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Chiral segregation and liquid crystalline aggregates in two dimensions are studied for a heterochiral mixture of an oversimplified
version of the so called Hockey Stick-shaped particles, made with two line segments that interact via an infinitely repulsive
potential. The goal of this study was to explore the possibility to produce chiral segregation and to find the liquid crystalline
mesophases using this model which has an extreme level of idealization. This is, considering infinitely thin particles,infinite
repulsions interacting side-side exclusively, namely, the substrate does not act on the molecules. Since only infiniterepulsions
are considered, the phase behavior is ruled by entropic effects, where self-assembly takes place. Onsager theory and Monte
Carlo simulations in the Gibbs and the canonical ensembles were used to study several molecular conformations in order to
delineate the mesophases diagram which includes the chiralsegregation region and several liquid crystalline mesophases, most
of them are heterochiral. The enantiomerically pure phase is of the smectic kind and corresponds to the highest density regime.
The heterochiral mesophases are nematic, smectic with antiferroelectric order and tetratic. The appearance of the different
assemblies strongly depend on the molecular conformation defined by the angle between the segments and their lengths. Tostudy
the phase transitions, the molar concentration, the nematic and tetratic order parameters, as well as the distributionfunctions were
calculated.

1 Introduction

Chirality is a phenomenon where symmetry plays an essen-
tial role. It has important consequences in several fields of
natural sciences like chemistry, biology and physics. Chi-
rality at molecular level, gives rise to a pair of mirror-image
molecules, called enantiomers. Although the similaritiesin
the enantiomeric pair components, such as identical physical
or chemical properties, each of them may have very different
or even opposite effects in alive beings. This is the reason why
the separation of enantiomeric mixtures is of fundamental in-
terest in the food and pharmaceutical industry. At the same
time, the presence of chirality in material science may change
the characteristics of materials opening diverse possibilities
for their fabrication.

In nature, the production of chiral components is asymmet-
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rical, this is, components of alive beings, such as amino acids
or sugars, have a specific chirality. On the other hand, in the
laboratory synthesis of chiral compounds produce heterochiral
mixtures, unless special procedures are applied1.

Spontaneous separation of racemic mixtures (50% of each
component) is not frequent, only less than approximately 10%
have been reported2. The first one was discovered by Pas-
teur using a crystallization process in the bulk. However in
the laboratory, unless special procedures are applied, synthe-
sis of chiral compounds results in a racemic mixtures1. In re-
cent years, several experiments have shown that enantiomeric
separation can be enhanced in situations that show some kind
of constraints. For example, to reduce the dimensionality of
the system, creating a reduction of the spatial degrees of free-
dom and therefore a change of the symmetry rules. One of
the consequences of this is that there are systems that in three
dimensions are not chiral but when they are confined to a
bi-dimensional domain the structure can be considered chi-
ral. Molecules with this feature are called pro-chiral3 and
the molecular model considered in this paper is one exam-
ple. Another characteristic that seems necessary is that this
phenomenon occurs at high density regimes. For example
the molecular self assembling that occurs in two dimensional
domains4. One of the earliest experiments that have been
reported is the spontaneous chiral separation of amphiphilic
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molecules in a monolayer by Nassoy et al4 in a Langmuir bal-
ance. Chiral domains of small size are formed by reduction
of the surface of the monolayer formed in the water-air in-
terface. Some other experiments have been performed using
the Langmuir-Blodgett device where also chiral segregation
occurs5. In these cases, the substrate is a central part in the
separation process. In general in all those experiments, the
common characteristic is that considerable degree of molecu-
lar ordering, positional and orientational is present. However,
Huang et al.6 found that the orientation may not be necessary.

Important efforts have been done in order to elucidate this
complex phenomenon. From the theoretical point of view,
Huckaby et al. was one of the pioneers to attack this problem
using lattice models. Since the decade of the 80’s they pub-
lished several papers where the particles used were adsorbed
onto a plane7,8. More recently, they studied the chiral sep-
aration of the Andelman de Gennes9 model using different
kinds of interactions, including van der Waals and electrostat-
ics10. From simulations there are also several studies on this
topic11,12. Despite the fact that there have been several at-
tempts dedicated to analyze this problem, the understanding
of the molecular details that enhance the chiral separationis
still incomplete.

The background behind this paper is that a similar system,
constructed by three segments, the zigzag model, interacting
with infinitely repulsive potentials and confined to a 2D do-
main was able to show chiral separation13. In this case, since
the system was athermal, the phase separation was ruled only
by the density. Complementary studies of the zigzag model,
were devoted to investigate its liquid crystalline behavior. The
first, using Monte Carlo isobaric ensemble14 and then apply-
ing the Onsager theory15,16.

The general goal of this paper is to investigate the ability to
produce chiral phase separation considering a modificationof
the zigzag system where the present model has only two seg-
ments. This over simplified system, built with only two lines,
is called the Hockey-Stick shaped particle17. The molecular
conformations used for this paper are those that create chiral
structures, i.e. where the the length of the two segments are
unequal.

The paper is organized as follows, Introduction is found in
section 1, the definition of the model and the simulation de-
tails are in section 2, section 3 contains the Results and their
explanations and finally the Conclusions are in section 4.

2 The Model and Monte Carlo Simulations De-
tails

A two-dimensional hard body model whose shape mimics the
Hockey-Stick (HSM) molecules is studied. Our model particle
consists of two line segments of unequal length. The lengths

of the segments area andb, i.e. the total length of the model
particle isL = a+b. The model is sketched in Fig. 1.

Our previous study17 has been extended by examining the
chiral segregation in HSM witha = 0.11, 0.15, 0.18, 0.20,
0.22, 0.25, 0.30, 0.35, 0.40 and 0.45, forθ = π/4 andπ/2.
Note that the total length of the particle isL= 1 , i.e.b= 1−a.
The total number of particles in the simulation wasN =1000.

Fig. 1 Hard body representation of a HSM molecule consisting of
two line segments witha+b= L = 1 and a bend angleθ between
them. The arrow does not belong to the particle, it represents the
polar axis of the particle.

The density is defined asρ∗ = N/(L∗
x ∗ L∗

y) whereL∗
x and

L∗
y are the simulation box lengths forx andy axes respectively

and L is used to make the lengths dimensionlessr∗ = r/L.
The dimensionless pressure is defined asp∗ = pβL2 where
β = 1/kBT and kB is the Boltzmann constant andT is the
temperature. Because the model is athermal the temperature
has been set tokBT = 1.

For chiral segregation studies, Monte Carlo simulations in
the Gibbs ensemble (GEMC) were performed. The use of this
ensemble allows the simulation of the phase coexistence of
two enantiomerically different phases. Despite the chiralsep-
aration process is reached at high densities, it is possibleto
use the Gibbs ensemble because of the thickness of the model
considered. According to the standard methodology18, three
types of configurational changes were performed: (a) random
displacements or orientation changes were performed for ran-
domly selected particles (b) changes in the area of the simula-
tion boxes and (c) randomly selected particles were transferred
from one of the simulation boxes to the other. In this work a
Monte-Carlo cycle (MCC) consisted of 10000 attempts of dis-
placements or orientation changes, 1 attempt of area change
and about 1000 attempts of particle swaps. Approximately
4×106 MCC were required for equilibration and other 2×106

MCC to obtain statistics.
The acceptance criterion for these trial moves corresponds

to the standard Metropolis algorithm for this ensemble. The
maximum displacement, rotation angle and area change was
adjusted during the simulation so that roughly 30% of these
types of moves are accepted. The number of particles in each
box at the beginning of the simulations was 500. In order to
verify the lack of influence of the initial configuration in our
results, we performed simulations were the initial composition
of the two regions was either heterochiral or fully segregated
(pure phases of each enantiomer in each region, see section 3).

Finally, the order parameter that characterizes the phase
transition that produces chiral separation is the configurational
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average of the molar fractionsXS and XR of the simulation
boxes, where the subscripts refer to right (R) and left (S) enan-
tiomers. The criterion adopted is as follows,19 segregation is
considered finished when in one of the boxes the molar frac-
tions XS ≥ 0.85 andXR ≤ 0.15, while in the other box the
opposite occurs.

The orientational order in the mesophases was quantified
by means of the order parameter given bySm = max <
cos[m(φ − φ0)] >, whereφ is the angle between the molec-
ular axis of the particle and the axis of reference andφ0 de-
fines the vectorn = (cosφ0,sinφ0) which provides the natural
coordinate system for orientationally ordered phases. When
m= 2, Sm gives the nematic order parameter, whilem= 4
provides the tetratic order parameter. Similarly, for nematic
and tetratic order, the orientational correlation function is
gm(r∗) =< cosm(φ −φ0)>r , where the average is taken over
a pair of particles.

Several studies in 2D indicate that the nematic and tetratic
order parameters vanish in the thermodynamic limit and the
orientational correlation functionsg2 and g4 have a power
law decay, which are indications of a quasi-long range order
(QLRO) for both mesophases17,20–23. Because of the fact that
g2 andg4 have an exponentional decay in the isotropic phase,
the change in their behavior is a consequence of a phase tran-
sition.

Canonical simulations were implemented to complement
GEMC simulations. In particular to compute the nematic (S2)
and tetratic (S4) order parameters, as well as the radial corre-
lation function (g(r∗)) and the orientational correlation func-
tions (g2(r∗) andg4(r∗)).

3 Results

Since the model is athermal, the only thermodynamic variable
that rules the phase transitions is the densityρ∗. The Gibbs
ensemble was simulated using a wide range of densities, sev-
eral molecular conformationsa= 0.1,0.15,0.2,0.25,0.3,0.4,
and using two molecular anglesθ = π/2,π/4. In all cases,
the initial configuration was heterochiral (racemic) for both
boxes. For sufficiently low densities, the isotropic structure
was obtained. As the density was raised, orientational corre-
lations start to appear, more explicitly, for enough anisotropic
molecular conformations.

For θ = π/2, the hetrochiral nematic N was developed for
a≤ 0.15, while for 0.15≤ a≤ 0.225 the heterochiral tetratic T
was displayed forρ∗ ≈ 20 (see Fig. 2 b). TheS2 andS4 order
parameters for differenta-values as well as the orientational
correlation functionsg2 andg4 for a= 0.11 anda= 0.20 are
plotted in Fig. 3 where the change of decay for different values
density can be appreciated. As can be observed, the nematic
order parameterS2 is reported fora = 0.11,0.15, while for
the other values ofa the tetratic order parameterS4 is shown.

Only for a = 0.15, the system presents I-T, T-N and N-Sm
phase transitions.

The positional correlations were developed for sufficiently
high densities that depend on the molecular anisotropy. For
example, fora > 0.25 a racemic smectic order SmR is ob-
tained, this structure is globally heterochiral in both boxes
(see Fig. 2c). In this kind of smectic order the rows have
both kinds of enantiomers which are alternating each other
producing heterochiral rows. Chiral segregation was obtained
as two homochiral smectic phases coexisting, each one, in a
simulation box (see Fig. 2 d). It should be noted that both
phases are chiral and it is represented by the asterisk in the
notation (Sm∗). For a ≤ 0.25 chiral separation is a result of
a nematic-smectic phase transition, while fora > 0.25 it is
a consequence of a smectic-smectic phase transition, from a
heterochiral smectic to a homochiral smectic. In all cases the
specific value of density depends on the molecular conforma-
tion. A qualitative mesophases diagram is shown in Fig. 4.

a) b)

c) d)

Fig. 2 Representative snapshots of the obtained configurations by
Gibbs ensemble. a) N, a= 0.11,ρ∗ = 30 andθ = π/4, b) T,
a= 0.18,ρ∗ = 25 andθ = π/2, c) SmR,a= 0.25,ρ∗ = 30 and
θ = π/2, d) Sm∗ (segregation),a= 0.20,ρ∗ = 30 andθ = π/2

.

For θ = π/4, a tetratic order was not observed and higher
densities were required to get chiral segregation as can be ap-
preciated in Fig. 4. Fig. 5 shows a comparison of the lowest
densities for which segregation was obtained as a function of
the parametera of the model. It is possible to appreciate from
the figure thata = 0.25 is the value that favors chiral segre-
gation for both bent angles, and whena → 0.5 or a → 0 the
density increases dramatically. Actually, chirality is lost in the
banana limit (a = 0.5) and in the hard needles limit (a = 0),
where the simulation results coincide with those previously re-
ported for these cases20,23. The difference with the homochi-
ral case17,20 is that in heterochiral systems of HSM molecules
there is a tetratic behavior forθ = π/2, and because of the
effect of the excluded area between enantiomeric pairs, the
smectic phase is obtained for higher densities in both cases
(θ = π/2 andθ = π/4).

As mentioned, this model shows isotropic (I), nematic (N),
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Fig. 3 (Color online) Nematic and tetratic order parameters (top),
and the orientational correlation functions in log-log scale g2 andg4
for a= 0.11 anda= 0.20 respectively.
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Fig. 4 Mesophases diagram, density as a function of the molecular
parametera, for a) θ = π/2 and b) θ = π/4, the dots are the
simulation results and the lines are just to guide the eye.
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Fig. 5 The graph shows the lowest density in the simulations for
which the system segregates as a function of the molecular
parametera.

heterochiral-smectic (SmR) and tetratic behavior, this last one
for θ = π/2, and the chiral segregation is given in two chiral
smectic phases (Sm∗), actually these smectics have an antifer-
roelectric order.

It is possible to explain the formation of all these struc-
tures by means of the second virial theory which has been suc-
cessfully used to study the isotropic-nematic and the nematic-
smectic phase transitions of banana and hockey-stick particles
in two dimensions,16,17,20. In this work we focused in show-
ing what kind of smectic correlations (Sm∗ or SmR) are more
favorable according to the values ofa, θ andρ∗.

Because of the fact that we considered only hard interac-
tions, the formation of mesophases is ruled by the entropic
effects which are related with the excluded area. Based on the
second virial theory the free energyF can be written as the
sum of an ideal energyFid and an excess contributionFex,

βF
A

=
βFid

A
+

βFex

A
, (1)

whereA is the total area.
In processes where the density is continuously increased

and the system shows a N-Sm∗ phase transition, just before
the smectic phase is formed, the nematic phase is orientation-
ally well ordered. As a result in the study of the N-Sm∗ phase
transition it is possible to assume the nematic phase as formed
by a mixture of perfectly aligned particles. The “species” of
this mixture are the possible orientations of the particlesand
they are referred to as conformations. In the case of a nematic
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phase made by one component with polar geometry, there are
two conformations (up and down), while in the case of two
components (as it happens in the heterochiral mixture) there
are four conformations (each component can be up or down,
see Fig. 6 a). Therefore the ideal and the excess contributions
of the free energy are given by,

βFid

A
=

1
d ∑

i

∫ d

0
{ρi(y)lnρi(y)−ρi(y)}dy, (2)

and

βFexc

A
=

1
2d ∑

∫ d

0
dy1ρi(y1)

∫

Ω
dy2 ρ j(y2)d

i j
exc(y12), (3)

with i, j = 1,2 in the case of one kind of particles andi, j =
1,2,3,4 for a heterochiral mixture. In these equationsρi(y)
is the local density of the conformationi, d is the smectic pe-
riod, di j

exc is the excluded distance which is related with the
excluded area throughAi j

exc=
∫

dy12d
i j
exc. The case of the N-

Sm∗ phase transition for a system of one component has been
already done17. In this work the N-Sm∗ and N-SmR transi-
tions for a system of two components (heterochiral system)
are developed.

First, an estimate of the free energy of a heterochiral smec-
tic phase (SmR) is done. In a perfect aligned nematic phase,
the local densities do not depend on the position and are iden-
tical, i.e.ρ1,2,3,4(y) = ρ/4. BesidesAii

exc= A j j
exc, Ai j

exc= A ji
exc,

A12
exc= A34

exc, A13
exc= A24

exc andA14
exc= A23

exc (see Fig. 6 a). There-
fore, the nematic free energy is then,

βFN

A
= ρ lnρ −ρ −ρ ln4+

1
8

ρ2(A11
exc+A12

exc+A13
exc+A14

exc).

(4)

1

2

3

4

a b

c

a

b

b

a

Fig. 6 (Color online) a) Representation of the considered
conformations, b) self assembly in the particles for the obtained
heterochiral smectic structure and c) representation of the self
assembly in a homochiral smectic structure.

From the snapshots of the simulation (see Fig. 2 c) , the
particles assembly for the SmR is such that each layer of
the smectic phase is formed by either conformations 1 and

4 or 2 and 3 as it is sketched in Fig. 6 b. The periodicity
of the layers can be modeled in the weakly ordered smec-
tic phase by means of the first order Fourier representation
of the local densities given byρ1,4(y) =

ρ
4 (1+ ε cos(qy)) and

ρ2,3(y) =
ρ
4 (1+ ε cos(qy−φ∗)), whereq= 2π

d is the smectic
wave number andφ∗ is the phase shift andε is a parameter
which goes to zero in the nematic limit. After substitution of
these density dependences the ideal and excess part of the free
energy become,

βFid

A
= ρ lnρ −ρ ln4−ρ +

ρ
4

ε2, (5)

and,

βFexc

A
=

1
8

ρ2
4

∑
j=1

A1 j
exc

+

[

ρ2

32

(

(F11+F14)
(

1+ cos2φ∗
)

+2(F12+F13)(cosφ∗)
)

]

ε2,

(6)

where Fi j =
∫

dy12di j
exc(y12)cos(qy12). Therefore the hete-

rochiral smectic free energy can be written as

βFSmR

A
=

βFN

A

+

[

ρ
4
+

ρ2

32

(

(F11+F14)
(

1+ cos2φ∗
)

+2(F12+F13)(cosφ∗)
)

]

ε2,

(7)

The parametersφ∗ andq are such that
∂ βFSm

A
∂φ∗ =

∂ βFSm
A

∂q = 0, in
the first caseφ∗ = π , which means that the phase is always
antiferroelectric andq satisfies

∫

dy12y12d11
exc(y12)sin(qy12)+

∫

dy12y12d14
exc(y12)sin(qy12)

−

∫

dy12y12d12
exc(y12)sin(qy12)−

∫

dy12y12d13
exc(y12)sin(qy12)

= 0.
(8)

With the values ofφ∗ and q, it is possible to estimate the
heterochiral-smectic free energy for differentε values. The
coexistence density for the nematic-heterochiral smecticphase
transition is given by the conditionβ FSmR

A = β FN
A , which is

equivalent to the condition that the quadratic term in epsilon
in Eq. 7 must vanish. From equation 9 it is obtained that
ρN−SmR = 4

F12+F13−(F11+F14)
. A similar procedure was done

to estimate the free energy of the homochiral smectic (Sm∗)
but in this case there are only two conformations such that the
smectic layers are made either by conformations 1 and 2 or 3
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and 4 (see Fig. 6c). As a result the free energy is,

βFSm

A
= ρ lnρ −ρ −ρ ln2+

ρ2

4
(A11

exc+A12
exc)

+

[

ρ
4
+

ρ2

8
(F11−F12)

]

ε2,

(9)

but the equation forq is now,
∫

dy12y12d11
exc(y12)sin(qy12)

+
∫

dy12y12d14
exc(y12)sin(qy12) = 0,

(10)

which means that, although both smectics have an antiferro-
electric order, they have different values of the smectic period
q.

By equating 7 with the smectic free energy of a homochiral
system (segregated case) it is possible to obtain an approxi-
mation of the densities for which such phases coexist and the
intervals in which a given smectic (racemic or segregated) is
more favorable as shown in Fig. 7.

The theoretical estimations of the density for which chiral
segregation is reached,ρ∗

c , are given in Fig. 8 for some values
of the parametera. For a ≤ 0.2 it is obtained that the hete-
rochiral nematic phase is more favorable than the heterochi-
ral and homochiral smectic phases at intermediate densities,
while for densities larger thanρ∗

c the homochiral smectic be-
comes more favorable. Fora≥ 0.25 the heterochiral smectic
phase is the more favorable phase for intermediate densities,
and for higher densities the homochiral smectic phase is again
more favorable, which is in agreement with the simulations
results. Although the theory underestimates the N-Sm∗ and
SmR-Sm coexistence densities it captures the qualitative be-
havior obtained by the simulations.

4 Conclusions

An oversimplified version of the HSM made of 2-segment
lines interacting with an infinitely hard potential and geometri-
cally chiral in 2D, is capable to produce chiral segregationand
several liquid crystalline mesophases. As in many other cases,
chiral segregation requires high density regimes and therefore
molecular ordering is achieved. For lower densities, the sys-
tem exhibits different heterochiral liquid crystalline phases.
This is, depending on the value of the parametera, as density
decreases the model shows nematic or smectic structures. As
expected, for small values ofa, close to the hard needle limit,
the nematic is preferred while for large values ofa, the smectic
phase is generated; both heterochiral. For the lowest densities
considered, the heterochiral isotropic phase is present. These
features are common to both values of the molecular angleθ
studiedθ = π/2 andπ/4. To complement the Monte Carlo

0 10 20 30 40 50 60
0

100

200

300

400

Ρ*

Β
F A

a = 0.11;Ρc
* = 49.3972

0 5 10 15 20 25 30
0

20

40

60

80

100

120

Ρ*

Β
F A

a = 0.15;Ρc
* = 24.0955

0 5 10 15 20
0

10

20

30

40

50

60

70

Ρ*

Β
F A

a = 0.20;Ρc
* = 17.165

0 5 10 15 20
0

20

40

60

80

Ρ*

Β
F A

a = 0.25;Ρc
* = 9.62125

0 5 10 15 20
0

20

40

60

80

Ρ*

Β
F A

a = 0.30;Ρc
* = 15.3086

0 5 10 15 20 25
0

20

40

60

80

100

120

Ρ*

Β
F A

a = 0.333;Ρc
* = 19.5354

Fig. 7 Free energies forθ = π/2 andε = 1, a similar behavior is
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Fig. 8 Theoretical results forρ∗
c as a function of the molecular

parametera.
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simulation results, the second virial Onsager theory was used
to predict some of the phase transitions provided by simula-
tions, in particular, N-Sm∗, N-SmR, SmR-Sm. To the best of
our knowledge this is the firs time when this kind of theory is
used to study chiral separation. This has been possible in this
particle model, since chiral separation occures along smectic
correlations.

It should be considered that the transition to the smectic
phase (racemic or not) was done in the limit of parallel parti-
cles (perfect nematic) and it is useful for the study of the N-Sm
phase transition. This approximation was used for the whole
range of the parametera even though for some regions where
the phases involved (from MC) were either I or T. Despite this
approximation is rough, it is interesting to notice that thequal-
itative behavior is captured. On the other hand, the estimation
of the SmR-Sm coexistence density was done by equating the
free energies of both mesophases up to the second virial ap-
proximation and using the first order Fourier representation of
the local densities. Although the coexistence densities are just
approximations, the development of the theory was useful to
find the parameters where the found smectic mesophases are
more favourable. The extension of the theory to include the
isotropic-tetratic phase transition is also possible and it is part
of a future work.
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17 J. Martı́nez-González, S. Varga, P. Gurin and J. Quintana-H,J. Mol. Liq.,

2013,185, 26–31.
18 F. D. and S. B.,Understanding Molecular Simulation: From Algorithms

to Applications, Academic Press, San Diego, 2nd edn, 2002.
19 L. Gonzalez-Lee, J. Armas, J. Peon and J. Quintana,Physica A, 2008,

387, 145–158.
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