RSC Advances

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

COMMUINCATION

Unexpected TFA-catalyzed tandem reaction of benzo[*d*]oxazoles with 2oxo-2-arylacetic acids: synthesis of 3-aryl-2*H*-benzo[*b*][1,4]oxazin-2-ones and cephalandole A

Shaoxi Yan,^{*a*} Leping Ye,^{*b*} Miaochang Liu,^{*a*} Jiuxi Chen,^{*a*} Jinchang Ding,^{*a*} Wenxia Gao,^{*a*} Xiaobo Huang^{*a*} and Huayue Wu^{*a*}

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

A convenient and efficient method for the TFA-catalyzed synthesis of 3-aryl-2*H*-benzo[*b*][1,4]oxazin-2-ones via a 10 tandem reaction of benzo[*d*]oxazoles with 2-oxo-2-arylacetic acids was reported for the first time. The efficiency of this transformation was demonstrated by compatibility with a wide range of functional groups. The synthetic utility of this

- method was confirmed by the synthesis of the natural product to cephalandole A. Moreover, a plausible mechanism for the formation of 3-aryl-2*H*-benzo[*b*][1,4]oxazin-2-ones involving ring-opening and cyclization steps is proposed. The present synthetic route to 3-aryl-2*H*-benzo[*b*][1,4]oxazin-2-ones could be readily scaled up to gram quantity without difficulty.
- ²⁰ 1,4-Benzoxazines,¹ as an important class of heterocycles, have become increasingly important because they have been associated with a wide range of pharmacological and biological activities.² Among them, 2*H*-benzo[*b*][1,4]oxazin-2-one scaffolds have been studied intensively in the past few years because they are
- ²⁵ synthetic building blocks,³ present in a wide variety of bioactive molecules, as well as photoactive molecules⁴ which possess fluorescent,⁵ photophysical and photochemical properties.⁶ In 2006, the 2*H*-benzo[*b*][1,4]oxazin-2-one-based natural product cephalandole A was originally isolated from the Taiwanese ³⁰ orchid *Cephalanceropsis gracilis* (Orchidaceae),⁷ which had
- previously been misassigned, and later corrected by Bergman⁸ and Gross⁹ (Fig. 1).

Fig.1 The revised structure of cephalandole A.

³⁵ The importance of 2*H*-benzo[*b*][1,4]oxazin-2-ones has resulted in the development of different synthetic strategies for their preparation. In general, 2*H*-benzo[*b*][1,4]oxazin-2-ones are synthesized by the treatment of *o*-aminophenols with α ketoesters.¹⁰ Nicolaides and co-workers¹¹ reported 3-aryl-2*H*-⁴⁰ benzo[*b*][1,4]oxazin-2-ones could be obtained by the condensation of *O*-methyl-*o*-quinonemonoximes with arylacetates. In 2006, Yavari and co-workers¹² reported that vinylphosphonium salt mediated reaction between *o*aminophenols and alkyl propiolates leading to the synthesis of 3-⁴⁵ alkyl-2*H*-benzo[*b*][1,4]oxazin-2-ones. In 2008, Kikelj and coworkers¹³ developed the synthesis of 4-benzyl- and 4-alkyl-3,4dihydro-1,4-benzoxazin-2-one derivatives from ethyl 2-(2hydroxyphenylamino)acetate and aldehydes. Recently, Ballini and co-workers¹⁴ reported the preparation of 1,4-benzoxazin-2-⁵⁰ one derivatives via a domino reaction of *o*-aminophenols with ethyl β-nitroacrylates. As part of the continuing efforts in our laboratory towards the development of new methods for the synthesis of nitrogen-containing heterocycles,¹⁵ we herein reported an unexpected TFA-catalyzed tandem reaction of ⁵⁵ benzo[*d*]oxazoles with 2-oxo-2-arylacetic acids to access 2*H*benzo[*b*][1,4]oxazin-2-ones under mild conditions (Scheme 1).

Scheme 1 Synthesis of 2H-benzo[b][1,4]oxazin-2-ones.

Our preliminary studies focused on the model reaction between ⁶⁰ 2-benzo[*d*]oxazole (**1a**) and 2-oxo-2-phenylacetic acid (**2a**) to obtain 2-phenylbenzo[*d*]oxazole (**4a**) via cascade reaction of decarboxylation, decarbonylation and coupling reaction (Scheme 2). Through the screening process, little-to-no target product **4a** was detected using silver salts and palladium salts as catalysts ⁶⁵ with a variety of parameters. To our surprise, a trace amount of unexpected 3-phenyl-2*H*-benzo[*b*][1,4]oxazin-2-one (**3a**) was observed by gas chromatography/mass spectrometry (electron ionization) [GC/MS (EI)] analysis using trifluoroacetic acid (TFA) as the Brønsted acid in toluene (Table 1, entry 1). We were

This journal is © The Royal Society of Chemistry [year]

delighted to find that the yield of **3a** could be improved to 45% under an air atmosphere after solvent was changed to acetonitrile (Table 1, entry 2). This finding inspired us to examine optimal reaction conditions for the synthesis of **3a** in order to obtain more s satisfactory results.

Scheme 2 Reaction of 2-benzo[d]oxazole with 2-oxo-2-phenylacetic acid.

- Considering solvents always played important roles in organic reactions, we first examined the solvent effect and found that isopropanol was superior to DMSO, DMF, 1,2-dichloroethane, dioxane, CH₃CN, toluene, THF, and EtOH (Table 1, entries 1-9). We also studied influence of the amount of TFA on the reaction yields. The results showed that 0.2 equivalents of TFA was sufficient, and excessive amount of catalyst did not increase the yield (Table 1, entries 9-13). Then various Brønsted acids were
- screened to examine their effect on the reaction. Replacement of TFA with other acids, including AcOH, PhCO₂H, *p*-NO₂PhCO₂H, CF₃SO₃H, *p*-MePhSO₃H, and *p*-NO₂PhSO₃H, resulted in lower yields (Table 1, entries 14-19). The yield was decreased to some
- ²⁰ extent when the reaction was carried out at the lowered or elevated temperature (Table 1, entries 20-21). Therefore, the optimal reaction condition was to use 0.2 equiv of TFA in isopropanol at 70 °C under air. As a result, the model reaction was carried out under optimized conditions with 0.2 equiv of ²⁵ TFA in isopropanol at 70 °C under air, which led to **3a** in 94%

 Table 1 Screening for optimal reaction conditions^a

yield (Table 1, entry 12).

$($ N $+$ Ph $COOH$ $\xrightarrow{catalyst}$ $($ N Ph						
	3a					
Entry	Catalyst	Equiv (x)	Solvent	Yield (%) ^b		
1	TFA	1.0	toluene	trace		
2	TFA	1.0	CH ₃ CN	45		
3	TFA	1.0	DMSO	11		
4	TFA	1.0	DMF	trace		
5	TFA	1.0	dichloroethane	14		
6	TFA	1.0	dioxane	88		
7	TFA	1.0	THF	82		
8	TFA	1.0	EtOH	84		
9	TFA	1.0	ⁱ PrOH	91		
10	TFA	0.5	ⁱ PrOH	93		
11	TFA	0.3	ⁱ PrOH	94		
12	TFA	0.2	ⁱ PrOH	94		
13	TFA	0.1	ⁱ PrOH	81		
14	AcOH	0.2	ⁱ PrOH	59		
15	PhCO ₂ H	0.2	ⁱ PrOH	66		
16	p-NO ₂ PhCO ₂ H	0.2	ⁱ PrOH	45		
17	CF ₃ SO ₃ H	0.2	ⁱ PrOH	39		
18	p-MePhSO ₃ H	0.2	ⁱ PrOH	54		
19	p-NO ₂ PhSO ₃ H	0.2	ⁱ PrOH	68		
20	TFA	0.2	ⁱ PrOH	82 ^c		
21	TFA	0.2	ⁱ PrOH	89 ^d		
^{<i>a</i>} Reaction conditions: 1a (0.2 mmol), 2a (0.3 mmol), TFA (x mmol), ^{<i>i</i>} PrOH (2 mL), air, 70 °C, 18 h. ^{<i>b</i>} Isolated yield. ^{<i>c</i>} At 60 °C. ^{<i>d</i>} At 80 °C.						

|--|

	D → + Ar COOH	TFA (20 mol%) [/] PrOH, 70 °C, 18 h	
1a	2		3
Entry	Ar (2)	Product (3)	Yield (%) ^b
1	Ph (2a)	N Ph 3a	94
2	<i>p</i> -MeC ₆ H ₄ (2b)	N 3b	83
3	p-OMeC ₆ H ₄ (2c)	N 3c	45
4	<i>p</i> -FC ₆ H ₄ (2d)	N 3d	93
5	<i>p</i> -ClC ₆ H ₄ (2e)	3e CI	95
6	p-BrC ₆ H ₄ (2f)	N Br	91
7	<i>p</i> -IC ₆ H ₄ (2g)	Solution of the second	89
8	<i>p</i> -CNC ₆ H ₄ (2h)	Sh CN	90
9	<i>p</i> -NO ₂ C ₆ H ₄ (2i)		85
10	2-naphthyl (2j)		88
11	2-furyl (2k)		32

^{*a*} Reaction conditions: 1 (0.2 mmol), 2a (0.3 mmol), TFA (0.04 mmol), ^{*i*}PrOH (2 mL), air, 70 $^{\circ}$ C, 18 h. ^{*b*} Isolated yield.

With the optimized reaction conditions in hand, we next explored the scope and generality of the reaction using various 2-benzo[*d*]oxazoles with 2-oxo-2-arylacetic acids (Table 2). First, the reaction between benzo[*d*]oxazole (1a) and various 2-oxo-2-arylacetic acids (2a-2k) was investigated under the standard
reaction conditions. The electronic properties of the substituents on the phenyl ring of the 2-oxo-2-arylacetic acids had an obvious impact on the yield of the reaction. The 2-oxo-2-arylacetic acids bearing an electron-withdrawing substituent (e.g., -F, -Cl, -Br, -I, -CN, and -NO₂) produced higher yields of products than 40 those analogues bearing an electron-donating substituent (e.g., -Me, and -OMe) (Table 2, entries 2-9). Substrate 2-(naphthalen-

2 | Journal Name, [year], [vol], 00-00

This journal is © The Royal Society of Chemistry [year]

2-yl)-2-oxoacetic acid (2j) reacted with 1a to give the desired product 3j in 88% yield (Table 2, entry 10), but a lower yield was observed when substrate 2-(furan-2-yl)-2-oxoacetic acid (2k) bearing a heteroaryl group was used as a substrate (Table 2, entry s 11).

Table 3 Reaction of different benzo[d]oxazoles with 2-oxo-2-phenylacetic acid^a

^a Reaction conditions: **1** (0.2 mmol), **2a** (0.3 mmol), TFA (0.04 mmol), ⁱPrOH (2 mL), air, 70 °C, 18 h. Isolated yield was given in parenthesis.

We next explored the effect of the reaction of 2-oxo-2phenylacetic acids (2a) with various benzo[d]oxazoles (1b-1j) ¹⁰ under the standard reaction conditions, and the results are summarized in Table 3. As expected, the groups on the phenyl ring of benzo[d]oxazoles, such as methyl, methoxy, *tert*-butyl, chloro, nitro, ester, and trifluoromethyl, were quite compatible under the optimized reaction conditions. The electronic properties

- ¹⁵ of the groups on the phenyl ring moiety of benzo[*d*]oxazoles had some effects on the reaction. Generally, benzo[*d*]oxazoles possessing either electron-donating or electron-withdrawing groups on the phenyl ring provided the corresponding 3-aryl-2*H*benzo[*b*][1,4]oxazin-2-ones in good yields. However, substrate
- ²⁰ containing a strong electron-withdrawing substituent (e.g., -NO₂) on the benzene ring, such as 5-nitrobenzo[*d*]oxazole (1f), achieved the corresponding desired products 6-nitro-3-phenyl-2*H*-benzo[*b*][1,4]oxazin-2-one (3p) in moderate yield (59%, Table 3, run 5). It would be specially mentioned that 5-25 arylbenzo[*d*]oxazoles (1h-1j) are also good substrates for this transformation, and the corresponding desired product 3r-3t were

isolated in 87%, 93%, 91% yield, respectively (Table 3, runs 7-9). Treatment of 2-oxo-2-alkylacetic acid such as 2-oxo-2methylacetic acid (**2l**) with **1a** under the optimized conditions ³⁰ afforded the desired product **3u** in 36% yield (Scheme 3).

Scheme 3. Reaction of benzo[d]oxazole with 2-oxo-2-methylacetic acid.

To demonstrate the synthetic utility of this method, it was applied to the synthesis of the natural product cephalandole A (Scheme 4). TFA-catalyzed tandem reaction of benzo[d]oxazoles (1a) with 2-(1*H*-indol-3-yl)-2-oxoacetic acid (2m) afforded the desired natural product cephalandole A in 86% yield through single-step operation under the standard reaction conditions.

⁴⁰ Scheme 4. Applications in the synthesis of the natural product.

To elucidate the mechanism, some control experiments were carried out under the standard reaction conditions as shown in Scheme 5. If only benzo[*d*]oxazole (1a) was applied under the standard reaction conditions, *o*-aminophenol (4) was isolated in ⁴⁵ 67% yield (Scheme 5a). However, no reaction happened and almost 90% of reactant 2a was recovered when only 2-oxo-2-phenylacetic acid (2a) was applied under the standard reaction conditions (Scheme 5b). Under the standard reaction conditions, when *o*-aminophenol reacted with 2a, afforded the desired ⁵⁰ product 3a in 89% yield (Scheme 5c), suggesting that *o*-aminophenol is a key intermediate. This result revealed that a ring-opening pathway was taken in the reaction.

Scheme 5. Control experiments.

⁵⁵ On the basis of the above experimental results, we proposed a possible reaction pathway for the formation of 3-aryl-2*H*-benzo[*b*][1,4]oxazin-2-ones. The first step may involve the ring-opening of benzo[*d*]oxazoles leading to *o*-aminophenol. Then cyclization reaction of *o*-aminophenol with 2-oxo-2-arylacetic ⁶⁰ acid in the presence of TFA delivers the corresponding 3-aryl-2*H*-benzo[*b*][1,4]oxazin-2-ones as the products.

Finally, it is noteworthy that the present synthetic route to 3aryl-2*H*-benzo[*b*][1,4]oxazin-2-ones could be readily scaled up to gram quantity without diffculty. For instance, the reaction at the 65 20 mmol scale afforded the corresponding product 3-phenyl-2*H*benzo[*b*][1,4]oxazin-2-one (**3a**) in 87% yield (Scheme 6).

In summary, we have developed a new strategy for 70 constructing 3-aryl-2*H*-benzo[*b*][1,4]oxazin-2-ones from TFA-catalyzed tandem reaction of benzo[*d*]oxazoles with 2-oxo-2-

65

arylacetic acids. In addition, the method provides an efficient access to the natural product cephalandole A. Further efforts to extend this catalytic system to the preparation of other useful nitrogen-containing heterocycles are currently underway in our ⁵ laboratories.

Financial support was provided by the National Natural Science Foundation of China (Nos. 21272176 and 21102105) and Natural Science Foundation of Zhejiang Province (No. LY12B02011).

10 Notes and references

^a College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.

E-mail: jiuxichen@wzu.edu.cn; huayuewu@wzu.edu.cn

^b The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou 15 325000, PR China

- [†] Electronic Supplementary Information (ESI) available: Analytical data and spectra (¹H, ¹³C NMR) for all products; See DOI: 10.1039/b000000x/
- (a) J. Teller, InE. Schaumann, Ed.; Houben-Weyl Methods of Organic Chemistry, Hetarenes IV, Six-Membered and Larger Hetero-Rings with Maximum Unsaturation; Georg Thieme: Stuttgart, 1997; Vol. E 9a, pp 141–177; (b) Review: J. Ilaš, P. S. Anderluh, M. S. Dolenc and D. Kikelj, *Tetrahedron*, 2005, 61, 7325.
- (a) T. Hasui, N. Matsunaga, T. Ora, N. Ohyabu, N. Nishigaki, Y. Imura, Y. Igata, H. Matsui, T. Motoyaji, T. Tanaka, N. Habuka, S.
- Sogabe, M. Ono, C. S. Siedem, T. P. Tang, C. Gauthier, L. A. DeMeese, S. A. Boyd and S. Fukumoto, *J. Med. Chem.*, 2011, 54, 8616; (*b*) H. Matsuoka, N. Ohi, M. Mihara, H. Suzuki, K. Miyamoto, N. Maruyama, K. Tsuji, N. Kato, T. Akimoto, Y. Takeda, K. Yano and T. Kuroki, *J. Med. Chem.*, 1997, 40, 105; (*c*) S. M. Bromidge, B.
- Bertani, M. Borriello, S. Faedo, L. J. Gordon, E. Granci, M. Hill, H. R. Marshall, L. P. Stasi, V. Zucchelli, G. Merlo, A. Vesentini, J. M. Watson and L. Zonzini, L. *Bioorg. Med. Chem. Lett.*, 2008, 18, 5653; (d) S. M. Bromidge, B. Bertani, M. Borriello, A. Bozzoli, S. Faedo, M. Gianotti, L. J. Gordon, M. Hill, V. Zucchelli, J. M.
- ³⁵ Watson and L. Zonzini, *Bioorg. Med. Chem. Lett.*, 2009, **19**, 2338; (e) T. Hasui, T. Ohra, N. Ohyabu, K. Asano, H. Matsui, A. Mizukami, N. Habuka, S. Sogabe, S. Endo, C. S. Siedem, T. P. Tang,C. Gauthier, L. A. De Meese, S. A.; Boyd and S. Fukumoto, S. *Bioorg. Med. Chem.*, 2013, **21**, 5983.
- 40 3 (a) Q. Chen, M. Chen, C. Yu, L. Shi, D. Wang, Y. Yang and Y.; Zhou, J. Am. Chem.Soc., 2011, 133, 16432; (b) M. Rueping, A. P. Antonchick and T. Theissmann, Angew. Chem., Int. Ed., 2006, 45, 6751; (c) C. Saitz, H. Rodríguez, A. Márquez, A. Cañete, C. Jullian, A. Zanocco, Synth. Commun., 2001, 31, 135; (d) H. Miyabe, Y.
 45 Yamaoka and Y. Takemoto, J. Org. Chem., 2006, 71, 2099.
- 4 (*a*) R. A. Duval, G. Lewin, E. Peris, N. Chahboune, A. Garofano, S. Drçse, D. Cortes, U. Brandt and R. Hocquemiller, *Biochemistry*, 2006, **45**, 2721; (*b*) X. Li, N. Liu, H. Zhang, S. E. Knudson, R. A. Slayden and P. J. Tonge, *Bioorg. Med. Chem. Lett.*, 2010, **20**, 6306;
- (c) V. L. Gein, N. A. Rassudikhina, N. V. Shepelina, M. I. Vakhrin,
 E. B. Babushkina and E. V. Voronina, E. V. *Pharm. Chem. J.*, 2008,
 42, 519; (d) S. Bondock, S. Adel, H. A. Etman and F. A. Badria,
 Eur. J. Med. Chem., 2012, 48, 192.
- 5 M. Hu, J. Fan, H. Li, K. Song, S. Wang, G. Cheng and X. Peng, 55 *Org. Biomol. Chem.*, 2011, **9**, 980.
- 6 (a) K. Azuma, S. Suzuki, S. Uchiyama, T. Kajiro, T. Santa and K. Imai, *Photochem. Photobiol. Sci.*, 2003, 2, 443; (b) T. Nishio, J. *Chem. Soc. Perkin Trans. 1*, 1990, 565; (c) S. Nonell, L. R. Feñrrares, A. Caete, E. Lemp, G. Günther, N. Pizarro and A. L. Zanocco, J. Org. Chem., 2008, 73, 5371.
- 7 Wu, P.-L.; Hsu, Y.-L.; Jao, C.-W. J. Nat. Prod. 2006, 69, 1467.
- 8 J. Mason, J. Bergman and T. Janosik, J. Nat. Prod., 2008, 71, 1447.

- 9 (a) L. Gross, F. Mohn, N. Moll, G. Meyer, R. Ebel, W. M. Abdel-Mageed and M. Jaspars, *Nature Chem.*, 2010, 2, 821; (b) L. Gross, *Nature Chem.*, 2011, 3, 273.
- (a) C. Trebaul, J. Roncali, F. Garnier and R. Guglielmetti, *Bull. Chem. Soc. Jpn.*, 1987, **60**, 2657; (b) R. B. Moffet, *J. Med. Chem.*, 1966, **9**, 475; (c) A. Chilin, A. Confente, G. Pastorini and A. Guiotto, *Eur. J. Org. Chem.*, 2002, 1937.
- ⁷⁰ 11 (a) D. N. Nicolaides, D. R. Gautam, K. E. Litinas, D. J. Hadjipavlou-Litina and C. A. Kontogiorgis, *J. Heterocyclic Chem.*, 2004, **41**, 605; (b) D. N.Nicolaides, R. W. Awad and E. A. Varella, *J. Heterocyclic Chem.*, 1996, **33**, 633.
- 12 I. Yavari, S. Souri, M. Sirouspour and H. Djahaniani, *Synthesis*, 2006, 3243.
- 13 N. Zidar and D. Kikelj, *Tetrahedron*, 2008, **64**, 5756.
- 14 R. Ballini, A. Palmieri, M. A. Talaq and S. Gabrielli, S. Adv. Synth. Catal., 2009, 351, 2611.
- 15 (a) Z. Y. Chen, J. X. Chen, M. C. Liu, J. C. Ding, W. X. Gao, X. B.
- Huang and H. Y. Wu, J. Org. Chem., 2013, 78, 11342; (b) J. X. Chen, H. Y. Wu, Z. G. Zheng, C. Jin, X. X. Zhang and W. K. Su, *Tetrahedron Lett.*, 2006, 47, 5383; (c) W. G. Yang, L. P. Ye, D. Y. Huang, M. C. Liu, J. C. Ding, J. X. Chen and H. Y. Wu, *Tetrahedron*, 2013, 69, 9852; (d) D. Y. Huang, J. X. Chen, W. X. Dan, J. C. Ding, M. C. Liu and H. Y. Wu, *Adv. Synth. Catal.*, 2012, 354, 2123; (e) J. X. Chen, D. Z. Wu, F. He, M. C. Liu, H. Y. Wu, J. C. Ding and W. K. Su, *Tetrahedron Lett.*, 2008, 49, 3814; (f) J. X. Chen, W. K. Su, H. Y. Wu, M. C. Liu and C. Jin, *Green Chem.*, 2007, 9, 972; (g) F. J. Duan, M. C. Liu, J. X. Chen, J. C. Ding, Y. F.
 Hu and H. Y. Wu, *RSC Adv.*, 2013, 3, 24001; (h) Y. Shen, J. X. Chen, M. C. Liu, J. C. Ding, W. X. Gao, X. B. Huang and H. Y. Wu, *Chem. Commun.*, 2014. in press (DOI: 10.1039/c3cc48767a).

4 | *Journal Name*, [year], **[vol]**, 00–00

A table of contents entry.

Unexpected TFA-catalyzed tandem reaction of benzo[*d*]oxazoles with 2-oxo-2-arylacetic acids: synthesis of 3-aryl-2*H*-benzo[*b*][1,4]oxazin-2-ones and cephalandole A

Shaoxi Yan, Leping Ye, Miaochang Liu, Jiuxi Chen,* Jinchang Ding, Wenxia Gao, Xiaobo Huang and Huayue Wu*

Abstract: А convenient and efficient method for the TFA-catalyzed synthesis of 3-aryl-2H-benzo[b][1,4]oxazin-2-ones via a tandem reaction of benzo[d]oxazoles with 2-oxo-2-arylacetic acids was reported for the first time. The efficiency of this transformation was demonstrated by compatibility with a wide range of functional groups. The synthetic utility of this method was confirmed by the synthesis of the natural product cephalandole Α. Moreover, plausible mechanism for the formation of а 3-aryl-2H-benzo[b][1,4]oxazin-2-ones involving ring-opening and cyclization steps is proposed. The present synthetic route to 3-aryl-2H-benzo[b][1,4]oxazin-2-ones could be readily scaled up to gram quantity without difficulty.

highlighting the novelty of the work:

TFA-catalyzed ring-opening/cyclization reaction of benzo[*d*]oxazoles with 2-oxo-2-arylacetic acids: synthesis of 3-aryl-2*H*-benzo[*b*][1,4]oxazin-2-ones and the natural product cephalandole A

