<td>Co/Si (10$^{-2}$)</td>
</tr>
<tr>
<td>CoO$_x$/SiO$_2$-C</td>
<td>1.88 25.92 72.20</td>
<td>0.73</td>
</tr>
<tr>
<td>CoO$_x$/SiO$_2$-PO</td>
<td>4.11 24.82 71.07</td>
<td>1.66</td>
</tr>
</tbody>
</table>