This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Synthesis of Functionalized Dispiro-oxindoles through Azomethine Ylide Dimerization and Mechanistic Studies to Explain the Diastereoselectivity

Prabal Banerjee,* Ashok Kumar Pandey

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

We have developed a one-pot synthesis of polycyclic fused dispiro-oxindole derivatives by the [3+3]-cycloaddition (dimerization) of azomethine ylide derived from condensation of isatin and proline. Dispiro-oxindole ring system is found at the core of a number of alkaloids, which possess significant biological activity and are interesting, challenging targets for chemical synthesis. We have demonstrated formation of two isomers, cis and trans with variable selectivity depending upon the substitutions pattern at N-atom of isatin moiety arises during this type of dimerization. We could also correlate these diastereoselectivity with DFT calculation. The formation and X-ray crystal structure of the cis isomer in this cycloaddition reaction is reported first time in the literature. We also gave clear insight of the mechanism of this dimerization reaction.

Introduction

The 1, 3-dipolar cycloaddition reactions is one of the versatile synthetic strategies for the construction of five, and six-member ring heterocycles. The routine [3+2]-cycloadditions of Azomethine ylide (AMY) are reported with variety of dipolarophiles e.g. alkene, alkyne, carbonyl compound like aldehyde, anhydride, imine etc. and limited [3+3]-cycloaddition are also known to synthesize piperazine derivatives by self condensation of AMY. Highly functionalized piperazine moieties constitute the main structural element of different alkaloids and pharmacologically active compounds. Piperazine ring structures have also importance in carbohydrate chemistry, drugs like anthelmintics, and veterinary medicine to treat parasitic infections.

Synthesis of piperazine derivatives are known in the literature employing several methods including [3+3]-cycloaddition reaction. Among the varieties methods reported for AMY generations, one of the common methods for generation of AMY is condensation of isatin and proline. The molecules synthesized by this type of AMY, for a long time, have pharmacological as well as biological importance. Perumal et al. have reported such dimer (I) for very good activity towards anti-tuberculosis; however they couldn’t predict the right structure of the dimer (Fig-1). Recently, Essassi et al reported the correct structure of the dimer (II) by single crystal X-ray crystallography (Fig-1). Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. Tb), is a major infectious disease suffered by mankind in mostly low and middle income countries, although no region in the world remains untouched. According to World Health Organization (WHO) data, every second a newly infection by tuberculosis bacillus occurs somewhere in the world; the number of infections is constantly rising and will soon affect a third of the world’s population. The statistics indicate that 1.3 million people throughout the world died from TB in 2008. Presently our group is involved in developing anti-tuberculosis drug candidates. Our research interest in AMY cycloaddition and other project involving these type of isatin derived AMY gave surprisingly the dimers. We want to report in this present article the systematic studies involving the effect of EWG, EDG, and Lewis Acid on the [3+3]-cycloaddition reaction of AMY generating from isatin and proline. Biological testing of all these compounds towards anti-tuberculosis activities will give very important information and may lead to a very good hit compound for the above mentioned purpose.

Results and Discussion

The AMY derived from condensation of isatin (1) and proline (7) is found to be very reactive towards [3+2]-cycloaddition with electron deficient dipolarophiles. Our observation is interesting for the similar reaction without any dipolarophile. I and 7 when admixed together in presence of 4Å molecular sieves in toluene, under refluxing condition, was completely consumed within four hour. After complete analysis of the above mentioned reaction, gave two products 8 and 9 in (1.3 : 1) diastereomeric ratio (Scheme-1). In 1H NMR of 8, four aromatic

Figure-1: Two previously reported structures of the dimer.
protons were appeared which indicates this molecule had isatin moiety. Interestingly, compound 9 showed much different NMR. In aromatic region of compound 9, eight protons were observed followed by twice number of protons in aliphatic region as compared to 8. These observations indicated that the presence of two proline moieties i.e. a molecular symmetry could be present in compound 8. The mass spectrum of both the compounds 8, and 9 gave the same molecular ion peak (m/z).

Fortunately, both compounds 8, 9 were crystalline solid at room temperature. The Single crystal X-ray data analysis of both compounds revealed trans dimer (8) and another was cis dimer (9) of AMY (fig-2). Both compounds were diastereomers with respect to each other and in 8 half of the total protons of molecule were magnetically equivalent while in 9 all protons were magnetically non equivalent due to different chemical environment. In this fashion the occurrence of the cis isomer during this type dimerization reaction was documented first time in the literature.

The possible mechanism for the dimerization of AMY is reported in literature. Two kinds of dimerizations of AMY generated in the above mentioned manner are possible, either head-head fashion of the resonance hybrid or by head-tail manner of the same resonance hybrid (Scheme-2). Interestingly, the product observed is only of former type. The less hindered head-head 1st step of the dimerization may be driving force for forming 8 instead of 9. DFT calculation was performed to critically examine this dimerization motive.

When 8 was refluxed in toluene with 4Å MS under N\textsubscript{2} atmosphere, 9 formed slowly and the conversion was observed in (50: 50) ratio after 48 h. Again similar observation was noticed with 9 (Scheme-3). This is only possible when the activation energy for the both products is very close and passes through a common intermediate.

The lock and key chemistry of this type of AMY dimerization was also studied by taking different electron donating and electron withdrawing substituent at NX atom of isatin. When N-methyl isatin (2) was refluxed with 7 same result (10, 11) was obtained.

Scheme 1. Dimerization of AMY.

Figure 2. ORTEP Diagram of the molecular structure of 8 and 9.
Scheme 3. Interconversion of trans and cis dimers

as in above mentioned reaction. The rate of reaction is, somewhat, slower than the isatin reaction (table-1) and trans-isomer was formed as major. N-Ethyl isatin (3) derived AMY underwent cycloaddition reaction in same condition and gave both isomers (12, 13) in moderate yield. This reaction was slower than N-methyl isatin (2) case and completed in 8 h. The trans diastereomer (12) was found to be major and formed first relative to cis diastereomer (13) (table-1).

The effect of benzyl group on the dimerization of AMY derived from N-Benzyl isatin (4) was also studied. This reaction was very slow in compare to other derivatives of isatin studied by us, and completed in 13 h. In this dimerization reaction trans dimer (14) was formed as major

Table 1. a,b Dimerization of AMY with different substituent of isatin.

<table>
<thead>
<tr>
<th>R</th>
<th>Dimerization Product</th>
<th>Yield</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>(8)</td>
<td>70%</td>
<td>1.3 (8) : 1(9)</td>
</tr>
<tr>
<td>-CH₃</td>
<td>(9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-CH₂CH₃</td>
<td>(10)</td>
<td>62%</td>
<td>2.1(10) : 1(11)</td>
</tr>
<tr>
<td>-CH₃-F</td>
<td>(11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-CO₂H</td>
<td>(12)</td>
<td>59%</td>
<td>3(12) : 1(13)</td>
</tr>
<tr>
<td>-F</td>
<td>(13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-CO₂H</td>
<td>(14)</td>
<td>48%</td>
<td>3.4(14) : 1(15)</td>
</tr>
<tr>
<td>-CH₃</td>
<td>(15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-CO₂H</td>
<td>(16)</td>
<td>50%</td>
<td>1.5(16) : 1(17)</td>
</tr>
<tr>
<td>-CH₃</td>
<td>(17)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[a] Reactions were performed in toluene.[b] Isolated yield by flash column chromatography.

product in compare to cis dimer (15). The yield of 15 was very poor (table-1), this could be due to steric effect of benzyl groups that opposed the reaction between two AMY fragment in cis orientation. The result obtained by substituting hydrogen of NH in isatin with methyl, ethyl and benzyl was found that the yield of cis product was decreased in same trend as bulkiness of the group increases. So, it was cleared that size of substituent played major role for controlling the diastereoselectivity of AMY dimerization.

After studying the effect of electron donating and bulkier group on dimerization of AMY, the EWG like acetyl and Boc were taken as substituent for our investigation. When N-Acetyl isatin (5) was applied in the same reaction condition, it was observed that reaction was very fast and completed within 30 min. This reaction also gave the trans (16) and cis dimer (17) in quantitative yield. The ratio of trans and cis (1.5 : 1) was close to isatin ratio (table-1). In 16, 1H NMR pattern was slightly different from above mentioned analogue due to presence of the acetyl group.
Scheme 4. Effect of N-acetyl and N-Boc group on AMY dimerization.

When N-Boc isatin (6) was refluxed with proline (7), reaction was completed within 0.5 h. Interestingly, after complete analysis of isolated product we found that in this case dimerization of AMY did not occur, in spite of this five member ring of isatin was opened with proline (7) to form carbamate derivatives (18). The carbamate derivative 18 was found to be crystalline solid and single crystal X-ray was taken. This observation is documented in the literature,[26] but our finding contradicts in the case of N-acetyl isatin where the dimerized product could only be isolated but it was reported to cleave as observed in N-Boc case. This could be due to special arrangement of oxygen of isatin carbonyl and Boc-ester moiety which brings proline closer to isatin carbamate functionality to cleave it selectively. This reaction also disclosed the stability and reactivity of isatin to form AMY depending upon the different substituent present at N-atom of isatin (Scheme 4).

When reaction was screened by changing the solvent, it was observed that in toluene reaction was completed within 4 h (Table-2). While reaction time was decreased in methanol and methanol: Dioxane (1:1) as solvent. This could be due to the solvent role in transition state stabilization. The TS of AMY formation in this reaction was polar (confirmed by DFT) and stabilized by the polar solvent.

Mechanistic Studies

The regio and diastereoselectivities of this type of AMY dimerization derived from isatin derivatives and proline (7) were also studied by us using ab initio density functional theory (DFT). All the structures have been geometry optimized using B3LYP functional employing 6-31G(d,p)[27,28] basis set as implemented in Gaussian-09 code. Vibrational analysis has been performed for all the stationary points. Transition states are characterized by one negative imaginary frequency along the reaction coordinate. For all transition state structures, the intrinsic reaction coordinate (IRC) calculation was performed to ascertain that each transition state connected the expected reactants and products.

Theoretical calculation for the 1,3-dipolar cycloaddition reaction of AMY generated by the above discussed manner from isatin is reported in the literatures.[31] However, our interest was to know the difference between activation energy (ΔE_a) of transition states among both diasteriomers (cis, trans). The activation energy (ΔE_a) for cis and trans diastereoisomeric products was analyzed. The activation energy for trans product 8 (4.2 kcal/mol) was found to be less than the cis product 9 (5.1 kcal/mol) (entry 1, 2, table 3). Due to this reason the transoid orientation of two

Table 2. Screening of temperature vs solvent effect on isatin and Proline reaction.

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Solvent</th>
<th>Temp. (°C)</th>
<th>Time(h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Toluene</td>
<td>110</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Methanol</td>
<td>64</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Dioxane : Methanol (1:1)</td>
<td>70</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 3: Energy profile diagram of [3 + 3] dimerization reaction of isatine – proline derived AMY.

AMY could surpass the energy barrier more frequently than the cisoid orientation. This DFT interpreted data could explain the regiochemistry and selectivity of the experimental result where product 8 was found to be major. The computed transition
Table 3. Energetics of [3 + 3] – Cycloaddition (dimerization) reaction and their activation energy (R = H).

<table>
<thead>
<tr>
<th>S. No</th>
<th>R (Experimental)</th>
<th>E_R (2 AMY) (Kcal/Mol)</th>
<th>E_A (Kcal/Mol)</th>
<th>TS Frequency (cm⁻¹)</th>
<th>E_TS (Kcal/Mol)</th>
<th>E_a (Kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Trans, H(1)</td>
<td>0.00</td>
<td>-15.375 (8)</td>
<td>-273.52</td>
<td>4.200 (23)</td>
<td>4.2</td>
</tr>
<tr>
<td>2.</td>
<td>Cis, H(1)</td>
<td>3.75</td>
<td>-17.5125 (9)</td>
<td>-286.04</td>
<td>8.813 (24)</td>
<td>5.1</td>
</tr>
<tr>
<td>3.</td>
<td>Trans, H(1)</td>
<td>4.53</td>
<td>-22.890 (19)</td>
<td>-290.61</td>
<td>13.64 (25)</td>
<td>9.1</td>
</tr>
<tr>
<td>4.</td>
<td>Cis, H(1)</td>
<td>1.10</td>
<td>-19.943 (20)</td>
<td>-231.59</td>
<td>13.674 (26)</td>
<td>12.6</td>
</tr>
</tbody>
</table>

Table 4. Energetics of [3 + 3] – Cycloaddition (dimerization) reaction and their activation energy (R = Benzyl).

<table>
<thead>
<tr>
<th>S. No</th>
<th>R (Experimental)</th>
<th>E_R (2 AMY) (Kcal/Mol)</th>
<th>E_A (Kcal/Mol)</th>
<th>TS Frequency (cm⁻¹)</th>
<th>E_TS (Kcal/Mol)</th>
<th>E_a (Kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>Trans, Bn (4)</td>
<td>0.00</td>
<td>-13.577 (14)</td>
<td>-277.69</td>
<td>5.000 (27)</td>
<td>5.0</td>
</tr>
<tr>
<td>6.</td>
<td>Cis, Bn (4)</td>
<td>2.19</td>
<td>-17.467 (15)</td>
<td>-295.43</td>
<td>7.725 (28)</td>
<td>7.8</td>
</tr>
</tbody>
</table>

state structures were found to be polar with high dipole moment (trans, 8: μ=1.7 D; cis, 9: μ=3.8 D). The high dipole moment may have resulted the higher stability of TS in polar solvents compared to non polar solvents. This prediction also supports our experimental results where the reaction is found to be faster in polar solvent (entry 3, table-2). Similarly, for N-Benzyl substituted AMY dimerization, activation energy of trans adduct (14) is (5.0 kcal/mol) lesser than cis adduct, 15 (7.8 kcal/mol) due to which the experimental yield of trans adduct was found to be higher than cis adduct (15) (entry 5, 6, table 4). It was also noticed that the activation energy difference between 8 and 9 (0.8 kcal/mol) was less than 14 and 15 (2.8 kcal/mol) (fig. 3, 4). This activation energy difference between differently substituted adducts resulted in variation in the ratio of their corresponding diastereoselectivity. Steric hindrance have also played a major role with respect to stereo selectivity as well as reaction productivity.

Conclusions

In conclusion, dimerization of AMY was well affected using different substituent at N-atom of isatin and also it was evidenced that presence of EWG like Boc banned the AMY formation from isatin and proline. DFT studies supported the experimental results and gave conclusive evidence of activation energy differences of TSs. X-Ray crystallography provided complete structure of both isomers of dispiro-oxindoles. The formation of the cis compound, which was otherwise neglected as polar impurities in earlier studies, was characterized fully first time in the literature. Bioactivity of the newly synthesized compounds will be published elsewhere.

Experimental

General:

The reagents isatin (1), proline (7) were commercially available and were used without further purification. Toluene was dried over P₂O₅ then sodium metal and stored at 4Å molecular sieves for at least 48 hr. prior to use. N- Methyl, 32 N-Ethyl, 32 N-Benzyl, 32 N-Acetyl33 and N- Boc Isatin 34 were synthesized according to their reported procedure. Reactions were performed under N₂ in oven dried glassware. The developed chromatogram was analyzed by UV lamp (254 nm), or iodine stain. Products were purified by flash chromatography on silica gel (mesh size 230-400) and further purified by crystallization with ethanol at r.t. Chemical shifts of Proton and ¹³C NMR spectra are expressed in parts per million (ppm). All coupling constants are absolute values and are expressed in Hz. The description of the signals include: s = singlet, brs = broad singlet d = doublet, dd = doublet.

Figure 4: Energy profile diagram of [3 + 3] dimerization reaction of N - Benzyl isatine – proline derived AMY.
Typical experimental procedure for alkylation of isatine (Procedure A):
A round bottom flask was charged with isatin, K₂CO₃ and dry acetonitrile followed by addition of alkyl iodide under nitrogen atmosphere. Resulting mixture was refluxed overnight and reaction progress was monitored by TLC. After completion of the reaction, solvent was evaporated at reduced pressure and crude mixture was quenched with water. Ethyl acetate was added to the resulting mixture and aqueous layer was extracted with ethyl acetate. The combined organic layer was dried over Na₂SO₄ and purified by flash column chromatography with EtOAc/Hexane and recrystallized with ethanol to afford heptacyclic adduct.

Synthesis of 1-methylindoline-2,3-dione (2):
Prepared by following procedure A; isatin (1 g, 6.8 mmol), methyl iodide (1.16 g, 8.16 mmol) and K₂CO₃ (2.81 g, 20.4 mmol) and dry acetonitrile (30 ml), yield (0.82 g, 62%).

H NMR (400 MHz, CDCl₃): δ 7.47 (d, J = 7.6 Hz, 2H), 7.2 (t, J = 7.6 Hz, 1 H), 6.98 (d, J = 7.6 Hz, 2H), 7.35 (td, J = 7.6, 1.1 Hz, 1H), 7.05 (t, J = 7.6 Hz, 1H), 6.7 (d, J = 7.6 Hz, 1H), 6.49 (d, J = 7.6 Hz, 1H), 3.76 (q, J = 7.6 Hz, 2H), 1.29 (t, J = 7.6 Hz, 3H).

Typical experimental procedure for cycloaddition reaction of AzomethineYlid (Procedure B):
The round bottom flask was charged with N-substituted isatine derivative, proline and 4 Å MS followed by successive addition of dry toluene under nitrogen atmosphere. Reaction mixture was brought to reflux and was monitored by TLC at different interval. After completion of reaction, mixture was cooled at r.t., filtered through celite and evaporated in vacuo. The crude mixture was purified by flash column chromatography with EtOAc/Hexane and recrystallized with ethanol to afford heptacyclic adduct.

Synthesis of (3R,7'S)-1,1"",2,2""-tetrahydrodispiro[indole-3.8""-[6,9]diazatriacyclo[7.3.0.02,6]dodecane-7",3""-indole]-2,2""-dione (8):
Yield = 40%, white solid, mp = 188 – 190 °C (Decomposed) melted at 285 – 290 °C, IR (neat) νmax 3303, 3176, 3153, 3082, 2973, 2948, 2848, 2810, 1724, 1701, 1619, 1471, 1187, 767, 683 cm⁻¹.

H NMR (400 MHz, CDCl₃): δ 8.74 (d, J = 7.6 Hz, 2H), 7.3 – 7.3 (brs, 2H), 7.05 (t, J = 7.6, 1.1 Hz, 2H), 6.9 (d, J = 7.6, 1.1 Hz, 2H), 6.47 (d, J = 7.7 Hz, 2H), 3.62 (m, 2H), 2.62 (td, J = 8.7, 2.4 Hz, 2H), 2.17 (q, J = 8.5 Hz, 2H), 1.9 (m, 2H), 1.78 (m, 2H), 1.62 (m, 4H).

13C NMR (100 MHz, CDCl₃ and DMSO-D₆): δ 205.9, 171.6, 160.8, 128.6, 126.1, 125.8, 125.4, 125.7, 128.1, 128.3, 128.5, 142.3, 142.6, 173.8, 174.4, 115.1, 115.0, 114.6, 117.5, TOF MS ESI+401 (M+). HRMS calcd. for C₃₉H₃₅N₂O₂ (M+H) 401.1977 found 401.1976.

Synthesis of (3R,7'R)-1,1",2,2""-tetrahydrodispiro[indole-3.8""-[6,9]diazatriacyclo[7.3.0.02,6]dodecane-7",3""-indole]-2,2""-dione (9):
Yield = 30%, white solid, mp = 189 – 200 °C (Decomposed) melted at 285 – 290 °C, IR (neat) νmax 3303, 3176, 3153, 3082, 2973, 2948, 2848, 2810, 1724, 1701, 1619, 1471, 1187, 767, 683 cm⁻¹.

H NMR (400 MHz, CDCl₃): δ 8.08 (d, J = 7.8 Hz, 1H), 7.72 (d, J = 7.8 Hz, 1H), 1.65 (s, 9H).

Typical experimental procedure for cycloaddition reaction of AzomethineYlid (Procedure B):
The round bottom flask was charged with N-substituted isatine derivative, proline and 4 Å MS followed by successive addition of dry toluene under nitrogen atmosphere. Reaction mixture was brought to reflux and was monitored by TLC at different interval. After completion of reaction, mixture was cooled at r.t., filtered through celite and evaporated in vacuo. The crude mixture was purified by flash column chromatography with EtOAc/Hexane and recrystallized with ethanol to afford heptacyclic adduct.
Synthesis of (3R,7'R)-1'-dimethyl-1,1''-2,2''-tetrahydrodipiro [indole-3.8'-[6,9]diazacycloc[7.3.0.02,6]dodecane-7,3''-indole]-2,2''-dione (11):

Yield = 0.265 g, 20 %, white solid, dodecane-7',3''-indole[2,2'']-dione (13):

Synthesis of (3R,7'S)-1,1''-dibenzyl-1,1'',2,2''-tetrahydrodipiro[indole-3.8'-[6,9]diazacycloc[7.3.0.02,6]dodecane-7,3''-indole]-2,2''-dione (14):

Yield = 11 %, white solid, mp = 175 - 176 °C, IR (neat): \(\nu_{\text{max}} \) 2979, 2949, 2828, 2812, 1693, 1604, 1468, 1365, 1349, 1166, 741, 696 cm\(^{-1}\). \(^1\)H NMR (400 MHz, CDCl\(_3\)): 8.04 (d, J = 2.2 Hz, 1H), 7.6 (d, J = 7.7 Hz, 2H), 7.51 (dd, J = 8.1, 5.8 Hz, 2H), 6.7 (d, J = 7.7 Hz, 2H), 6.27 (d, J = 2.2 Hz, 2H), 2.5 (q, J = 8.1 Hz, 2H), 1.87 (br m, 2H), 1.76 (m, 4H), 1.6 (m, 4H), 1.07 (t, J = 7.7 Hz, 2H). \(^1\)C NMR (100 MHz, CDCl\(_3\)): 7.27, 20.9, 27.5, 33.9, 47.5, 59.2, 68.2, 107.4, 121.7, 126.0, 126.2, 129.0, 142.9, 174.1.

Synthesis of (3R,7'R)-1'-diethyl-1,1''-2,2''-tetrahydrodipiro[indole-3.8'-[6,9]diazacycloc[7.3.0.02,6]dodecane-7,3''-indole]-2,2''-dione (13):

Yield = 15 %, white solid, mp = 180 - 181 °C, IR (neat): \(\nu_{\text{max}} \) 2968, 2931, 2874, 2809, 1714, 1605, 1462, 1153, and 1221. \(^1\)H NMR (400 MHz, CDCl\(_3\)): 8.04 (d, J = 7.7 Hz, 1H), 7.29 (t, J = 7.7, 1.1 Hz, 1H), 7.6 (d, J = 7.7, 1.1 Hz, 1H), 7.01 (d, J = 7.7, 1.1 Hz, 1H), 6.6 (d, J = 7.7 Hz, 2H), 6.41 (td, J = 7.7, 1.1 Hz, 1H), 5.98 (d, J = 7.7 Hz, 1H), 3.98 (td, J = 10.2, 5.8, 4.2 Hz, 2H), 3.78 (q, J = 7.7 Hz, 1H), 3.69 (q, J = 7.5 Hz, 1H), 3.58 (q, J = 7.2 Hz, 1H), 3.24 (q, J = 7.2 Hz, 1H), 2.91 (td, J = 9.9, 5.9, 1.1 Hz), 2.76 (td, J = 8.3, 2.2 Hz, 1H), 2.54 (td, J = 8.7, 2.7 Hz, 1H), 2.1 (q, J = 8.7 Hz, 1H), 1.92 (m, 2H), 1.81 (m, 1H), 1.7 (m, 4H), 1.5 (m, 2H), 1.24 (t, J = 7.3 Hz, 3H), 0.58 (t, J = 7.3 Hz, 3H). \(^1\)C NMR (100 MHz, CDCl\(_3\)): 8.71, 12.6, 20.9, 21.1, 27.4, 27.8, 34.1, 34.2, 46.6, 46.8, 58.9, 60.9, 67.6, 71.3, 107.3, 107.6, 120.5, 120.9, 125.2, 125.4, 126.1, 128.5, 129.0, 129.3, 143.6, 143.7, 172.3, 173.4. TOF MS ES+ 457 (M+H). HRMS calcd. for C\(_{29}\)H\(_{22}\)N\(_{2}\)O\(_{2}\)Na (M+Na): 527.2148 found 527.2147.

Yield = 30 %, white solid, mp = 170 °C (Decomposed) melted at 240 - 250 °C. IR (neat): \(\nu_{\text{max}} \) 2961, 2917, 2866, 2815, 1750, 1708, 1671, 1640, 1468. TOF MS ES+ 457 (M+H). HRMS calcd. for C\(_{29}\)H\(_{22}\)N\(_{2}\)O\(_{2}\)Na (M+Na): 527.2148 found 527.2147.
1461, 1331, 1268, 1152, 1011, 761 cm\(^{-1}\). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(6.84\) (d, \(J = 7.8\) Hz, 2H), \(7.37\) (d, \(J = 7.8\) Hz, 2H), \(7.18\) (td, \(J = 7.8, 1.4\) Hz, 2H), \(7.07\) (td, \(J = 7.8, 1.4\) Hz, 2H), \(3.64\) (m, 2H), \(2.28\) (m, 2H), \(2.62\) (s, 6H), \(2.10\) (t, \(J = 8.3\) Hz, 2H), \(1.98\) (m, 2H), \(1.82\) (m, 2H), \(1.69\) (m, 2H), \(1.61\) (2H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta 21.1, 26.9, 27.8, 48.1, 59.6, 69.3, 116.4, 124.4, 124.6, 124.6, 130.4, 140.0, 169.9, 175.5. TOF MS ES+ 485 (M+H). HRMS calcd. for C\(_{25}H_{33}N_4O_2Na\) (M+Na) 507.2008 found 507.2004.

10

Synthesis of (3R,7'R)-1,1”-diacetyl-1,1”,2,2”-tetrahydrodispiro[indole-3,8-[6,9]diazatricyclo[7.3.0.2.6]-dodecane-3”,3”-indole]-2”,2”-dione (17):

Yield = 20 %, white solid, mp = 170 °C (Decomposed) melted at 240 - 250 °C. IR (neat): \(\nu_{\text{max}}\) 2961, 2925, 2868, 2823, 1759, 1708, 1684, 1514, 1446, 1239, 1145, 775 cm\(^{-1}\).

Synthesis of tert-butyl 2-(2-oxo-2-(pyrrolidin-1-yl)acetyl)phenylcarbamate (18):

Reaction was performed by following procedure B; N-Boc-isatin (0.2 g, 0.807 mmol), proline (0.093 g, 0.807 mmol) dry toluene (47ml), 4Å MS (200 mol%), time = 30 min, Yield = 65 %, white solid, mp = 107 °C. IR (neat): \(\nu_{\text{max}}\) 2961, 2925, 2868, 2823, 1759, 1708, 1684, 1514, 1446, 1239, 1145, 775 cm\(^{-1}\). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta 10.56\) (brs, 1H), 8.5 (d, \(J = 7.8\) Hz, 1H), 7.65 (d, \(J = 7.8\) Hz, 1H), 7.56 (t, \(J = 7.8\) Hz, 1H), 7.02 (t, \(J = 7.8\) Hz, 1H), 3.64 (t, \(J = 6.9\) Hz, 2H), 3.37 (t, \(J = 6.9\) Hz, 2H), 1.94 (m, 4H), 1.52 (s, 9H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta 24.2, 25.9, 28.4, 45.3, 46.7, 81.2, 117.1, 119.1, 121.5, 133.7, 136.7, 143.7, 152.9, 164.6, 195.4. TOF MS ES+ 485 (M+H). HRMS calcd. for C\(_{25}H_{33}N_4O_2Na\) (M+Na) 507.2004 found 507.2020.

Notes and references

4 Department of Chemistry, Indian Institute of Technology Ropar, Ropar, Punjab-140001, India

Graphical Abstract

Synthesis of Functionalized Dispiro-oxindoles through Azomethine Ylide Dimerization and Mechanistic Studies to Explain the Diastereoselectivity.

Prabal Banerjee*, Ashok Kumar Pandey

Synthesis of functionalized dispirooxindoles via [3 + 3]-cycloaddition of azo-methine ylide generated from condensation of isatin and proline is reported. A transition state model for the origin of diastereoselectivity and mechanism of formation of these types of adducts is proposed.