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Catalyzed by palladium(II) chloride, a diverse range of 

arylsulfinate sodium, potassium, lithium, silver, zinc, and 

copper salts undergo desulfination/C-P coupling with H-

phosphonates, in the presence of silver(I) carbonate as 

oxidant, to produce the useful arylphosphonates under 

microwave irradiation. 

The synthesis of organophosphorus compounds has received 

significant interest due to their widespread applications in catalysis,1 

synthesis,2 medicinal chemistry,3 and material chemistry.4 Among 

the manifold reported methods, the transition-metal-catalyzed cross-

coupling reaction has been one of the most powerful carbon-

phosphorus bond-forming strategies.5 Since the seminal work 

reported by Tavs and Hirao independently,6 versatile efficient 

catalytic systems have been developed for the preparation of 

arylphosphonates. In this context, the aryl substrate scope has been 

expanded from aryl halides to triflates, mesylates, tosylates, phenols, 

diazonium salts, boronic acids, and cyano compounds.7 

Recently, increasing attention has been attracted to desulfitative 

coupling via releasing SO2 from sulfinate metal salts, RSO2Na8 or 

(RSO2)2Zn9. In contrast to current research in which sulfinates are 

mainly used to participate in sulfonylation reactions,10 desulfitative 

coupling reactions have been well demonstrated in desulfitative 

Heck reactions,8d tandem desulfination/C-H activations,8e,9,11 biaryls 

synthesis,11c,12 aryl ketones synthesis,8f,g additions,13 and  

diarylmethanes synthesis.14 However, until now, this type of reaction 

is limited to the C-C bond formations. As similar with the 

decarboxylative couplings,15 we envisioned that the resulting aryl 

metallic intermediate from arylsulfinate metal salt generated in the 

presence of palladium catalyst might also react with nucleophiles. 

Considering the great importance of organophosphorus compounds, 

we herein wish to develop an efficient desulfitative C-P coupling 

reaction of arylsulfinate metal salts and H-phosphonates, and 

achieved the preliminary results16. While this manuscript was under 

review, a similar work has been published focusing on desulfitative 

C-P coupling of sodium arylsulfinates by Wang group.17 Differing 

from Wang’s work, a microwave-promoted method was applied to 

our desulfitative C-P coupling, and the metal scope of arylsulfinate 

metal salts was also investigated. 

Our initial investigations focused on the PdCl2-catalyzed 

desulfitative phosphonation of sodium p-toluenesulfinate 1a with 

diethyl phosphite 2a under microwave irradiation. AgI salts are 

known as efficient oxidants in the Pd-catalyzed oxidative 

couplings,18 thus we chose silver salts as oxidants to take part in this 

reaction. As shown in Table 1, we were gratified to find that the use 

of 20 mol% of PdCl2 and 1 equivalent of Ag2CO3 in toluene at 

120 °C provided a 8% yield of the desired product 3a (Table 1, entry 

1). Besides the desulfitative homocoupling product 4,11a,12a the 

reduction/arylation product 5 and reduction/phosphorylation product 

619 were also generated because of the reductive properties of 

phosphites.20 Similar product distribution was obtained when xylene 

was used as the solvent (entry 2). When the reaction in other 

common solvents (e.g., EtOAc, THF, DCE, and DMF) was carried 

out, 3a was produced in moderate yield, and the phosphorothioate 

ester 6 was effectively controlled (entries 3-6). By employing 

Myers’ solvent system,21 the reaction yield was slightly improved to 

68% (entry 7). Due to the competing reduction reactions, we 

anticipated that the yield might be mended through increasing the 

amount of the oxidant. To our delight, the augment of the dose of 

Ag2CO3 to 2 equivalents gave 3a in 96% isolated yield (entry 8). 

Moving to other silver salts (e.g., Ag2O, AgNO3, Ag2MoO4, and 

AgOAc) resulted in lower yield (entries 9-12). Running the reaction 

in DMSO afforded the coupled product in 80% yield (entry 13). 20% 

yield of 3a was obtained in the absence of Ag2CO3 whether or not 

the reaction was ran in air atmosphere (entries 14-15), which 

indicating that the oxygen had no effect on reaction. Absence of 

PdCl2 showed none of the phosphonation product 3a (entry 16), 

Therefore, PdCl2 and Ag2CO3 might have a synergetic action in the 

desulfination. When the reaction was operated under conventional 

heating condition for 10 h, only 40% of 3a was generated (entry 17). 

 
Table 1 Optimization of the reaction between 1a and 2a

a
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Entry Ag salt (equiv) Solvent 
Yield of 3a 

(%)
b
 

3a/4/5/6 (%)
b, c

 

1 Ag2CO3 (1) toluene 8 14/0/3/83 

2 Ag2CO3 (1) xylene 10 16/4/6/74 

3 Ag2CO3 (1) EtOAc 63 84/4/11/1 

4 Ag2CO3 (1) THF 66 80/0/16/4 

5 Ag2CO3 (1) DCE 44 57/13/22/8 

6 Ag2CO3 (1) DMF 64 77/2/17/4 

7
d
 Ag2CO3 (1) DMF/DMSO 68 82/0/10/8 

8
d
 Ag2CO3 (2) DMF/DMSO 99 (96

e
) 94/5/1/0 

9
d
 Ag2O (2) DMF/DMSO 81 90/8/0/0 

10
d
 AgNO3 (2) DMF/DMSO 33 67/31/2/0 

11
d
 Ag2MoO4 (2) DMF/DMSO 43 64/3/13/10 

12
d
 AgOAc (2) DMF/DMSO 4 11/0/13/76 

13 Ag2CO3 (2) DMSO 80 86/10/4/0 

14
d
 - DMF/DMSO 20 46/4/34/16 

15
d, f

 - DMF/DMSO 21 52/4/37/7 

16
d ,g

 Ag2CO3 (2) DMF/DMSO ~0 4/44/41/10 

17
h
 Ag2CO3 (2) DMF/DMSO 40 66/0/34/0 

a
Reaction conditions: 1a (0.36 mmol), 2a (0.3 mmol), PdCl2 (20 mol%), Ag 

salt, solvent (2 mL), MW irradiation at 120 °C for 10 min. 
b
GC/MS analysis of 

crude reaction mixture. 
c
Ratio of these four peaks was determined by area 

normalization method. 
d
DMF/DMSO = 19/1 (v/v). 

e
Isolated yield in 

parentheses. 
f
Carried out in Ar. 

g
In the absence of PdCl2. 

h
Carried out under 

conventional heating condition at 120 °C for 10 h.  

 

The scope of this desulfitative C-P coupling with respect to the H-

phosphonates has been investigated (Table 2). Moderate to good 

yields could be obtained with various H-phosphonates (3a-3f, 3h). 

The strong steric hindrance of the H-phosphonates led to inhibition 

of the reaction (3g). 

 
Table 2 Desulfitative phosphonation of 1a with various H-phosphonates 

a, b 

 

 

a
Reaction conditions: 1a (0.36 mmol), 2 (0.3 mmol), PdCl2 (20 mol%), Ag2CO3 

(2 equiv), DMF/DMSO (v/v = 19/1, 2 mL), MW irradiation at 120 °C for 10 

min. 
b
Isolated yields. 

c
Only biaryl 4 was observed by GC-MS. 

 

We have also explored functional group tolerance with respect to 

the substituents on the sodium arylsulfinate (Table 3). Both electron-

rich groups and electron-withdrawing groups performed well under 

our standard reaction conditions. Sodium arylsulfinates with a m-

methyl substitution gave a yield of 91% (3j). Versatile groups on the 

para-position of the arylsulfinates, such as tBu, AcNH, MeO, and 

halides, gave the products in good yields (3l-3n, 3p-3q). It was 

noteworthy that the bromo substituent tolerated well in this reaction 

(3q). However, much diethyl pyrophosphate was produced when p-

fluoro, p-nitro, and p-trifluoromethyl arylsulfinate sodium salts were 

employed as the substrates. Using DMSO as the solvent could 

eliminate these disadvantages and gave the products in moderate 

yields (3o, 3r-3s). Sodium 2-naphthalenesulfinate provided the 

corresponding product in 58% yield (3t). 

 
Table 3 Desulfitative arylation of 2a with various arylsulfinate sodium salts

 a, b 

 

 

a
Reaction conditions: 1a (0.36 mmol), 2 (0.3 mmol), PdCl2 (20 mol%), Ag2CO3 

(2 equiv), DMF/DMSO (v/v = 19/1, 2 mL), MW irradiation at 120 °C for 10 
min. 

b
Isolated yields. 

c
DMSO (2 mL). 

 

This catalytic system was also effective for other metal salts of 

arylsulfinate, including Li, K, Ag, Zn, and Cu. As depicted in Table 

4, the reaction of these arylsulfinate metal salts with diethyl 

phosphite gave the coupled product in moderate to excellent yields 

(entries 1-5). Among these metal salts, zinc arylsulfinate turned out 

to be the most appropriate substrate for the catalytic system (entry 4). 

 
Table 4 Desulfitative arylation of 2a with arylsulfinate metal salts

 a 

 
Entry Arylsulfinate Product Yield (%)

b
 

1  
1u 

3a 36 

2  
1v 

3a 86 

3  
1w 

3a 44 
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1x 

3b 93 

5  

1y 

3b 31 

a
Reaction conditions: 1u-w (0.36 mmol) or 1x-1y (0.18 mmol), 2a (0.3 

mmol), PdCl2 (20 mol%), Ag2CO3 (2 equiv), DMF/DMSO (v/v = 19/1, 2 

mL), MW irradiation at 120 °C for 10 min. 
b
Isolated yields. 

 

In summary, we have developed a new type of desulfitative 

coupling for the preparation of arylphosphonates and have 

demonstrated its functional group tolerance and substrate scope. The 

versatile arylsulfinate metal salts (M = Na, Li, K, Ag, Zn, and Cu) 

used pave the way for the application of desulfitative C-P couplings. 

Full details of the mechanism and further scope of these 

transformations will be forthcoming. 
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