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Paper Microfluidics for Red Wine Tasting 

Tu San Park,a Cayla Baynes,b Seong-In Choc and Jeong-Yeol Yoon*ab 

A paper microfluidic chip was designed and fabricated to evaluate the taste of 10 different red wines 

using a set of chemical dyes. The digital camera of a smartphone captured the images, and its red-

green-blue (RGB) pixel intensities were analyzed by principal component analysis (PCA). Using 8 dyes 

and 2 principal components (PCs), we were able to distinguish each wine by the grape variety and the 

oxidation status. Through comparing with the flavor map by human evaluations, PC1 seemed to 

represent the sweetness and PC2 the bodyness of red wine. This superior performance is attributed to: 

1) careful selection of commercially available dyes through a series of linear correlation study with the 

taste chemicals in red wines, 2) minimization of sample-to-sample variation by splitting a single sample 

into multiple wells on the paper microfluidics, and 3) filtration of particulate matter through paper 

fibers. The image processing and PCA procedure can eventually be implemented as a stand-alone 

smartphone application and can be adopted as an extremely low-cost, disposable, fully handheld, easy-

to-use, yet sensitive and specific quality control method for appraising red wine or similar beverage 

products in resource-limited environments. 

Introduction 

It is very important for the food and beverage industry to 

maintain consistency in their products through carefully 

selected quality control (QC) procedures. “Taste” of these 

products is typically evaluated for such QC, which largely 

comes from the human tongue, often assisted by (and 

sometimes dominated by) the human nose. In the past, such QC 

procedures have often been performed by human workers, 

typically by a group of taste panellists.1 Obviously, there exists 

a huge degree of variance with this approach, often being 

subject to the influence of a highly experienced worker, or to 

the health and eating habits of each individual, not to mention 

the cost and substantial time associated with it.2 

 An alternative to the taste panelists is the instrument-based 

taste QC, which has been performed utilizing high performance 

liquid chromatography (HPLC; to replace the human tongue) 

and/or gas chromatography – mass spectrometry (GC-MS; to 

replace the human nose). HPLC and GC-MS are probably the 

most practiced methods in appraising food/beverage quality, 

where each individual ingredient is analyzed qualitatively and 

quantitatively. However, these methods require complex 

instruments, wet laboratory set-up, and skilled personnel, thus 

not practical for small-sized food/beverage industry such as 

small wineries.3 In addition, they focus only on the lead 

ingredient and do not account for a large number of minor 

ingredients.1 Since most food and beverage samples are multi-

component and contain lots of trace elements that are often 

difficult to be identified, large number of reagents should be 

used that can interact with those minor ingredients non-

specifically, i.e., “fingerprinting” approach. 

 A better alternative is the use of non-specific sensor arrays, 

associated with an appropriate pattern recognition technique, 

towards taste sensing. This method actually mimics the 

working mechanism of the human tongue and nose.3,4 

Previously, array sensors were made out of conductive coatings 

of metals or polymers that interacted with each taste chemical 

to a different extent, and subsequent electrochemical signals 

from those arrays were evaluated. These are commonly referred 

to as “electronic tongues.” (It is also possible to use a similar 

approach to replace a human nose, known as “electronic 

noses.”) Occasionally, those sensor arrays have been made in 

conjunction with piezoelectric materials, known as quartz 

crystal microbalance (QCM) or surface acoustic wave (SAW) 

devices, such that acoustic signals could be obtained instead of 

electrochemical signals.5 Several works on electronic tongues 

have been published for sensing soft drinks6-7 and for 

appraising wine quality.3,8-9 However, those electrochemical 

signals do not provide the necessary breadth of chemical 

information on food/beverage ingredients. Moreover, 

fabrication of these electronic tongues could still require 

substantial amount of time and labor, and subsequent use might 

require skilled personnel, although at a lesser extent compared 

to the laboratory-based HPLC or GC-MS method. Separate 

instruments such as an impedance analyzer or a frequency 

counter would be necessary, making them impossible to be 

used as portable systems. 
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 A colorimetric sensor array has emerged as an alternative, 

using a set of colorimetric dyes.10-12 The color change pattern of 

the dye array upon exposure to multi-component analyte 

provides a “fingerprint” for the whole sample, and this array 

system makes relatively easy identification of a wide variety of 

food/beverage samples.4 Although each dye is not specific to a 

certain ingredient of food/beverage (or such relationship may 

be unknown), this should be acceptable for QC purposes as 

long as the method can chemically discriminate among 

different samples. 

 In this paper, we focus on the QC of red wine. Wines are 

unique in two different aspects. First, wines are typically 

produced by relatively small firms (wineries), whereas most 

other commercial food/beverages are produced by multi-

national corporations. Second, wines (especially red wines) are 

much more complex and heterogeneous than any other 

beverage, and wine composition is influenced by geographic 

factors (soil and climate), grape varieties, production practices, 

and so forth.8 In an exceedingly competitive international 

market, wine producers need to invest in technology to improve 

product quality to remain competitive.13 Since wines are 

produced by small firms yet they are very complex and 

heterogeneous, human evaluation (by the taste panellists) is still 

the mostly adopted method in appraising wine quality.5  

 As a low-cost and portable yet sensitive method in 

appraising the quality of wine, the colorimetric sensor array is 

probably the best choice, especially considering its ability to 

account for substantial breadths of chemical information on the 

taste ingredients. However, such demonstration has not been 

reported to the best of our knowledge. Perhaps the particulate 

matters in red wine had some negative impacts in colorimetric 

detection: it is too “dark” and contains too many particulate 

matters. Since the typical pore sizes of the filters used for red 

wine range from a few microns to submicron sizes,14 the 

diameter of such “particles” can be assumed to be a few micron 

to submicron. Since visible light (red, green and blue, ranging 

from 0.4 µm to 0.75 µm, which is in the similar order of 

magnitude of the size of the particles in red wine) is used for 

colorimetric sensor arrays, these particles will scatter almost at 

its maximum under Mie scatter regime,15 greatly undermining 

the performance of colorimetric sensor arrays. 

 In this paper, we attempt to use a paper microfluidics16 as a 

disposable and cheap alternative to a sensor array. A droplet of 

undiluted red wine flows through chromatographic paper (to 

eliminate particulate matter from red wine) and split into 8 

different wells (each with different colorimetric dye). Since a 

single sample splits into eight wells on a single paper 

microfluidics, sample-to-sample variations can be minimized, 

contributing to enhanced sensitivity and specificity. 

 A cell phone camera takes the image of paper microfluidics 

and the areas of interest (eight different circular wells) are 

selected. Red, green and blue pixel intensities from these areas 

of interest are obtained, and these multivariate dataset (8 dyes x 

3 colors = 24 dimensions) are reduced to two dimensions using 

the linear pattern recognition technique, in this particular study, 

principal component analysis (PCA). 

 PCA has frequently been used in many other taste sensor 

works.1,3,5,8,13,17 PCA is a linear pattern recognition technique 

used for analyzing, classifying, and reducing the dimensionality 

of numerical datasets in a multivariate problem.18 It transforms 

original variables into a few new variables known as principal 

components (PCs). Each principal component is a linear 

combination of the original variables. These PCs account as 

much as possible for the variability contained in the original 

data. The first principal component (PC1) accounts for the 

maximum of the total variables, the second (PC2) is 

uncorrelated with the first and accounts for the maximum of the 

residual variance, and so on. PCs are used for showing the 

classification of the data clusters. The first two PCs construct 

two dimensional score plots, which show the relationship 

among the observations. Similar samples will be located close 

to each other. Hence, the graphical output (two or three 

dimensional score plots) can be used for determining the 

difference between groups and comparing this difference to the 

distribution of pattern within one group. 

 Such image processing and PCA can eventually be 

implemented as a stand-alone smartphone application, or within 

a cloud computing environment, and can eventually be adopted 

as an extremely low-cost, disposable, fully handheld, easy-to-

use, yet sensitive and specific QC method for appraising red 

wine or similar beverage products, in resource-limited 

environment. 

Materials and Method 

Dyes, taste chemicals, and red wine samples 

All dyes (calconcarboxylic acid, crystal violet, methylene blue, 

cresol red, methylthymol blue, phenol red, fluorescein, and 

alizarin) were purchased from Sigma-Aldrich (St. Louis, MO, 

USA). These 8 dyes were carefully selected from the list of 

dyes previously reported in similar works.11-12 considering their 

frequency of use and commercial availability. Additionally, 

common pH indicators were added (cresol red, crystal violet, 

and methylene blue) primarily to monitor the acidic ingredients. 

 To check whether the selected 8 dyes show distinct RGB 

colorations with response to the ingredients of red wines, the 

following taste chemicals were selected: major organic acids 

(acetic acid, citric acid, lactic acid, and tartaric acid), ions 

(CaCl2, KCl, and NaCl), and sugars (fructose, glucose, and 

sucrose),19-20 all purchased from Sigma-Aldrich. Visible spectra 

of each dye to each taste chemical were measured using the 

USB4000-UV-VIS spectrometer from Ocean Optics (Dunedin, 

FL, USA), consisting of USB4000 and USB-ISS-UV-VIS from 

the same company. Each dye solution (1 mM) was mixed with 

an equal volume of 10 different taste chemicals (1 M, 0.1 M, 10 

mM, 1 mM, and 0.1 mM). For each dye, transmittance values at 

680 nm (representing red color), 540 nm (representing green 

color) and 470 nm (representing blue color) were measured for 

five different concentrations of 10 different taste chemicals, and 

the coefficients of determination (R2) were evaluated. (We used 
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transmittance, not absorbance, to better explain RGB 

colorations.) 

 To compare our results with those of taste panellists, we 

purchased 6 different wines (varying the grape species) from a 

single company (Yellow Tail, Yenda, Australia), who provided 

the publicly available “flavor map” (by taste panellists). These 

are Shiraz (Sh), Cabernet Sauvignon (CS), Shiraz 80% + 

Cabernet Sauvignon 20% (Sh+CS), and Pinot Noir (PN), all 

bottled in 2012 and purchased/experimented in 2013. The other 

two from the same vendor are Cabernet Sauvignon 60% + 

Merlot 40% (CS+Me) and Merlot (Me), bottled in 2013 and 

purchased/experimented in 2014. These six red wines were 

used as a “model sample set.” 

 Another 4 wine samples from a different company 

(Lindeman’s, Australia) were tested as an “evaluation sample 

set.” They were Shiraz (Sh2), Cabernet Sauvignon (CS2), 

Shiraz 67% + Cabernet Sauvignon 33% (Sh+CS2), and Pinot 

Noir (PN2), all bottled in 2013 and purchased/experimented in 

2014. 

Fabrication of paper microfluidics 

The paper microfluidic channels were fabricated on cellulose 

chromatography paper (GE Healthcare; Springfield Mill, UK) 

using SU-8 negative photoresist (Microchem; Newton, MA, 

USA) diluted with negative resist thinner I (Sigma-Aldrich) in a 

10 to 1 ratio. The design of the paper microfluidic chip included 

a sample inlet (diameter = 7 mm) at the center surrounded by 8 

wells (diameter = 4 mm each) (Figure 1A). The wells and the 

sample inlet were connected with 2.5 cm x 2.5 cm rectangular 

“channels.” This layout was printed on a transparency film 

using a laser printer and used as a mask. The paper was first 

saturated with the photoresist solution, then dried on a hot plate 

at 85°C, and finally UV-exposed for 3 minutes on each side 

using the aforementioned mask. Sequential rinsing with acetone 

and isopropyl alcohol was used for developing the pattern.21 

The resulting channel was SU-8-free and hydrophilic, allowing 

the red wine sample to spontaneously flow by capillary action 

from the sample inlet to each reaction well (Figure 1B). 

Paper microfluidic assay for red wine samples 

Each dye solution (3 µL) was loaded at the designated location, 

which was in the center of each well, and dried before use 

(Figure 1A). The sample inlet was loaded with 30 µL of red 

wine samples that split into and flowed through 8 

channels/wells by capillary action. The sample was mixed with 

each dye and filled each well entirely within 15 seconds (this 

fill-up time was very reproducible). Right after this, a digital 

image was taken using a smartphone camera (5 megapixels, 

iPhone 4; Cupertino, CA, USA) with both auto-focus and auto-

exposure modes (Figure 1C), in parallel and with 15 cm 

distance from the paper microfluidic chip. These images were 

imported into ImageJ software (National institutes of Health; 

Bethesda, MD, USA). Each image was split into red, green and 

blue (RGB) images and the average RGB pixel intensities were 

evaluated from each well. To eliminate the potential effects of 

different ambient lighting and chip-to-chip variation, all RGB 

pixel intensities were normalized with that of “white” 

background of paper. 

 
Figure 1. (A) Eight different dyes were pre-loaded and dried at each well. (B) A 

red wine sample (30 μL) is loaded at the center of the paper microfluidic chip. (C) 

A smartphone takes a digital image of the paper microfluidic chip, after the red 

wine sample filled the entire channel. (D) Particulate matters of red wine are 

filtered within paper microfluidic chip. 

Principle component analysis (PCA) 

Twenty-four color data (8 dyes x 3 colors) were taken from 

each wine sample (from the 6 model sample set; Yellow Tail) 

that was loaded on the paper microfluidic chip. Each 

experiment was replicated three times, each time using different 

paper microfluidics, dyes, and wine samples. The color data 

from the red wine sample was imported into a multivariable 

analysis software called “The Unscrambler” version 9.7 

(CAMO Software AS, Olso, Norway) and PCA was executed.

 Additional experiments were performed for the 4 evaluation 

sample set (Lindeman’s) in order to validate the developed 

PCA model. The data from the model sample set were used as a 

validation set for PCA execution. These experiments were also 

replicated three times. 

Results and discussion 

Correlations of RGB color intensities of each dye to the taste 

chemicals 

Prior to PCA, the correlation between the RGB color intensities 

of each dye and the concentrations of taste chemicals was 

evaluated, at the fixed wavelengths representing RGB 

colorations (680 nm for red, 540 nm for green, and 470 nm for 

blue). Figure 2 shows the coefficients of determination (R2) for 
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such relationship. Data points closer to 1 show very strong 

correlations. The number of data points that show R2 > 0.9 and 

their corresponding colors (red, green or blue) are quite 

different by each dye. In fact, none of the dyes show any 

similarity with each other in Figure 2. This clearly indicates the 

relative independence of the coefficient of determination to the 

transmittance with respect to three distinct colors (RGB), 

indicating the cross-reactivity of dyes to different taste 

chemicals and the ability to estimate the concentrations of each 

taste chemical. 

 
Figure 2. Coefficients of determination (R

2
) between the transmittances of each dye at 680 nm (red), 540 nm (green), and 470 nm (blue) and the concentrations of 

each taste chemical. Equal volumes of 1 mM dye and 0.1 mM – 1 M taste chemicals were used. 

Can RGB coloration analysis distinguish different red wines? 

To evaluate any possibility of discriminating the red wines 

purely based on their RGB colorations without using any 

chemicals, the RGB color intensities of the wine-loaded central 

area of a paper microfluidic chip (i.e. before the red wine 

diffused and hit the pre-loaded chemical dyes) were also 

collected and analysed, for the model sample set (six red wines 

from Yellow Tail). For each color component, the error bars are 

mostly overlapping for six different red wines, with the 

exception of Pinot Noir against Cabernet Sauvignon + Merlot 

blend (Figure 3). This result represents a very low chance of 

discriminating red wines purely from the RGB colorations on 

the paper fibers, and the necessity for the chemical dyes and 

PCA.  
Figure 3. Red, green and blue color intensities of the wine-loaded paper (before 

the wine hit the chemical dyes). Sh = Shiraz; CS = Cabernet Sauvignon; CS+Me = 

Cabernet Sauvignon 60% + Merlot 40%; Sh+CS = Shiraz 80% + Cabernet 

Sauvignon 20%; Me = Merlot; PN = Pinot Noir. Error bars represents standard 

errors. 
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Taste assay results with a model sample set  

Each fresh wine sample was assayed on the paper microfluidic 

chip, each time using different paper microfluidic chip. After 

the wine sample reacted with the pre-loaded dyes, digital 

images were taken, and split into RGB. The 24 intensity data (8 

dyes x 3 colors) from a single sample were transformed into 

principal components (PCs). The first principal component 

(PC1) accounts for the maximum of the total variables, the 

second (PC2) is uncorrelated with the first and accounts for the 

maximum of the residual variance. PC1 and PC2 were used for 

the classification of the data clusters and constructed into a two-

dimensional score plot. The experiments were repeated three 

times, each time using different microfluidics, dyes, and red 

wine samples. X- and y-averaged score plots were constructed 

in Figure 4, while the error bars represent standard errors and 

the ellipses represent the extents of standard errors for each data 

point. On average, the PC1 and PC2 accounted for 74.76% 

(PC1: 55.34%, PC2: 19.42%) of the total variances. 

 All 6 fresh red wines from the model sample set (Yellow 

Tail), Shiraz (Sh), Cabernet Sauvignon (CS), Shiraz 80% + 

Cabernet Sauvignon 20% (Sh+CS), Cabernet Sauvignon 60% + 

Merlot 40% (CS+Me), Merlot (Me), and Pinot Noir (PN),  fall 

into different regions in the PCA score plot without most of the 

standard errors overlapping, demonstrating promising 

identification of red wines using this method, as well as 

sensitivity and reproducibility of the assay.  

 
Figure 4. Score plot of PCA (average of three experiments using different paper 

microfluidics, dyes, and red wine samples) for a model sample set (Yellow Tail). 

X- and y-error bars represent standard errors, and the ellipses represent the 

extents of standard errors of each data point. The RGB color data from 6 red 

wines with 8 dyes were imported into Unscrambler version 9.7 for PCA.  

 This PCA result was compared with the flavor map 

provided by the wine producer22 (Figure 5) and the PCA plot 

matched the flavor map very well. Pinot noir and Merlot are 

characterized as light wines and located at top area in both 

Figures 4 and 5. Shiraz is the heaviest and dry wine and located 

at bottom left in both figures. Shiraz + Cabernet Sauvignon and 

Merlot are the sweetest wine among six and located at right in 

both figures. Finally, Cabernet Sauvignon and Cabernet 

Sauvignon + Merlot are accordingly located at central area in 

both Figures 4 and 5. From these results, PC1 can be 

interpreted as explaining the sweetness (sweet or dry) of red 

wine, while PC2 the bodyness (light or heavy) of red wines. 

 
Figure 5. The flavor map of Yellow Tail brand red wines. Adapted from 

http://www.discoveryellowtail.com/fun/flavor-map.php. 

 This superior performance is attributed to: 1) careful 

selection of dyes as described above (correlation study), 2) 

minimization of sample-to-sample variation by splitting a 

single sample into multiple wells on the paper microfluidics, 

and 3) filtration of particulate matter through paper fibers. The 

filtration of particulate matter within paper microfluidics can be 

confirmed from Figure 1D. After the wine sample was loaded, 

it created a noticeable, dark red-colored “ring” along the edge 

of the sample inlet, indicating the filtration of particulate 

matter. This filtration enabled the elimination or at least 

minimization of Mie scatter in visible wavelengths by such 

particulate matter, thus allowing the other taste ingredients to 

travel towards 8 different wells and react with pre-loaded dyes. 

Taste assay results with an evaluation sample set  

To validate the developed PCA model, 4 additional red wines 

from a different vendor (Lindeman’s) were tested using the 

same method described above, again using the paper 

microfluidics. The resulting RGB intensity data were imported 

to the PCA model, and the data from the model sample set (the 

red wines from Yellow Tail; refer to Figure 4) were selected as 

a calibration set for PCA execution. Basically, the mathematical 

model developed by the model sample set was applied to the 

evaluation sample set, to construct a PCA score plot shown in 

Figure 6. 

 Figure 6 shows a good overall match with Figure 4, where 

Pinot Noir is located at the top (light wine), Shiraz at the 

bottom left (heavy and dry wine), and Shiraz + Cabernet 

Sauvignon at the right (sweet wine). A small discrepancy can 

be found, specifically for Shiraz + Cabernet Sauvignon, which 

can easily be explained in terms of different blending ratios 

Page 5 of 8 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



ARTICLE Journal Name 

6 | J. Name., 2014, 00, 1-3 This journal is © The Royal Society of Chemistry 2014 

(80%+20% in Figure 4 vs. 67%+33% in Figure 6). Through this 

validation experiment, we can conclude that the developed 

PCA model can distinguish each wine by the grape variety. 

 
Figure 6. Score plot of PCA (average of three experiments using different paper 

microfluidics, dyes, and red wine samples) for an evaluation sample set 

(Lindeman’s). X- and y-error bars represent standard errors, and the ellipses 

represent the extents of standard errors of each data point. 

 
Figure 7. PCA loadings distribution plot for 8 dyes (CCA = calconcarboxylic acid; 

CV = crystal violet; MB = methylene blue; CR = cresol red; MTB = methylthymol 

blue; PR = phenol red; F = fluorescein; A = alizarin) in 3 colors (RGB), from the 

model sample set data. 

PCA loadings distribution plot 

Figure 7 shows the PCA loadings distribution plot from the 

model sample set (Yellow Tail). Similar to the correlation plots 

between the dyes and individual taste chemicals (Figure 2), all 

24 data points (8 dyes x 3 colors) are well distributed – none of 

them show any significant overlaps. Specifically, methylthymol 

blue in red color (MTB/R) and phenol red in red color (PR/R) 

shows the highest contribution to PC1, potentially indicating 

the best dye/color combination in explaining the sweetness of 

red wine. Cresol red in red color (CR/R) and Phenol red in blue 

color (PR/B) shows the strongest negative and positive 

contributions to PC2, respectively, potentially indicating the 

best dye/color combinations in explaining the lightness (CR/R) 

and heaviness (PR/B) of red wine. 

Oxidized red wine samples 

Additional experiments were performed using the red wine 

samples, with their bottles opened for 24 hr in a well-ventilated 

laboratory. Each bottle was emptied by a half and hand-shaken 

to introduce oxygen to red wine. Sulphite was not added. The 

paper microfluidic assays were performed (again repeated for 

three times). These results are shown in Figure 8. The PC1 and 

PC2 accounted for 75.15% (PC1: 51.96%, PC2: 23.19%) of the 

total variances. The standard errors are much bigger than those 

with fresh red wine samples, without significant separations. 

Additionally, all data points in the PCA score plot seemed to be 

clustered towards the center (origin of the plot). This clustering 

to the center represents that the paper microfluidic assay was 

not able to distinguish the difference of oxidized red wine 

samples. As the red wines continuously react with oxygen in 

the air, “taste flattening” and “acidification” happens, losing 

their own flavour.20 And because of this taste flattening and 

acidification, distinction became quite difficult among different 

samples. Since this oxidation is the most common problem in 

maintaining the quality of red wine, during fermentation and/or 

storage, we can claim that the proposed method may also be 

utilized as a QC tool in winemaking. 

 This oxidation assay must be used with caution and should 

be used only as a QC tool but not as a means to quantify the 

extent of oxidation, since there could have been many unknown 

parameters and conditions during this oxidation experiments. 

 
Figure 8. Score plot of PCA (average of three different experiments for each red 

wine) for 4 different oxidized red wines, assayed on the paper microfluidics. 

Conclusion 

The results shown in Figures 4, 6 and 8 indicate successful 

distinction of red wines by their grape varieties and oxidation 

status. The PCA result was compared with the flavor map and 

they matched very well. PC1 can be interpreted as explaining 

the sweetness (sweet or dry), while PC2 the bodyness (light or 
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heavy) of red wine. Minimization of sample-to-sample 

variation by splitting a single, undiluted red wine sample into 8 

different wells, filtering particulate matters by paper fiber, each 

at exactly the same volume (microfluidic patterning), also 

contributed to the improved reproducibility and smaller errors, 

towards better separation in the PCA plot. The image 

processing and PCA procedure can eventually be implemented 

as a stand-alone smartphone application and can be adopted as 

an extremely low-cost, disposable, fully handheld, easy-to-use, 

yet sensitive and specific quality control method for appraising 

red wine or similar beverage products in resource-limited 

environments. 
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A smartphone takes a digital image of the paper microfluidic chip, after the red wine sample filled the 

entire 8 channels (each pre-loaded with different chemical dye). The PCA score plot shows good 

statistical difference among the 6 red wine samples, where PC1 corresponded to the sweetness and PCR 

to the bodyness of red wine. The PCA model was validated with additional 4 red wine samples from a 

different manufacturer. 
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