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We report on synthesis of ZnO nanoplates and ZnO nanoplates/Ag nanoparticles hetrostructures via 

simple and cost effective wet chemical precipitation method. The prepared samples were characterized 

for structural and optical properties by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), 

UV-VIS reflectance, Raman, and FT-IR spectroscopy. The Kramers–Kronig (K–K) method and classical 

dispersion theory was applied to calculate the Far-infrared optical constants such as, refractive index 10 

����, dielectric constant ����, transverse optical phonon (TO) and longitudinal (LO) optical phonon 

modes.  We determined various optical constants values ����	and ����for ZnO nanostructures in the 

range of 0 to 9 and 0 to 70, respectively. Whereas, on Ag deposition on ZnO nanostructures, the 

corresponding ���� and ����values were found to be increase in the range of 0 to 30 and 0 to 800, 

respectively. The TO and LO optical phonon modes of ZnO nanoplates/Ag nanoparticles hetrostructure 15 

was also found to be higher (416 cm-1, 620 cm-1) when compared with corresponding values obtained for 

ZnO nanoplates (415 cm-1, 604 cm-1). 

A Introduction  

Recently, semiconductor/metal composites materials have been 

attracted wide scientific and technological interest due to their 20 

unique electrical, optical and catalytic properties, which in turn 

make them suitable candidate for potential applications in 

optoelectronic devices [1-5]. ZnO is a wide band gap (3.37 eV at 

room temperature) semiconductor, and has been studied by 

numerous researchers during the past 20 years [6-10]. Metals 25 

such as Ag and Au have electron storage properties which 

consecutively make possible to develop charge separation in 

semiconductor/metal composite systems [3-5].  The suitability of 

ZnO/Ag based composites for photovoltaic devices has 

stimulated great interest in the preparation and characterization of 30 

this material. In ZnO/Ag heterostructures, Ag displays sharp 

surface plasmon resonance peak in the visible region of 

electromagnetic spectra with a favorable frequency dependence 

of the real and imaginary parts of the dielectric function  [11-14]. 

By reducing size of composite material to nano-scale can change 35 

optical properties of materials such as optical dispersion, 

transmission and reflection via scattering and interference 

[15,16]. Searching new routes for synthesis and processing of 

nano-scale hetrostructures and understanding the relationship 

between the structures and the properties are part of an emerging 40 

and rapidly growing field of nanotechnology [17-21]. There are 

reports on synthesis of ZnO/Ag hetrostructures with different 

morphologies such as Ag/ZnO nanofibers, Ag/tetrapod-like ZnO 

whisker nanocompounds, Ag nanoparticles-stabilized ZnO  

 45 

nanosheets and Ag nanoparticles/ZnO nanorods [22-24]. 

Core/shell Ag/ZnO and ZnO/Ag nanostructures have also been  

derived from various routes [25, 27]. In addition, deposition of 

Ag nanoparticles onto pre-synthesized ZnO nanorods leads to an 

enhancement of Raman signals and photocatalytic activity [28, 50 

29]. The evaluation of optical constants of ZnO based 

hetrostructures is of considerable importance for applications in 

integrated optic devices such as switches, filters and optical 

testers, etc., where the refractive index of a material is the key 

parameter for device design. The limited degree of precision in 55 

optical devices is due to variation in optical properties of a 

material, including, most specifically, the real and the imaginary 

parts of the effective complex index of refraction, commonly 

known as effective optical constants ����	and ���� [30]. Precise 

information on optical properties of ZnO/Ag nanocomposite such 60 

as dielectric response to electromagnetic waves in infrared region 

is essential importance and much desired. 

Earlier we have reported on synthesis of  ZnO/Ag core/shell 

nanocomposite by laser ablation technique in liquid media, in 

which ZnO nanoparticles act as the core and Ag acts as the shell 65 

[10]. In the present study, ZnO nanoplates /Ag nanoparticles 

hetrostructure have been grown via a simple and cost effective 

chemical route. Novelty of our chemical route approach is 

synthesis of complex ZnO/Ag nanostructures without any need of 

growth template. It is demonstrated that this chemical route is a 70 

viable option to obtain ZnO/Ag nano scale hetrostructures with 

good optical properties which will further benefits material 

research and optoelectronic device applications. The optical 

properties of the synthesized ZnO/Ag nanocomposites has been 

systematically investigated in Far infrared region as infrared 75 
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spectroscopy is provide insight into dynamical process related to 

phonons, charge carriers, spin and their coupling process.  

 

B Experimental  

 5 

ZnO nanoplates were prepared by a wet chemical precipitation 

method. Firstly, 3.352 g of ZnCl2 (Aldrich, Germany) was 

dissolved in distilled water. The obtained solution was dropped 

into 100 mL of 0.1 M NaOH (Merk, Germany) solution. For the 

synthesis of the ZnO/Ag nanostructures, 0.01 M Ag (NO3) 10 

(Aldrich, Germany) was added in vessel containing precipitated 

ZnO nanostructures. The obtained solution was further stirred for 

2 h. Thereafter, NaBH4 solution of 0.1M was added in stirred 

solution as a reducing agent to convert Ag ions into Ag particles. 

The resulting mixture was further kept under continuous stirring 15 

for 2 h. The pH value of the solutions was kept nearly in the 

range of 13-14. Finally in order to obtain the solid phase 

separation from the liquid phase, the precipitated materials in 

suspensions were ultra–centrifuged (10,000 rpm, 10 min) to 

obtain clear supernatant liquids. The obtained solid phases (both 20 

ZnO nanoplates and ZnO/Ag nanostructures) were then washed 

thoroughly in distilled water to remove the unwanted ions (Na+, 

Cl−, NO3
−). Washing solid precipitates was repeated several times 

up to getting a Na+ concentration below to 0.66 ppm measured by 

atomic absorption spectroscopy, followed by drying at 80 ºC for 25 

24 h. The structure and morphology of the samples were studied 

by X-ray diffraction (Shimadzu XRD-6000, Tokyo, Japan) and 

Scanning Electron Microscopy (SEM, SU-70, Hitachi), 

respectively. The optical properties of the samples were measured 

by using UV–visible (Perkin-Elmer, Lambda 35), Raman and FT-30 

IR spectrometry.  

C Results and discussions  

Figure 1 shows the XRD patterns of ZnO and ZnO/Ag 

nanostructures. The XRD pattern of ZnO shows the presence of a 

well crystalline hexagonal wurtzite phase (JCPDS, no. 36-1451), 35 

whereas, ZnO/Ag nanostructure exhibits the ZnO wurtzite phase 

and three additional peaks at 38.1◦, 44.2◦ and 64.4◦ related to (1 1 

1), (2 0 0) and (2 2 0) planes of Ag nanoparticles corresponding 

to face-centered cubic (fcc) metallic Ag phase (JCPDS no. 04-

0783). Appearance of Ag peaks in the XRD diffraction pattern 40 

clearly confirmed the formation of crystalline silver 

nanoparticles. 

 The morphologies of the prepared nanostructures were further 

studied from SEM analysis. Figure 2 shows SEM images of ZnO 

nanostructures (Fig. 2a), and ZnO/Ag nanostructures (Fig. 2(b-45 

d)).  Nano-sized plate like structures has been obtained for both 

ZnO and ZnO/Ag composites. However, distribution of Ag 

particles all over the surfaces of ZnO nanoplates has been 

observed in ZnO/Ag nanocomposites samples (as shown in Fig. 

2b-2d).  The presence of Ag content was further confirmed by 50 

EDS analysis of ZnO/Ag nanostructures. The obtained EDS 

spectra are shown in Fig. 2e which shows the presence of Ag, Zn 

and O in the final products. The absence of extra impurity peaks 

in EDS spectra suggests the purity of obtained nanostructures 

with no sign of any additives left in final obtained solid 55 

precipitates. 

 Figure 3 shows the reflectance spectra of prepared ZnO and 

ZnO/Ag nanostructures in UV-VIS range of electromagnetic 

wavelengths. An abrupt change in reflectance behaviour at a 

wavelength around 385 nm was observed in both the samples, 60 

which is assigned to recombination of electron holes in ZnO. In 

addition, the specific surface plasmon resonance absorption peak 

of Ag nanoparticles was also observed at around 513 nm as 

shown in ZnO/Ag nanostructures reflectance behavior. 

 The surface plasmon peak location of a metal can be calculated 65 

by the following equation [31]. 

 

�	 
 �4��������� �⁄ ����/�                                                   (1) 

 

 

Fig. 2 SEM images of (a) ZnO, (b-d) ZnO/Ag nanostructures 

and (e) EDS analysis of ZnO/Ag nanostructures. 

 

Fig. 1 XRD patterns of ZnO and ZnO/Ag nanostructures. 
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Where, meff and N are the effective mass and electron density 

respectively. Red shift in surface plasmon resonance peak has 

been observed as usually it is at ~400 nm for Ag [32, 33]. The 

observed red shift in surface plasmon resonance peak indicating 

reduction in electron density of Ag in ZnO/Ag nanostructures. 5 

This reduction can be explained according to the Fermi energy 

levels of ZnO and Ag, as the ZnO work function (4.3 eV) is 

larger than Ag (4.1 eV), therefore the Fermi level of ZnO is 

located lower to Ag Fermi level. This leads to easy electrons 

transfer from Ag nanoparticles to ZnO nanoplates, when the two 10 

systems are not in equilibrium.  

Figure 4 indicates the Raman spectra of prepared ZnO and 

ZnO/Ag nanostructures excited by λ = 1064 nm laser source. Two 

strong peaks were found for ZnO and ZnO/Ag nanostrucutres 

located at 430 cm-1 and 580 cm-1 corresponding to E2 and 15 

E1(LO) modes of wurtzite ZnO structure respectively [34]. The 

437 cm-1 peak disappears in ZnO/Ag nanostructure due to 

overlapping with other stronger resonant Raman scattering peaks. 

It can be clearly seen that the peaks intensity of ZnO/Ag 

nanostructure is higher than that observed for ZnO nanostructure. 20 

There are two theories which can be applied to explain the 

enhancement of the peak intensity on Ag deposition on ZnO 

nanoplates as: 1) the electromagnetic theory which is based on 

the excitation of localized surface plasmons; 2) chemical theory 

which rationalizes the effect through the formation of charge 25 

transfer complexes and only applies for species which have 

formed a bond with the surface. The Raman intensity is relative 

to the intensity of the locally formed E-field which can interact 

with optical phonons and enhances the scattering intensity of 

active phonons [31]. Therefore, the enhancement of Raman 30 

intensity for ZnO/Ag nanostructures is due to strong local E-field 

at the interface between ZnO and Ag. The intensity of interaction 

among ZnO and Ag is determined by the polarization induced in 

each one due to the E-field arising from the charge separation, as 

the positive ions left on the Ag nanoparticles surface after 35 

electrons transfer to the ZnO. 

 Figure 5 shows FT-IR spectrum of ZnO and ZnO/Ag 

nanostructures. The strong absorption band ranging from 400 cm-

1 to 500 cm-1 is assigned to Zn-O stretching vibration mode of the 

ZnO nanoplates and intensity of this peak is reduced after 40 

formation of Ag nanoparticles on the surface of ZnO nanoplates 

[35]. There are also broad peaks at 3450 cm−1 and 1630 cm−1, 

corresponding to the hydroxyl groups due to the adsorption of 

water on the particles surface [36]. No vibration mode in relation 

with Ag was observed in the spectrum of ZnO/Ag nanostructure, 45 

which indicates that there is no chemical bonding between Ag 

and ZnO. 

 
Fig. 5 FT-IR spectrum of ZnO and ZnO/Ag nanostructures. 

 

 
Fig. 4 Raman spectra of the ZnO and ZnO/Ag nanostructures. 

 

Fig. 3 Reflectance spectra of ZnO and ZnO/Ag nanostructures in 

visible range of electromagnetic wavelengths. 

 

 

 
Fig. 6 Reflectance spectra of ZnO and ZnO/Ag nanostructures. 
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 The K–K method was applied on FT-IR reflectance spectra 

data to evaluate the Far-inferred optical constants of the prepared 

ZnO and ZnO/Ag nanostructures. . The experimentally measured 

reflectance spectra of ZnO and ZnO/Ag nanostructures are shown 

in Figure 6. The reflective index n is an important physical 5 

quantity in optical design and generally is a complex quantity: 

 

����� 
 ���� � ����� (2) 

 

Where ����and ���� are the real and the imaginary parts of the 10 

complex refractive index respectively, and can be obtained by the 

following equations [37]: 

 

���� 
 �1 � �����/�1 � ���� � 2√�����	�		cos	%���	�    (3) 

 15 

���� 
 �2√�����	�	cos	�%��/�1 � ���� � 2√�����	�	cos	%����				(4) 

 

Here,	%��� is the phase change between the incident and the 

reflected signal at a particular wave number,	� and ���� is the 

reflectance in that wave number, �. The phase change can be 20 

calculated from the K–K dispersion relation given by [38]: 

 

%��� 
 ����/ & �'����(	� � '������/��(� ���	�)
� *�(		          (5) 

 

This integral can further be precisely evaluated by using 25 

Maclaurin’s method as [39]: 

 

%+�,- 
 �4�, ⁄ � . ∆� . ∑ �ln 34����5�/+�6
� � �,�-6 	              (6) 

 

here ∆� 
 �,7� � �,  and if 8 is an even number then �=1, 3, 5, 6, 30 

,...8 � 1 , 8 � 1,… .. while, if 8	is an odd number then	� =2, 4, 

6,...8 � 1 , 8 � 1,… .. 
In addition, the dielectric function can be obtained by the square 

of the refractive index. Therefore, the real and imaginary parts of 

the complex dielectric function are given by: 35 

 

� =��������=����� � ������� 

⟹ �( � ��(( 
 ����� � ����� � 2��������� 
⟹ =	�(��� 
 	����� � �����; 	�((��� 
 2��������            (7) 

 

The calculated optical constant values of ZnO and ZnO/Ag 40 

nanostructures obtained using equations 2 to 7 are shown in Fig. 

7(a&b). The strong peaks were observed for ����	and  ����  at 

around 415 cm-1 and 410 cm-1, respectively. However, the 

intensity of the peaks for both ����and ���� increased from nmax 

= 8.80, and kmax = 4.16 (for ZnO nanostructures) to nmax = 28.80, 45 

kmax = 13.30 (for ZnO/Ag nanostructures). This increase in 

intensity values could be due to the formation of Ag nanoparticles 

on the surface of ZnO nanoplates which causes the reduction of 

the Zn-O absorption band intensity in the far infrared region. The 

calculated values of real and imaginary parts of the dielectric 50 

function of the prepared samples are also shown in Fig. 7c and 

7d. It can be seen that the value of maximum dielectric function 

was drastically increased for ZnO/Ag nanostructures compared to 

ZnO nanostructures. Therefore, it can be concluded that the 

presence of Ag nanoparticles on the surface of ZnO nanoplate can 55 

improve optical properties of ZnO in Far infrared region. 

 Till date, there are certain reports on optical properties of bulk 

and nanostructured ZnO in infrared region and the field is still 

wide open as per its potential in device application [40-47]. For 

example, Garc´ıa-Serrano et al. [41] used Far infrared (FIR) 60 

reflectance spectra for the qualitative determination of free carrier 

density in metal and semiconductor nanoclusters embedded ZnO 

films. On the other hand, Yamamoto et al.[42] focused on the 

optical surface phonon modes in small ZnO crystals using FIR 

transmission measurements at room temperature. In addition, 65 

terahertz time-domain spectroscopy was used to determine 

Fig. 7 (a, b) refractive index and extinction coefficient, (c, d) 

real and imaginary parts of dielectric functions of ZnO and 

ZnO/Ag nanostructures. 
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refractive index, dielectric constant and absorption coefficient of 

bulk and nanostructured ZnO in the FIR region and it was found 

that ZnO nanostructures exhibit very similar phonon resonances 

with that of single-crystal ZnO [44, 45]. Polarized FIR 

reflectance technique has also been applied by researchers to 5 

study the optical properties of pure and Mn doped ZnO 

nanoparticles prepared by sol gel method [47].  They report 

optical constant values i.e. refractive index (n) and dielectric 

constants (ε) values in the range between 1 to 7 and -25 to 35, 

respectively. We determined various optical constants values n 10 

and ε for ZnO nanostructures in the range of 0 to 9 and 0 to 70, 

respectively. However, on Ag deposition on ZnO nanostructures, 

the corresponding n and ε values were found to be increase in the 

range of 0 to 30 and 0 to 800, respectively. 

 The TO and LO modes of a material are useful to illustrate the 15 

optical interactions with the lattice. TO mode frequencies 

corresponds to the frequency at which imaginary part of the 

dielectric function shows a peaks (Fig.7c and 7d) [48]. The LO 

mode frequencies can be obtained by plotting the imaginary part 

of -1 �⁄  behaviour against wavenumber as shown in Fig. 8a and 20 

8b. Frequency at which peak observed in figure 8, corresponds to 

LO mode frequency. Table 1 illustrates various TO and LO 

optical phonons values obtained for prepared ZnO and ZnO/Ag 

nanostructures. 

Conclusions 25 

ZnO nanoplates and ZnO nanoplates/Ag nanoparticles 

hetrostructures have been successfully synthesized via cost 

effective wet precipitation method. The presence of Ag in 

ZnO/Ag nanocomposites was confirmed by the presence of extra 

phases along with wurtzite ZnO phase in XRD spectra and by 30 

taking EDS spectra. Nano-sized plates like structure were 

observed in SEM images of the prepared samples. An absorption 

peak observed in reflectance spectra of ZnO/Ag sample at a 

wavelength of ~ 513 nm corresponds to surface Plasmon 

resonance of Ag nanoparticles. Raman peak intensity was found 35 

to be higher in case of ZnO/Ag nanostructures when compared 

with Raman intensity observed for ZnO nanostructures. The Far-

infrared optical constants of the prepared samples were 

successfully calculated by using Kramers–Kronig method. Far 

infrared optical properties of ZnO nanoplates were found to 40 

enhance when Ag is deposited on surface of ZnO nanoplates 

making it as ZnO/Ag nanocomposites. The enhancement in 

optical properties of ZnO will further benefit its potential use in 

various optical devices.  
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