This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Kinetics and mechanism of PPh₃ oxygenation with 3O₂ catalyzed by a 1,3,2-oxazaphosphole as flavin mimic

I. Bors, J. Kaizer and G. Speier

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

An 1,3,2-oxazaphosphole picks up triplet dioxygen in 1:1 stoichiometry like flavin organic co-factors. It catalyzes the oxygenation of triphenylphosphine to triphenyl phosphine oxide. The reaction obeys an overall third order rate equation. In a radical pathway organic hydroperoxide is formed from the catalyst and 3O₂, which oxygenates PPh₃ similar as flavin cofactors.

The oxygenation/oxygenation of organic substrates with triplet dioxygen, as a primary oxidant, is a desirable way for economical and environmental reasons. However, spin restriction and thermodynamic burden hampers its reactivity. In order to circumvent these problems transition metal complexes and energy-rich organic compounds (co-factors such as pterins and flavins in biology) are necessary to activate dioxygen for these reactions.

We found earlier that 1,3,2-oxazaphospholes can easily be prepared reacting quinone monoimines with triphenylphosphine in a [4+1] electrocyclic reaction, or quinones with triphenylphosphine in the presence of ammonia in a sealed tube in good yield. Later to our surprise we observed that 1,3,2-oxazaphosphole react with triplet dioxygen in a stoichiometry of 1:1 (Scheme 1). In different solvents of the same amount of 3O₂ was taken up with various velocities (SFig. 2). The peroxy form is not stable at room temperature. Iodometric titration of the oxygenated solutions of 3 resulted in peroxy content 10-30% after immediate titration. This 3O₂-uptake is very similar to flavin models in which N,N,N-3,5,10-trialkylated flavins (1) were used and it was demonstrated that in their reaction with 3O₂ flavin hydroperoxides (2) can be generated. We assumed that 2,2-dihydro-2,2,2-triphenylphosphole[9,10d]1,3,2-oxazaphosphole (3) give in a similar manner alkylhydroperoxides (4) (Scheme 1), which can oxygenate/oxidize various singlet organic compounds.

Kinetic studies resulted in an overall third order rate equation, reaction rate = k_{obs}[catalyst][PPh₃][O₂] with a k_{obs} value of 39.10±0.82×10⁻² M⁻²s⁻¹. Time course of the reaction is shown in Fig. 1, which was measured by UV/Vis spectroscopy at 260 nm (SFig. 3). The dependence on the triphenylphosphine and dioxygen concentrations showed also first order using reaction rate vs. initial concentrations of PPh₃, catalyst (3) and O₂ plots (SFig. 4, 5 and 6).

![Scheme 1](image-url)

Scheme 1. Similarties in flavin models (1) and 2,2-dihydro-2,2,2-triphenylphosphole[9,10d]1,3,2-oxazaphosphole (3) reactions with 3O₂ to give hydroperoxides 2 and the hypothetical hydroperoxide 4.

![Figure 1](image-url)

Figure 1. Time course of the oxygenation of PPh₃ catalyzed by 3. Temperature 80°C and 1 bar O₂ pressure, [PPh₃] = 0.5 M, [3] = 2.5×10⁻⁷ M, 20 mL DMF. TON = 160, TOF = 5.7 h⁻¹.
Labeling experiments using 18O clearly demonstrated that the O-atom of triphenylphosphine oxide originates from O$_2$. The v(P=O) frequencies being 1190 and 1153 cm$^{-1}$ for 3OPPh$_3$ and 3OPPh$_3$ (SFig. 7). The activation parameters of E_a = 31.6±2.9 kJ mol$^{-1}$, ΔH^\ddagger = 28.7±2.9 kJ mol$^{-1}$, ΔS^\ddagger = -174±8 J mol$^{-1}$ K$^{-1}$ of the catalytic reaction suggest that the transition state is very crowded and the small value for the activation energy indicates the easiness of the reaction.

In order to clear some points of the reaction mechanism we measured possible radicals formed during the catalytic reaction. Fig. 2 shows that a well-resolved spectrum of the organic radical could be proved by EPR (Fig. 2) and it reacts with superoxide anion (KO$_2$) to 9 (SFig. 8). The red color changes to greenish indicating the reaction of the radical to the hydroperoxide (4) and to its decomposition products. Similar hydroperoxide have been prepared and characterized also by x-ray measurement from 3,4,6-triisopropylcatechol with di-tert-butylperoxide and dioxygen. The formation of the unstable hydroperoxide 4 is the rate-determining step (k_{obs}) involving also the various pre-equilibria and the fast protonation of 9. The course of the catalytic reaction of the hydroperoxide 4 with the substrate PPh$_3$ (Scheme 3) may take two pathways: a) oxygenating the bound phosphorus as part of the iminophosphorane (4), a part of the catalyst, (Pathway a) or that of added PPh$_3$ being oxygenated to the oxide (Pathway b).

Scheme 2. Proposed mechanism of hydroperoxide (10) formation.

Scheme 3. Pathways a and b for the oxygenation of PPh$_3$ by the hydroperoxide 4.

In the reaction path a where the iminophosphorane is oxygenated 9-nitroso-10-hydroxyphenanthrene (10) is formed, which is the tautomeric form of 9,10-phenanthrenequinone oxime. This is also able to transfer an O-atom to PPh$_3$ and gives 9,10-phenanthrenequinone monoimine (SFig. 10), and with additional
triphenylphosphine the iminophosphorane (S) is reformatted. Pathway b starts with the classical oxygenation of PPh₃ and 11 is formed. Triphenylphosphine thereafter abstracts an O-atom from 11 giving triphenylphosphine oxide and the iminophosphorane (S) formed just closing the catalytic cycle.

Conclusions

Although triplet dioxygen does not react with ground state, mostly singlet organic molecules its activation beside transition metal complexes can also be done with some organic molecules, possibly flavin mimics. It has been disclosed that 2,2-dihydro-2,2,2-triphenylpheno[9,10d][1,3,2k²-oxazaphosphole reacts with O₂ under ambient condition and catalyzes the oxygenation of triphenylphosphine to its oxide. Labeling experiments proved that the source of oxygen in triphenylphosphine oxide originates from dioxygen. On the basis of kinetic and spectroscopic data a possible radical mechanism is proposed. The O-transfer to triphenylphosphine from the hydroperoxide differs from the usual H₂O₂ or hydroperoxide oxygenation, since in the present case both O-atoms of the hydroperoxide are transferred to the triphenylphosphine. The scope of the catalytic oxidations/oxygenations however, remains to be elaborated.

Notes and references

Department of Chemistry, University of Pannonia, H-8200 Veszprém, Hungary.
E-mail: speieri/almos.uni-pannon.hu
Fax: +36 88 624 469; Tel: +36 88 624 720
† Electronic Supplementary Information (ESI) available: Method of kinetics, kinetic data, UV-Vis spectra, infrared spectra, and activation parameters of the reaction. See DOI: 10.1039/c000000x/