RSC Advances

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

Graphical Abstract 39x34mm (300 x 300 DPI)

RSC Advances

RSCPublishing

COMMUNICATION

Visible light induced photocatalytic activity of Fe³⁺/Ti³⁺ co-doped TiO₂ nanostructures

Cite this: DOI: 10.1039/x0xx00000x

Bo Chen, ^{*a*} * Andrew J. Haring, ^{*b*} Jeremy A. Beach, ^{*b*} Menghui Li, ^{*c*} Grayson S. Doucette, ^{*c*} Amanda J. Morris, ^{*b*} Robert B. Moore, ^{*b*} Shashank Priya ^{*a*} *

Received 00th January 2012, Accepted 00th January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/

Black TiO₂ nanostructures co-doped with Fe³⁺ and Ti³⁺ were synthesized by annealing Fe-deposited TiO₂ nanotubes in vacuum. These vacuum-annealed samples exhibited improved visible light absorption and efficient photocatalytic activity under visible light illumination as compared to conventional TiO₂ materials. XPS and EPR spectra confirmed the presence of Ti³⁺ in the bulk and Fe³⁺ dopant.

Since discovery of photoelectrochemical water splitting using a TiO_2 photoanode by Fujishima and Honda,¹ TiO₂-based photocatalysis has attracted much attention due to its promising photocatalytic performance, chemical stability, photocorrosion resistance, and low cost.^{2, 3} However, TiO₂ exhibits a large band gap (3.2 eV for anatase and brookite, 3.0 eV for rutile) and can only be activated by UV light irradiation, which occupies only a small fraction of the total incident sunlight (3-5%).⁴⁻⁶ Therefore, significant efforts have to be made to extend the working spectrum of TiO₂ photocatalysis activity into the visible light region, which accounts for 43% of the total incident sunlight. Doping of various transition metals (Fe, Nb, Co, Ni, and V) and nonmetal ions (such as C, N, and S) are the most common strategies utilized to reduce the band gap of TiO2.7-10 Due to its environmental friendliness and natural abundance, Fe distinguishes itself from the various choices for dopants and has shown good conversion efficiency in the visible light region.¹¹⁻¹⁶ Recently, reduced TiO₂ with self-doped Ti³⁺ has been shown as an effective strategy to extend the photoresponse from UV to visible light regions. $^{\rm 17-21}$ Black hydrogenated TiO_2 nanoparticles with 1.0 eV band gap were prepared in a high-pressure H_2 atmosphere.¹⁷ Ti³⁺-doped TiO₂, produced by reducing titanium precursors with CO and NO, exhibited high visible light water splitting activity.¹⁸ Additionally, reduced TiO₂ synthesized by hydrothermal treatment of TiH2 in H2O2 aqueous solution demonstrated enhanced visible-light-induced photocatalytic behaviour.¹⁹ The effect of co-doping of Fe^{3+} and Ti^{3+} on TiO_2 for photocatalytic application has been seldom studied. Here we report the fabrication of novel material, Fe^{3+}/Ti^{3+} co-doped TiO_2 nanostructures, by annealing the TiO₂ nanotubes with electrodeposited Fe(OH)₃ nanoparticles under vacuum conditions. Using this material, the synergistic effects between Ti³⁺ and Fe³⁺ dopants on photocatalytic performance were investigated.

Highly ordered TiO₂ nanotube arrays were synthesized by typical two-step anodization in an ethylene glycol electrolyte containing 0.3 wt% NH₄F and 2 vol% DI water. The TiO₂ nanotubes grew to a length of 12 µm under 60 V applied potential for 30 min. Iron hydroxide were electrochemically deposited onto the as-anodized TiO₂ nanotubes using potential cycling in a 5 mM FeCl₃ aqueous solution containing 5 mM KF, 0.1 M KCl, and 1M H₂O₂ at a scan rate of 20 mV/s from -0.4 to 0.5 V *vs* Ag/AgCl for 50 cycles. Subsequently, the Fe-deposited samples were sealed in quartz tube under a 10⁻⁶ Torr vacuum and annealed at 450 °C for 2 h with a heating and cooling rate of 2 °C/min. In comparison, some as-anodized and Fe-deposited TiO₂ nanotubular samples were annealed in air at 450 °C for 2 h.

Fig. 1. (a) SEM image of Fe-deposited TiO_2 nanotubes and the inset is corresponding top surface; (b) EDS spectrum of Fe-deposited TiO_2 nanotubes; SEM image of Fe-deposited TiO_2 nanotubes after sintering in (c) air atmosphere and (d) vacuum condition.

COMMUNICATION

Fig. 2. (a) Visible light photocatalytic activities and (b) UV-vis-NIR absorbance of nanotubular TiO₂, Fe-TiO₂, and black-Fe-TiO₂ samples.

After electrodeposition for 50 potential cycles, the Fe-deposited sample exhibited a gold colour, and Fe(OH)₃ nanoparticles were successfully precipitated on both the top surface and the inner surface of TiO₂ nanotubes (Fig. 1a). The corresponding EDS spectrum in Fig. 1b indicates the atomic percentage of Fe was 5.34 %. During electrodeposition, reduction of hydrogen peroxide created OH⁻ groups on the nanotube surface, which promoted the formation of Fe(OH)₃ precipitates.²² The KF solution was added to facilitate the formation of FeF²⁺ complex that avoided the reduction of Fe³⁺ ions to Fe²⁺ ions during electrodeposition. This ensured that the hydrogen peroxide could be reduced and reacted with FeF²⁺ to form Fe(OH)₃ precipitates.

After annealing the Fe-deposited TiO₂ nanotubes in air at 450 °C for 2 h, the colour changed to brown, referred to as Fe-TiO₂. On the other hand, when annealing the Fe-deposited samples in 10^{-6} Torr vacuum at 450 °C for 2 h, the colour changed to black, referred to as black-Fe-TiO₂. As shown in Fig. 1c and d, both Fe-TiO₂ and black-Fe-TiO₂ samples maintained nanotubular morphologies, while the decorated nanoparticles significantly enlarged to 30-100 nm after vacuum annealing.

The photocatalytic activities of nanotubular TiO₂, Fe-TiO₂, and black-Fe-TiO₂ samples were evaluated by methylene blue (MB) degradation under visible light illumination (Fig. 2a). Visible light was created by applying an ultraviolet cut-off filter (cut-off wavelength at 400 nm) to the solar simulator. Compared to blank experiments without any catalyst, air-sintered nanotubular TiO₂ samples showed negligible degradation of MB solution. Enhanced photocatalytic activity under visible light was observed for the Fe-TiO₂ samples. The black-Fe-TiO₂ samples exhibited significantly improved degradation rate of MB solution. The UV-Vis-NIR absorption spectra shown in Fig. 2b was used to identify that the light absorption for different TiO₂ samples. The black-Fe-TiO₂ samples displayed an enhanced broad absorption peak around 330-

Fig. 3 (a) XRD patterns and (b) Raman spectra for nanotubular TiO_2 , Fe- TiO_2 , and black-Fe- TiO_2 samples.

900 nm, which was ascribed to the co-doping of Fe³⁺ and Ti³⁺, as discussed later. Fe-TiO₂ nanotubes revealed a pronounced peak at 360-600 nm, explaining the visible light photocatalytic activity and linking the efficiency to the Fe ions. The air-sintered TiO₂ nanotubes absorb mainly the UV light with an additional weak peak present around 400-650 nm. This weak peak is consistent with the previous reports but its origin is still being debated, which maybe come from N⁻ and F⁻ impurites produced during the anodization.^{15, 23, 24}

The structural properties for Fe-TiO₂ and black-Fe-TiO₂ samples were characterized by XRD patterns and Raman spectra. XRD patterns for air-sintered TiO₂, Fe-TiO₂, and black-Fe-TiO₂ samples all exhibited only the crystalline anatase phase (Fig. 3a). No Fe, FeO, or Fe₂O₃ related phase could be observed in XRD patterns, thus all Fe ions were incorporated into the TiO₂ lattice as dopants. Raman spectra were acquired using a Raman spectrometer with a laser excitation of 532 nm. Raman spectra of all samples displayed six $(3E_g + 2B_{1g} + A_{1g})$ Raman-active modes (Fig. 3b), which indicated that anatase TiO_2 is the predominant phase. Furthermore, no peaks ascribed to iron oxide appeared, which is consistent with the XRD results. Due to the doping of Fe ions in Fe-TiO₂ samples, the centre position for most intense Eg peak was blue-shifted from 143.8 cm⁻¹ to 149.7 cm⁻¹ and the corresponding width was broadened from 13.1 cm⁻¹ to 21.6 cm⁻¹. Black-Fe-TiO₂ samples displayed further blueshifting and broadening of the Eg peak. Moreover, a new Raman peak appeared at 292 cm⁻¹ for black-Fe-TiO₂ samples. This peak illustrates the structural changes that occurred for black-Fe-TiO₂ samples due to annealing in an oxygen poor environment, which broke down the Raman selection rule and activated the Raman forbidden mode.

Fig. 4 (a) Fe 2p, (b) Ti 2p, (c) O 1s, and (d) valence band XPS spectra of nanotubular TiO₂, Fe-TiO₂, and black-Fe-TiO₂ samples.

The electronic properties of Fe-TiO₂ and black-Fe-TiO₂ nanostructures were explored by X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR). XPS spectra can explore the surface chemical bonding of Fe-TiO₂ and black-Fe-TiO₂ nanostructures. XPS spectra were recorded by a scanning photoelectron spectrometer microprobe using Al Ka radiation at a power of 50 W with pass energy of 26 eV. The bind energy was calibrated by referencing the C 1s peak at 284.6 eV. As shown in Fig. 4a, the dominant Fe 2p XPS peaks for both Fe-TiO₂ and black-Fe-TiO₂ samples located at 724.6 and 711.0 eV, are consistent with the binding energies of Fe³⁺ $2p_{1/2}$ and $2p_{3/2}$, respectively.^{15, 16} This revealed that Fe^{3+} was the predominant charge state of Fe dopant. Compared with air-sintered TiO₂ nanotubes, Ti 2p XPS spectra of Fe-TiO₂ and black-Fe-TiO₂ samples showed no significant differences (Fig. 4b), which indicated there is no Ti³⁺ present at the surface. However, the XPS cannot detect whether there is any Ti³⁺ in the bulk or not, thus we further utilized the ERP spectra to examine the Ti³⁺ in bulk.

EPR spectra were collected at room temperature by Bruker ER 200D-SRC electron spin resonance. EPR provides detailed information for both the nature of species and their coordination symmetries in the solid. As shown in Fig. 5, there was no presence of EPR features for air-sintered TiO₂ nanotubes. Typically, the Fe³⁺ species show a broad "step" EPR signal around g = 1.935 because Fe³⁺ substituted for Ti⁴⁺ in the TiO₂ lattice.^{25, 26} The EPR spectra of Fe-TiO₂ and black-Fe-TiO₂ samples both reveal a broad "step" signal around g = 1.935, which demonstrate the doping of Fe³⁺. Based on the literature, we know the Ti³⁺ in the bulk TiO₂ will exhibit an

intense EPR signal.²¹ In Fig. 5 we examined the EPR spectra of vacuum-sintered TiO₂ sample (TiO₂-vacuum) and black-Fe-TiO₂ sample, both of them demonstrated a very narrow EPR signal at g= 1.937, which indicated the presence of Ti³⁺ in the bulk TiO₂. These Ti³⁺ species were created due to the reduction of Ti⁴⁺ by vacuum annealing. In a word, the black-Fe-TiO₂ samples, it not only showed the broad "step" EPR signal related to Fe³⁺ doping, but also exhibited an intense narrow EPR peak due to the present of Ti³⁺. These results confirmed the co-doping of Fe³⁺ and Ti³⁺ in black-Fe-TiO₂ samples.

Due to the surface Ti-OH groups and lattice Ti-O groups, the O 1s region of Fe-TiO₂ and black-Fe-TiO₂ samples can be deconvoluted into two peaks centered at 531.7 and 529.8 eV, respectively (Fig. 4c). The lattice Ti-O groups of Fe-TiO₂ and black-Fe-TiO₂ samples shifted binding energy positively by 0.15 eV compared with the TiO₂ nanotubes. This shift was motivated by the Ti-O-Fe bonds and the interaction between Fe³⁺ and Ti⁴⁺. Furthermore, the black-Fe-TiO₂ samples displayed more surface Ti-OH bonds than Fe-TiO₂ samples. The valence band edge of vacuumsintered TiO₂ was as same as the air-sintered TiO₂ nanotubes, while the valence band edge of both Fe-TiO₂ and black-Fe-TiO₂ samples blue-shifted by 1.0 eV (Fig. 4d).

The above analysis enables us to understand the mechanism for the enhanced visible light photocatalytic performance for Fe-TiO₂ and black-Fe-TiO₂ nanostructures. The crystalline anatase phase and one-dimensional nanotubular structures avoid any significant charge recombination and facilitate the rapid electron-hole separation. Doping the TiO₂ nanotubes with Fe³⁺ blue-shifts the valence band

Fig. 5 EPR spectra for air-sintered-TiO_2, vacuum-sintered-TiO_2, Fe-TiO_2, and black-Fe-TiO_2 samples.

edge and induces a remarkable narrowing of bandgap, thereby enabling the visible light photocatalytic activity. Annealing in vacuum conditions reduces the Fe-doped TiO₂ nanotubes and produces Fe³⁺/Ti³⁺ co-doped black-Fe-TiO₂ samples. Aside from the modification of valence band edge caused by Fe³⁺ dopant, the Ti³⁺ species in the bulk introduces localized states at 0.75-1.18 eV below the conduction band minimum of TiO₂.²⁰ Therefore, synergistic effects between Ti³⁺ and Fe³⁺ species in black-Fe-TiO₂ samples further narrow the bandgap and promote enhanced photocatalytic performance in the visible light range.

Conclusions

In summary, TiO₂ nanostructures with Fe³⁺ doping and Fe³⁺/Ti³⁺ co-doping were synthesized through annealing Fe-deposited TiO₂ nanotubes in air atmosphere and vacuum, respectively. The Fe-doped TiO₂ samples showed visible light induced photocatalytic activity; the Fe³⁺/Ti³⁺ co-doped TiO₂ samples displayed a black colour and further enhanced photocatalytic performance under visible light illumination. Fe³⁺ doping blue-shifted the valence band edge of TiO₂ by 1.0 eV, which allowed visible light absorption. Annealing in vacuum produced self-doped Ti³⁺ in the bulk, and the synergistic effects between Ti³⁺ and Fe³⁺ dopants in black-Fe-TiO₂ samples significantly narrowed the band gap, leading to efficient photocatalytic performance in the visible light range.

Acknowledgement

The authors gratefully acknowledge the financial support from National Science Foundation through Fundamental Research Program.

Notes and references

- ^{*a*} Center for Energy Harvesting Materials and Systems, Virginia Tech, 24061 USA. Fax: (540) 231-0745; Tel: (540) 808-3623; E-mail: bochen09@vt.edu, spriya@vt.edu
- ^b Department of Chemistry, Virginia Tech, Blacksburg, VA 24061 USA
- ^c Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24061 USA
- 1. A. Fujishima and M. Honda, Nature, 1972, 238, 37-38.
- 2. M. Gratzel, Nature, 2001, 414, 338-344.

- X. B. Chen, S. H. Shen, L. J. Guo and S. S. Mao, *Chem. Rev.*, 2010, 110, 6503-6570.
- S. U. M. Khan, M. Al-Shahry and W. B. Ingler, *Science*, 2002, 297, 2243-2245.
- I. S. Cho, C. H. Lee, Y. Z. Feng, M. Logar, P. M. Rao, L. L. Cai, D. R. Kim, R. Sinclair and X. L. Zheng, *Nat. Commun.*, 2013, 4, 1723.
- 6. J. Shi and X. D. Wang, Energy Environ. Sci., 2012, 5, 7918-7922.
- I. Paramasivam, H. Jha, N. Liu and P. Schmuki, *Small*, 2012, 8, 3073-3103.
- S. G. Kumar and L. G. Devi, J. Phys. Chem. A, 2011, 115, 13211-13241.
- Y. C. Nah, I. Paramasivam and P. Schmuki, *Chemphyschem*, 2010, 11, 2698-2713.
- 10. J. Choi, H. Park and M. R. Hoffmann, J. Phys. Chem. C, 2010, 114, 783-792.
- 11. Q. L. Jin, M. Fujishima and H. Tada, J. Phys. Chem. C, 2011, 115, 6478-6483.
- H. Tada, Q. Jin, H. Nishijima, H. Yamamoto, M. Fujishima, S. Okuoka, T. Hattori, Y. Sumida and H. Kobayashi, *Angew. Chem. Int. Ed.*, 2011, **50**, 3501-3505.
- M. Liu, X. Q. Qiu, M. Miyauchi and K. Hashimoto, J. Am. Chem. Soc., 2013, 135, 10064-10072.
- R. Su, R. Bechstein, J. Kibsgaard, R. T. Vang and F. Besenbacher, J. Mater. Chem., 2012, 22, 23755-23758.
- 15. Z. H. Xu and J. G. Yu, Nanoscale, 2011, 3, 3138-3144.
- Q. P. Wu, Q. Zheng and R. van de Krol, J. Phys. Chem. C, 2012, 116, 7219-7226.
- 17. X. B. Chen, L. Liu, P. Y. Yu and S. S. Mao, *Science*, 2011, **331**, 746-750.
- F. Zuo, L. Wang, T. Wu, Z. Zhang, D. Borchardt and P. Feng, J. Am. Chem. Soc., 2010, 132, 11856-11857.
- X. Liu, S. Gao, H. Xu, Z. Lou, W. Wang, B. Huang and Y. Dai, Nanoscale, 2013, 5, 1870-1875.
- G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang and Y. Li, *Nano Lett.*, 2011, **11**, 3026-3033.
- A. Naldoni, M. Allieta, S. Santangelo, M. Marelli, F. Fabbri, S. Cappelli, C. L. Bianchi, R. Psaro and V. Dal Santo, *J. Am. Chem. Soc.*, 2012, **134**, 7600-7603.
- R. Schrebler, K. Bello, F. Vera, P. Cury, E. Munoz, R. del Rio, H. G. Meier, R. Cordova and E. A. Dalchiele, *Electrochem. Solid-State Lett.*, 2006, 9, C110-C113.
- 23. Z. H. Zhang and P. Wang, Energy Environ. Sci., 2012, 5, 6506-6512.
- Z. W. Liu, W. B. Hou, P. Pavaskar, M. Aykol and S. B. Cronin, *Nano Letters*, 2011, **11**, 1111-1116.
- 25. Y. Cong, J. L. Zhang, F. Chen, M. Anpo and D. N. He, J. Phys. Chem. C, 2007, 111, 10618-10623.
- K. Nagaveni, M. S. Hegde and G. Madras, J. Phys. Chem. B, 2004, 108, 20204-20212.