RSC Advances

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

RSC Advances

Cite this: DOI: 10.1039/coxx00000x

ARTICLE TYPE

www.rsc.org/xxxxxx

Efficient construction of C-S and C-N bond *via* metal-free reductive coupling of *N*-tosylhydrazones with benzo[*d*]thiazole-2-thiol

Yuqing Lin, a Puying Luo, *b Qiang Zheng, Yumei Liu, Xiaoyan Sang, and Qiuping Ding*a

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

An efficient procedure for the synthesis of diverse benzo[d]thiazole derivatives has been developed *via* metal-free reductive coupling of *N*-tosylhydrazones with benzo[d]thiazole-2-thiols. 2-Thio-substituted benzothiazoles are useful synthetic intermediates and promising biologically active compounds. The present process tolerates a wide range of substrates with high efficiency and moderate selectivity.

10 Introduction

As a privileged fragment, the benzothiazole is found in many pharmaceuticals and agrochemicals that exhibit remarkable biological activities, such as antitumor, antimalarials, and antiviral activities.¹ Among these, 2-thio-substituted

- 15 benzothiazole is an important class of benzothiazole derivatives. For instance, N-(2-(cyclopentylthio)benzo[d]thiazol-6yl)benzamide (compound I) showed antituberculotic activity;^{1e} Compound II exhibited dual antagonists for the human CCR1 and CCR3 receptors (Fig.1).^{1e} Great efforts have been made to
- 20 develop new methods for their construction.² In addition, thioether as an essential building block is of great significance to the pharmaceutical industry.³ Therefore, development of efficient strategy for the construction of C-S bond has attracted much attention.⁴

Fig. 1 Examples of bioactive 2-thio-substituted benzothiazoles.

Tosylhydrazones are useful precursors because they have shown that the *in situ* generation of carbenes and diazo compounds can 30 also be widely applied to other reactions.⁵ During the last decade,

great progress has been made in the direct formation of C–C,⁶ C–N,⁷ and C–S⁸ bond-froming reactions based on tosylhydrazones *via* metal-catalyzed progress. For example, Barluenga first described Pd-catalyzed cross-coupling reaction to polysubstituted

35 olefins employed *N*-tosylhydrazones as the nucleophilic component.^{6a} Wang reported a three-component coupling of *N*-tosylhydrazones, terminal alkynes, and aryl halides *via* a sequential palladium carbene migratory insertion and reductive elimination process.⁶ⁱ Zhou and co-workers reported the synthesis

- 40 of benzofuran and indole via Cu(I)-catalyzed coupling of N-tosylhydrazone and o-hydroxy or o-amino phenylacetylene.^{7b} Tosylhydrazone involved reactions are generally required transition metal (such as Pd, Cu, Co, Ni, and Rh). It is well known that transition metal-catalyzed reactions may also present
- 15 problems (including high cost and disposing of some toxic metal especially in the synthesis of some pharmaceuticals). Therefore, it is desirable to develop high efficient method under metal-free condition. Rapid progress in the metal-free reactions has been made in recent years.⁹ Barluenga *et al.* reported metal-free

50 carbon–carbon bond-forming reaction between tosylhydrazones and boronic acids and C–O bond-forming reaction between tosylhydrazones and alcohols or phenols.^{9a,b} Recently, Wang and co-workers reported a catalyst-free intramolecular formal σ-C–C bond based on internal *N*-tosylhydrazone produced *in situ*.^{9d} We

55 also reported the synthesis of thioethers *via* metal-free reductive coupling of tosylhydrazones with thiols.^{9c}

Benzo[d]thiazole-2-thiol can potentially undergo tautomeric transformation to benzo[d]thiazole-2(3H)-thione (Scheme 1). The rate of equilibration between isomers may depend on the polarity 50 or pH value of the solution. Therefore, it would seem to imply that the solution containing the functional group of SH and NH. Prompted by the previous results,^{9c} we believe that this metal-free reaction may be applied for the selectively synthesis of thioethers 3 and thiones 4 *via* a combination of benzo[d]thiazole-2-thiol 1
55 and a diazo compound *in situ* generated from the *N*-tosylhydrazone 2. This transformation provides a new approach for the synthesis of diverse benzo[d]thiazole derivatives 3 and 4 that may be useful building blocks in the design of bioactive compounds.

Scheme 1 Selectively C–S and C–N bond-forming reactions under metal-free conditions

Results and Discussion

To verify the practicability of the projected route, benzo[d]thiazole-2-thiol 1a and N-tosylhydrazone 2a were chosen as model substrates for the selectively C–S and C–N

- 5 bond-forming process. The initial study was carried out based on our previous results^{9c} (K₂CO₃/1,4-dioxane/110 °C for 24 h). Under such conditions, the desired products (**3a** and **4a**) were obtained in 65% yield, while the results show low selectivity (the ratio of **3a**/**4a** is 63/37 determined by isolated yield). Then
- 10 different solvents, such as DMSO, DMF, toluene, and pyridine were also tried in the reaction. Only trace of product was observed in DMSO (Table 1, entry 2). Inferior results were displayed when the reaction performed in DMF and pyridine (Table 1, entries 3 and 5). Regioselective C–S bond-forming
- 15 product **3a** was obtained in toluene, while only poor yield 35% (Table 1, entry 4). Further fine-tuning of the reaction conditions has revealed that K₂CO₃ is more effective than other bases, such as Na₂CO₃, 'BuOK, KOH, K₃PO₄, DBU, DABCO, and Et₃N (Table 1, entries 6-13). Further studies showed that increasing the
- 20 amount of base (K_2CO_3) or *N*-tosylhydrazone **2a** led to higher yield, while there were no obviously changes in selectivity (Table 1, entry 1 vs entry 10, and 14-17). K_2CO_3 can be recovered by filtration. Lower temperature may help to minimize the keto-enol tautomerism of the substrate, so we screened the effects of
- 25 reaction temperature in order to improve the selectivity, but the inferior results were obtained (Table 1, entries 18-20), maybe because of the failed generation of intermediate diazo compound from the tosylhydrazone at low temperature.⁹

Table 1 Optimization of the reaction conditions

	₩ S	_SH + ⊥	IHTs base, solven		
30	1a	2a	1 <u>2</u> ,,	3a	√ 5 4a
50	entry	base	solvent	yield (%) ^{a,b} 3a + 4a	ratio of 3a/4a
	1	K ₂ CO ₃	1,4-dioxane	65	63/37
	2	K ₂ CO ₃	DMSO	trace	trace
	3	K ₂ CO ₃	DMF	54	50/50
	4	K ₂ CO ₃	Toluene	35 (3a)	-
	5	K ₂ CO ₃	Pyridine	60	63/37
	6 ^c	Na ₂ CO ₃	1,4-dioxane	71	70/30
	7°	'BuOK	1,4-dioxane	71	70/30
	8°	KOH	1,4-dioxane	55	63/37
	9°	K ₃ PO ₄	1,4-dioxane	70	64/36
	10 ^c	K ₂ CO ₃	1,4-dioxane	74	69/31
	11°	DBU	1,4-dioxane	43	65/35
	12°	DABCO	1,4-dioxane	18 (3a)	-
	13°	Et ₃ N	1,4-dioxane	trace	trace
	14 ^d	K ₂ CO ₃	1,4-dioxane	78	70/30
	15 ^e	K ₂ CO ₃	1,4-dioxane	85	68/32
	16 ^f	K ₂ CO ₃	1,4-dioxane	78	70/30
	17 ^g	K ₂ CO ₃	1,4-dioxane	77	70/30
	18 ^h	K ₂ CO ₃	1,4-dioxane	65	65/35
	19 ⁱ	K ₂ CO ₃	1,4-dioxane	trace	-
	20 ^j	K ₂ CO ₃	1,4-dioxane	trace	-

^a Reaction conditions: benzo[d]thiazole-2-thiol 1a (0.3 mmol), *N*-tosylhydrazone 2a (2.0 equiv, 0.6 mmol), base (3.0 equiv, 0.9 mmol), Solvent (3.0 mL), 110 °C, N₂, 24 h, PMP = 4-methoxyphenyl. ^b Yield based on 1a. ^c 1a : 2a : base = 1: 3: 3.5. ^d 1a : 2a : base = 1: 3: 6. ^e 1a : 2a : 35 base = 1: 3: 10. ^f 1a : 2a : base = 1: 2: 10. ^g 1a : 2a : base = 1: 2: 6. ^h T = 90 °C. ⁱ T = 60 °C. ^j T = r.t.

To demonstrate the generality of this protocol, the scope of the reaction was investigated under the optimized conditions [benzo[d]thiazole-2-thiol (1.0 equiv), *N*-tosylhydrazone (2.0 40 equiv), K₂CO₃ (6.0 equiv), 1,4-dioxane, 110 °C, N₂, 24 h]. As

2 | Journal Name, [year], [vol], 00–00

summarized in Table 2, the reaction activity seems to be general, as *N*-tosylhydrazones derived from aromatic or aliphatic ketones (Table 2, entries 1-6, R^1 , $R^2 = Aryl$, alkyl) as well as aldehydes (Table 2, entries 7-12, $R^{1} = Aryl$, $R^2 = H$) were converted into

- 45 corresponding product 3 and 4 in good to excellent yields. Moderate to satisfactory selectivities were obtained in most of cases. Tosylhydrazones with electron-rich (Table 2, entries 1, 7 and 8), electron-neutral (Table 2, entries 2 and 9) and electrondeficient groups (Table 2, entries 10-12) all gave the desired 50 products in good yields. For instance, benzo[d]thiazole-2-thiol 1a
- reacted with *N*-tosylhydrazone **2d** derived from aliphatic ketone, leading to thioether **3d** and thione **4d** in 63% and 26% yields respectively, with moderate selectivity (Table 2, entry 4). When electron-deficient *N*-tosylhydrazone **2j** was employed in the 55 reaction, afforded the corresponding product **3j** and **4j** in 70%
- and 15% yields respectively, with better selectivity (Table 2, entry 10).

 Table 2 Metal-free reductive coupling of benzo[d]thiazole-2-thiol 1a with

 N-tosylhydrazones 2

^{*a*} Reaction conditions: benzo[*d*]thiazole-2-thiol **1a** (0.3 mmol), *N*-tosylhydrazone **2** (2.0 equiv, 0.6 mmol), K_2CO_3 (6.0 equiv, 1.8 mmol), 1,4-dioxane (3.0 mL), 110 °C, N_2 . ^{*b*} Yield based on **1a**.

55 To broaden the scope of substrates, we further investigated the metal-free reductive coupling reaction of benzo[d]thiazole-2-thiol derivatives **1b-d** with various *N*-tosylhydrazones **2** under the same conditions (Table 3). The results showed that the additional functional groups such as methyl, chloro, and fluoro on the 70 phenyl ring of benzo[d]thiazole-2-thiol did not interfere with the reaction activity.

Fig. 2 ORTEP representation of the single crystal X-ray structure of 3j

Fig. 3 ORTEP representation of the single crystal X-ray structure of 4v

The structure of all compounds **3** and **4** were identified by NMR and HRMS. In addition, **3j** (Figure 1) and **4v** (Figure 2) 5 were also verified by X-ray illustration.

 Table 3 Metal-free reductive coupling of benzo[d]thiazole-2-thiol 1b-d

 with N-tosylhydrazones 2

1	10	2a	04(311+411)	00/52
2	1b	2b	78 (3n + 4n)	77/23
3	1b	2h	68 (30 + 40)	78/22
4	1b	2i	63 (3p + 4p)	82/18
5	1b	2j	74 (3q + 4q)	88/12
6	1c	2a	80 (3r + 4r)	70/30
7	1c	2b	74 (3s + 4 s)	78/22
8	1c	2g	89 (3t + 4t)	66/34
9	1c	2k	89 (3u + 4u)	72/28
10	1d	2a	81 (3v + 4v)	74/26
11	1d	2h	70(3w + 4w)	71/29

^a Reaction conditions: benzo[*d*]thiazole-2-thiol 1 (0.3 mmol), *N*-10 tosylhydrazone 2 (2.0 equiv, 0.6 mmol), K₂CO₃ (6.0 equiv, 1.8 mmol), dioxane (3.0 mL), 110 °C, N₂. ^bYield based on 1.

Scheme 2 Proposed reaction mechanism

A possible mechanism for the reaction is depicted in Scheme 15 2.⁹ Initially, benzo[d]thiazole-2(3*H*)-thione 1' were formed by the tautomeric transformation of benzo[d]thiazole-2-thiol 1, which underwent deprotonation to form corresponding intermediates A

This journal is © The Royal Society of Chemistry [year]

and B. Diazo compound C was generated *in situ* from corresponding tosylhydrazones under basic conditions at 110 °C.
20 Then, nucleophilic attack of intermediate A and B on C resulted in the formation of products 3 and 4 with the loss of one molecule of N₂. Of course, we couldn't deny the selectively C–S and C–N bond-forming reactions maybe to proceed through the base-promoted decomposition of tosylhydrazones in the presence of 25 benzo[*d*]thiazole-2-thiol and the insertion reaction of the carbene into the S-H and N-H bonds.

Conclusion

In summary, we have successfully developed a new procedure 30 for the synthesis of diverse benzo[*d*]thiazole derivatives under transition metal-free conditions. The process proceeds with a wide range of substrates, high efficiency and moderate selectivity. Proposed mechanism for the selectively C–S and C–N bondforming reactions of benzo[*d*]thiazole-2-thiol is depicted. This 35 procedure represents an efficient route toward the synthesis of 2thio-substituted benzothiazole derivatives which are useful synthetic intermediates and promising biologically active

compounds. Screening for biological activity of these small molecules is under investigation in our laboratory, and the results 10 will be reported in due course.

Experimental

General procedure for the synthesis of 2-thio-substituted benzothiazole derivatives 3 and 4 from benzo[d]thiazole-2-thiols

- 15 1 with tosylhydrazones 2: a mixture of benzo[d]thiazole-2-thiol 1 (0.3 mmol), tosylhydrazone 2 (0.6 mmol, 2.0 equiv.) and K₂CO₃ (1.8 mmol, 6.0 equiv.) in 1,4-dioxane (3.0 mL) was stirred at 110 °C for over night under N₂. After completion of the reaction, as indicated by TLC, the mixture was cooled to room temperature.
- 50 Filtered and washed with ethyl acetate (10 mL), the organic phase was washed with saturated brine, dried with MgSO₄ and concentrated under a vacuum. The residue was then purified by flash chromatography (EtOAc-petroleum ether, 1:50 v/v) on silica gel to afford the corresponding products 3 and 4.

- **2-(1-(4-methoxyphenyl)ethylthio)benzo**[*d*]**thiazole** (**3a**)^{2a} White solid; mp 56-57 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.83 (d, *J* = 7.2 Hz, 3H), 3.78 (s, 3H), 5.12 (q, *J* = 7.6Hz, 1H), 6.86 (d, *J* = 8.8 Hz, 2H), 7.28 (t, *J* = 8.0 Hz, 1H), 7.39-7.43 (m, 3H), 7.72 (d, *J* =
- 50 8.0 Hz, 1H), 7.90 (d, *J* = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 22.7, 47.2, 55.3, 114.1, 120.9, 121.7, 124.3, 126.0, 128.6, 133.8, 135.5, 153.3, 159.1, 166.0.

3-(1-(4-methoxyphenyl)ethyl)benzo[*d*]thiazole-2(*3H*)-thione (4a) White solid; mp 97-98 °C. ¹H NMR (400 MHz, CDCl₃) δ

- (4a) white solid, hip 7/38 C. 11 Milk (400 MHz, CDCl3) 6 55 1.89 (d, J = 7.2 Hz, 3H), 3.78 (s, 3H), 6.87 (d, J = 8.8 Hz, 2H), 6.91 (d, J = 8.4 Hz, 1H), 7.08 (t, J = 8.0 Hz, 1H), 7.15-7.18 (m, 2H), 7.24 (d, J = 8.8 Hz, 2H), 7.44 (d, J = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 15.2, 54.8, 55.3, 114.3, 114.4, 121.1, 124.2, 126.2, 127.4, 127.6, 130.0, 139.9, 159.1, 189.9; HRMS (ESI): m/z
- $\label{eq:constraint} \begin{array}{l} \text{70} \ [\text{M}+\text{H}]^+ \ \text{calcd} \ \text{for} \ C_{16}H_{16}\text{NOS}_2\text{:} \ 302.0673\text{;} \ \text{found:} \ 302.0675\text{.} \\ \text{Elemental analysis calcd} \ (\%) \ \text{for} \ C_{16}H_{15}\text{NOS}_2\text{:} \ C \ 63.75\text{, H} \ 5.02\text{, N} \\ \text{4.65\text{;} Found:} \ C \ 63.79\text{, H} \ 5.21\text{, N} \ 4.70\text{.} \end{array}$

2-(1-phenylethylthio)benzo[*d*]**thiazole** (**3b**)^{2a} Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 1.84 (d, *J* = 7.2 Hz, 3H), 5.15 (q, *J* = 75 6.8 Hz, 1H), 7.26 (d, *J* = 7.6 Hz, 2H), 7.33 (t, *J* = 7.6 Hz, 2H),

7.40 (dt, J = 2.0, 7.6 Hz 1H), 7.47 (d, J = 7.2 Hz, 2H), 7.71 (d, J CDCl₃) & 22.7, 47.6, 120.9, 121.7, 124.3, 126.0, 127.4, 127.8, 128.7, 135.5, 141.9, 153.3, 165.8.

- 5 3-(1-phenylethyl)benzo[d]thiazole-2(3H)-thione (4b) Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 1.92 (d, J = 7.2 Hz, 3H), 6.86 (d, J = 8.4 Hz, 1H), 7.05-7.09 (m, 1H), 7.15-7.25 (m, 2H), 7.27-55 126.1, 126.4, 127.3, 128.2, 128.4, 140.3, 140.8, 189.9; HRMS 7.37 (m, 4H), 7.44 (d, J = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) & 15.1, 55.1, 114.4, 121.2, 124.3, 126.2, 126.4, 127.4,
- 10 127.8, 128.9, 138.0, 139.9, 190.0; HRMS (ESI): m/z [M+H]+ calcd for C15H14NS2: 272.0568; found: 272.0575. Elemental analysis calcd (%) for C₁₅H₁₃NS₂: C 66.38, H 4.83, N 5.16; Found: C 66.41, H 4.90, N 5.08.
- 2-(1-(naphthalen-1-yl)ethylthio)benzo[d]thiazole (3c) Colorless 15 oil. ¹H NMR (400 MHz, CDCl₃) δ 2.05 (d, J = 7.2 Hz, 3H), 6.04 (q, J = 7.2 Hz, 1H), 7.28 (dt, J = 1.2, 8.4 Hz, 1H), 7.40-7.58 (m,4H), 7.72 (d, *J* = 7.6 Hz, 2H), 7.80 (d, *J* = 8.4 Hz, 1H), 7.87 (d, *J* = 8.0 Hz, 1H), 7.94 (d, J = 8.4 Hz, 1H), 8.29 (d, J = 8.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.1, 43.1, 121.0, 121.7, 123.2,
- 20 124.3, 124.6, 125.4, 125.9, 126.1, 126.6, 128.7, 129.1, 130.9, 133.9, 135.4, 136.6, 153.2, 166.4; HRMS (ESI): m/z [M+H]+ calcd for C₁₉H₁₆NS₂: 322.0724; found: 22.0727. Elemental analysis calcd (%) for C19H15NS2: C 70.99, H 4.70, N 4.36; Found: C 71.08, H 4.75, N 4.35.
- 25 3-(1-(naphthalen-1-yl)ethyl)benzo[d]thiazole-2(3H)-thione (4c) White solid; mp 198-199 °C. ¹H NMR (400 MHz, CDCl₃) δ 2.03 (d, J = 5.6 Hz, 3H), 6.91 (t, J = 7.6 Hz, 1H), 7.02-7.04 (m, 2H),7.32 (d, J = 8.0 Hz, 1H), 7.42 (t, J = 8.0 Hz, 2H), 7.52 (d, J = 7.2Hz, 1H), 7.59 (t, J = 7.6 Hz, 1H), 7.80 (d, J = 7.2 Hz, 1H), 7.88 (d,
- 30 J = 8.4 Hz, 1H), 7.94 (d, J = 7.2 Hz, 1H), 7.99 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 15.9, 54.9, 113.6, 121.1, 123.9, 124.0, 124.6, 125.8, 126.1, 126.2, 127.2, 127.3, 128.7, 129.7, 131.8, 133.9, 134.0, 140.6, 189.0; HRMS (ESI): m/z [M+H]+ calcd for C19H16NS2: 322.0724; found: 322.0720. Elemental
- 35 analysis calcd (%) for C19H15NS2: C 70.99, H 4.70, N 4.36; Found: C 70.88, H 4.65, N 4.38. **2-(cycloheximide)benzo**[*d*]thiazole (3d)^{2d,2e} Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 1.28-1.36 (m, 1H), 1.42-1.51 (m, 2H),
- 1.54-1.65 (m, 3H), 1.77-1.81 (m, 2H), 2.17-2.20 (m, 2H), 3.87-40 3.92 (m, 1H), 7.27 (t, J = 8.0 Hz, 1H), 7.39 (t, J = 8.0 Hz, 1H), 7.73 (d, J = 8.0 Hz, 1H), 7.87 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 25.6, 25.9, 33.3, 47.4, 120.9, 121.6, 124.2, 125.9,)0 127.7, 128.7, 141.5, 159.4, 190.1; HRMS (ESI): *m/z* [M+H]⁺ 135.3, 153.4, 166.5.

3-cyclohexylamine[d]thiazole-2(3H)-thione (4d)^{1d} Yellow oil.

- 45 ¹H NMR (400 MHz, CDCl₃) δ 1.30-1.36 (m, 1H), 1.52-1.62 (m, 2H), 1.81-1.98 (m, 5H), 2.19-2.28 (m, 2H), 5.72-5.78 (m, 1H), 7.26 (t, J = 8.0 Hz, 1H), 7.35 (t, J = 8.0 Hz, 1H), 7.45 (d, J = 7.6Hz, 1H), 7.68 (d, J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 25.4, 26.0, 28.6, 58.5, 114.0, 121.3, 124.0, 126.1, 127.4, 140.7, 50 189.3.
- 2-(4-phenylalanine-2-thiophil)benzo[d]thiazole (3e)^{2j} Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 1.53 (d, J = 6.8 Hz, 3H), 1.98- 10 166.7. 2.04 (m, 1H), 2.09-2.15 (m, 1H), 2.80 (t, J = 8.0 Hz, 2H), 3.98 (m, 1H), 7.15-7.19 (m, 3H), 7.24-7.28 (m, 3H), 7.38 (t, J = 8.0 Hz,
- 55 1H), 7.70 (d, J = 8.0 Hz, 1H), 7.86 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) & 21.6, 33.3, 38.5, 44.0, 121.0, 121.7, 124.3, 126.0, 126.1, 128.4, 128.5, 135.4, 141.3, 153.5, 166.3. 3-(4-phenylalanine-2-yl)benzo[d]thiazole-2(3H)-thione (**4e**)

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 1.61 (d, J = 6.8 Hz, = 8.0 Hz, 1H), 7.90 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, 50 3H), 2.24-2.28 (m, 1H), 2.43-2.53 (m, 2H), 2.73-2.79 (m, 1H),

- 6.09 (m, 1H), 7.09 (d, J = 7.2 Hz, 2H), 7.13 (d, J = 6.8 Hz, 1H), 7.18-7.22 (m, 2H), 7.26 (t, J = 7.6 Hz, 1H), 7.34 (t, J = 7.6 Hz, 1H), 7.45 (d, J = 7.6 Hz, 1H) ,7.55 (d, J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) & 17.7, 33.0, 35.6, 54.6, 113.4, 121.5, 124.3,
- (ESI): m/z [M+H]⁺ calcd for C₁₇H₁₈NS₂: 300.0881; found: 300.0882. Elemental analysis calcd (%) for C₁₇H₁₇NS₂: C 68.18, H 5.72, N 4.68; Found: C 68.23, H 5.79, N 4.70.
- 2-(Pentax-2-thiophil)benzo[d]thiazole (3f) Colorless oil. ¹H 70 NMR (400 MHz, CDCl₃) δ 1.28-1.51 (m, 3H), 1.54-1.65 (m, 3H), 1.77-1.81 (m, 2H), 2.17-2.20 (m, 2H), 3.87-3.92 (m, 1H), 7.27 (t, J = 8.0 Hz, 1H), 7.40 (t, J = 8.0 Hz, 1H), 7.43 (d, J = 8.0 Hz, 1H), 7.87 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 25.6, 25.9, 33.3, 47.3, 120.9, 121.6, 124.2, 125.9, 135.3, 153.4, 166.5;

75 HRMS (ESI): *m/z* [M+H]⁺ calcd for C₁₂H₁₆NS₂: 238.0724; found: 238.0725. Elemental analysis calcd (%) for C₁₂H₁₅NS₂: C 60.72, H 6.37, N 5.90; Found: C 60.65, H 6.42, N 5.95.

- 3-(Pentax-2-yl)benzo[d]thiazole-2(3H)-thione (4f) Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 1.30-1.36 (m, 1H), 1.55-1.61
- 30 (m, 2H), 1.81-1.85 (m, 2H), 1.89-1.99 (m, 3H), 2.20-2.28 (m, 2H), 5.72-5.79 (m, 1H), 7.26 (t, J = 7.6 Hz, 1H), 7.35 (t, J = 8.0 Hz, 1H), 7.47 (d, J = 7.6 Hz, 1H), 7.68 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) & 25.4, 26.0, 28.6, 58.5, 114.1, 121.3, 124.0, 126.1, 127.5, 140.8, 189.3; HRMS (ESI): m/z [M+H]+ calcd for
- 35 C₁₂H₁₆NS₂: 238.0724; found: 238.0719. Elemental analysis calcd (%) for C12H15NS2: C 60.72, H 6.37, N 5.90; Found: C 60.65, H 6.48. N 5.80.

2-(4-methylbenzene)benzo[d]thiazole (3g)^{2b} White solid; mp 63-64 °C. ¹H NMR (400 MHz, CDCl₃) δ 3.77 (s, 3H), 4.55 (s,

- **)**0 2H), 6.84 (d, *J* = 7.2 Hz, 2H), 7.27 (dt, *J* = 1.2, 7.6 Hz, 1H), 7.36 (d, J = 7.2 Hz, 2H), 7.40 (dt, J = 1.2, 7.6 Hz, 1H), 7.72 (d, J = 8.0 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 37.4, 55.3, 114.2, 121.0, 121.6, 124.3, 126.1, 128.1, 130.4, 135.4, 153.2, 159.2, 166.6.
-)5 3-(4-methoxide)benzo[d]thiazole-2(3H)-thione (4g) White solid; mp 104-105°C. ¹H NMR (400 MHz, CDCl₃) δ 3.76 (s, 3H), 5.63 (s, 2H), 6.84 (d, J = 8.8 Hz, 2H), 7.15 (d, J = 7.6 Hz, 1H), 7.23-7.32 (m, 4H), 7.47 (d, J = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) & 49.1, 55.3, 113.1, 114.3, 121.3, 124.8, 126.5, 126.9,
- calcd for C15H14NOS2: 288.0517; found: 288.0518. Elemental analysis calcd (%) for C₁₅H₁₃NOS₂: C 62.69, H 4.56, N 4.87; Found: C 62.72, H 4.59, N 4.85.

2-(4-ethylbenzene)benzo[d]thiazole (3h)^{2b} White solid; mp 52-)5 53°C. ¹H NMR (400 MHz, CDCl₃) δ 2.29 (s, 3H), 4.53 (s, 2H),

- 7.10 (d, J = 8.0 Hz, 2H), 7.25 (t, J = 7.6 Hz, 1H), 7.31 (d, J = 7.6Hz, 2H), 7.38 (t, J = 7.2 Hz, 1H), 7.69 (d, J = 7.6 Hz, 1H), 7.88 (d, J = 8.4 Hz. 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.2, 37.6, 121.1, 121.6, 124.3, 126.1, 129.1, 129.5, 133.0, 135.3, 137.6, 153.2,
- 3-(4-ethylbenzene)benzo[d]thiazole-2(3H)-thione (4h) White solid; mp 129-130°C. ¹H NMR (400 MHz, CDCl₃) δ 2.29 (s, 3H), 5.65 (s, 2H), 7.10-7.13 (m, 3H), 7.20 (d, J = 7.6 Hz, 2H), 7.24-7.30 (m, 2H), 7.46 (d, J = 7.2 Hz, 1H); ¹³C NMR (100 MHz,
- 15 CDCl₃) δ 21.1, 49.3, 113.1, 121.3, 124.8, 126.9, 127.1, 127.6, 129.6, 131.3, 137.7, 141.5, 190.1; HRMS (ESI): m/z [M+H]+

4 | Journal Name, [year], [vol], 00-00

calcd for C15H14NS2: 272.0568; found: 272.0573. Elemental Found: C 66.45, H 4.90, N 5.20.

2-(benzyl thio)benzo[d]thiazole (3i)^{2d} Yellow solid; mp 46-47 °C. 5 ¹H NMR (400 MHz, CDCl₃) δ 4.59 (s, 2H), 7.24-7.33 (m, 4H),

- 7.38-7.45 (m, 3H), 7.72 (d, J = 8.0 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 37.7, 121.0, 121.6, 124.3, 126.1, 127.8, 128.7, 129.2, 135.4, 136.2, 153.2, 166.4.
- 3-benzal[d]thiazole-2(3H)-thione (4i)^{1d} Yellow solid; mp 149-10 150°C. ¹H NMR (400 MHz, CDCl₃) δ 5.71 (s, 2H), 7.11 (d, J = 7.2 Hz, 1H), 7.24-7.33 (m, 7H), 7.49 (d, J = 6.8 Hz, 1H); ¹³C 127.1, 127.6, 127.9, 128.9, 134.4, 141.5, 190.3.
- 2-(4-tribromoethanol)benzo[d]thiazole (3j) Yellow solid; mp 15 80-81 °C. ¹H NMR (400 MHz, CDCl₃) δ 4.44 (s, 2H), 7.20 (t, J = 7.6 Hz, 1H), 7.23 (d, J = 8.4 Hz, 2H), 7.30-7.35 (m, 3H), 7.64 (d, J = 8.0 Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) & 36.9, 121.1, 121.6, 121.7, 124.5, 126.2, 130.8, 131.8, 135.4, 135.6, 153.1, 165.8; HRMS (ESI): m/z [M+H]⁺ calcd for
- 20 C₁₄H₁₁BrNS₂: 335.9516; found: 335.9513. Elemental analysis calcd (%) for C14H10BrNS2: C 50.00, H 3.00, N 4.17; Found: C 49.95, H 3.09, N 4.25. Crystal data and structure refinement for 3j (CCDC: 956820): Empirical formula: C14H10BrNS2 (Formula weight: 336.26); Temperature: 298(2) K; Wavelength: 0.71073 A;
- 25 Crystal system, space group Orthorhombic, P b c n; Unit cell dimensions: a = 15.095(3) A, $\alpha = 90^{\circ}$, b = 5.7769(10) A, $\beta = 90^{\circ}$, $c = 31.466(5) A, \gamma = 90^{\circ}$, Volume: 2743.9(8) A^3 ; Z = 8, Calculated density: 1.628Mg/m³; Absorption coefficient: 3.280 mm⁻¹; F(000): 1344: Crystal size: 0.32 x 0.25 x 0.21 mm: Theta range for data
- 30 collection: 1.87 to 25.50 deg.; Limiting indices: -8<=h<=18, --38<=l<=34; Reflections collected 6<=k<=6, /unique: 11396/2489 [R(int) = 0.0279]; Completeness to theta = 25.50: 97.8 %; Absorption correction: Semi-empirical from equivalents; Max. and min. transmission: 0.5458 and 0.4200. Refinement
- 35 method: Full-matrix least-squares on F². Data / restraints / parameters: 2489 / 0 / 163; Goodness-of-fit on F²: 1.059, Final R indices $[I \ge 2\sigma (I)]$: R1 = 0.0894, $\omega R2 = 0.1886$. R indices (all data): R1 = 0.0978, $\omega R2 = 0.1916$. Largest diff. peak and hole: 0.454 and -0.588 e.A⁻³
- 40 3-(4-bromobenzyl)benzo[d]thiazole-2(3H)-thione (4j) Yellow solid; mp 130-131°C. ¹H NMR (400 MHz, CDCl₃) δ 5.64 (s, 2H), 7.06 (d, J = 7.6 Hz, 1H), 7.19 (d, J = 8.0 Hz, 2H), 7.26-7.31 (m, 2H), 7.44 (d, J = 8.0 Hz, 2H), 7.49 (d, J = 7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) & 48.9, 112.8, 121.5, 122.0, 125.0, 127.1,
- 45 127.6, 128.9, 132.1, 133.4, 141.3, 190.3; HRMS (ESI): m/z $[M+H]^+$ calcd for C₁₄H₁₁BrNS₂: 335.9516; found: 335.9512. N 4.17; Found: C 49.93, H 3.05, N 4.10.

2-(4-chlorobenzvlthio)benzo[d]thiazole (3k)^{2f} Yellow solid; mp 50 81-82°C. ¹H NMR (400 MHz, CDCl₃) δ 4.53 (s. 2H), 7.22-7.29 (m, 3H), 7.35 (d, J = 8.0 Hz, 2H), 7.40 (t, J = 7.2 Hz, 1H), 7.71 (d, J = 8.0 Hz, 1H), 7.88 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) & 36.9, 121.1, 121.6, 124.5, 126.2, 128.9, 130.5, 133.6, 135.0, 135.4, 153.1, 165.8.

55 3-(4-chlorobenzyl)benzo[d]thiazole-2(3H)-thione (4k) Yellow solid; mp 111-112°C. ¹H NMR (400 MHz, CDCl₃) δ 5.66 (s, 2H), 7.07 (d, J = 7.6 Hz, 1H), 7.26-7.31 (m, 6H), 7.50 (d, J = 6.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 48.2, 112.8, 121.5, 125.0,

127.0, 127.6, 128.6, 129.2, 132.9, 133.9, 141.3, 190.3; HRMS analysis calcd (%) for $C_{15}H_{13}NS_2$: C 66.38, H 4.83, N 5.16; 50 (ESI): m/z [M+H]⁺ calcd for $C_{14}H_{11}CINS_2$: 292.0021; found: 292.0019. Elemental analysis calcd (%) for C14H11CINS2: C 57.62, H 3.45, N 4.80; Found: C 57.69, H 3.49, N 4.86.

2-(4-fluorobenzylthio)benzo[d]thiazole (31)^{1a} Yellow solid; mp 80-81°C. ¹H NMR (400 MHz, CDCl₃) δ 4.54 (s, 2H), 6.98 (t, J =

- 55 8.4 Hz, 2H), 7.27 (d, J = 7.6 Hz, 1H), 7.36-7.42 (m, 3H), 7.71 (d, J = 8.0 Hz, 1H), 7.89 (d, J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 36.9, 115.6 (d, ²J_{C-F} = 21 Hz), 121.1, 121.6, 124.4, 126.1, 130.8 (d, ${}^{3}J_{C-F} = 8$ Hz), 132.2, 135.4, 153.2, 162.3 (d, ${}^{1}J_{C-F}$ = 245 Hz), 166.0.
- NMR (100 MHz, CDCl₃) δ 49.5, 113.0, 121.3, 124.8, 126.9, 70 3-(4-fluorobenzyl)benzo[d]thiazole-2(3H)-thione (4l) Yellow solid; mp 130-131°C. ¹H NMR (400 MHz, CDCl₃) δ 5.66 (s, 2H), 7.01 (t, J = 8.4 Hz, 2H), 7.10 (d, J = 7.6 Hz, 1H), 7.25-7.33 (m, 4H), 7.49 (d, J = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 48.8, 112.9, 115.9 (d, ${}^{2}J_{C-F} = 21$ Hz), 121.4, 124.9, 127.0, 127.6,
 - 75 129.1 (d, ${}^{3}J_{C-F} = 8$ Hz), 130.2, 141.3, 162.4 (d, ${}^{1}J_{C-F} = 245$ Hz), 190.2; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₄H₁₁FNS₂: 276.0317; found: 276.0315. Elemental analysis calcd (%) for C₁₄H₁₁FNS₂: C 61.06, H 3.66, N 5.09; Found: C 60.98, H 3.59, N 4.96.

2-(1-(4-methoxyphenyl)ethylthio)-6-methylbenzo[d]thiazole

- 30 (3m) White solid; mp 81-82 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.81 (d, J = 6.8 Hz, 3H), 2.44 (s, 3H), 3.78 (s, 3H), 5.07 (q, J = 7.2 Hz, 1H), 6.85 (d, J = 8.8 Hz, 2H), 7.21 (d, J = 8.0 Hz, 1H), 7.38 (d, J = 8.4 Hz, 2H), 7.51 (s, 1H), 7.78 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.4, 22.7, 47.3, 55.3, 114.1,
- 35 120.8, 121.3, 127.5, 128.6, 133.9, 134.4, 135.8, 151.5, 159.1, 164.6; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₇H₁₈NOS₂: 316.0830; found: 316.0826. Elemental analysis calcd (%) for C₁₇H₁₇NOS₂: C 64.73, H 5.43, N 4.44; Found: C 64.92, H 5.49, N 4.35.
-)0 3-(1-(4-methoxyphenyl)ethyl)-6-methylbenzo[d]thiazole-2(3H)-thione (4m) Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 1.88 (d, J = 7.2 Hz, 3H), 2.31 (s, 3H), 3.78 (s, 3H), 6.79 (d, J = 8.4 Hz, 1H), 6.85-6.90 (m, 3H), 7.13 (q, J = 7.2 Hz, 1H), 7.20-7.26 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 15.3, 20.9, 54.8,
-)5 55.3, 113.6, 114.1, 114.2, 121.2, 127.3, 127.5, 127.6, 130.1, 134.3, 137.9, 159.1, 189.3. HRMS (ESI): m/z [M+H]⁺ calcd for C17H18NOS2: 316.0830; found: 316.0829. Elemental analysis calcd (%) for C₁₇H₁₇NOS₂: C 64.73, H 5.43, N 4.44; Found: C 64.89, H 5.47, N 4.39.
-)0 6-methyl-2-(1-phenylethylthio)benzo[d]thiazole (3n) Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 1.82 (d, J = 7.2 Hz, 3H), 2.41 (s, 3H), 5.11 (q, J = 7.2 Hz, 1H), 7.19-7.24 (m, 2H), 7.29-7.33 (m, 2H), 7.44 (s, 1H), 7.47 (d, J = 7.2 Hz, 2H), 7.77 (d, J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.5, 22.7, 47.7, 120.9,
- Elemental analysis calcd (%) for C₁₄H₁₀BrNS₂: C 50.00, H 3.00,)5 121.3, 127.4, 127.5, 127.8, 128.7, 134.5, 135.8, 141.9, 151.4, 164.4; HRMS (ESI): *m/z* [M+H]⁺ calcd for C₁₆H₁₆NS₂: 286.0724; found: 286.0720. Elemental analysis calcd (%) for C₁₆H₁₅NS₂: C 67.33. H 5.30. N 4.91: Found: C 67.43. H 5.45. N 4.87.
 - 6-methyl-3-(1-phenylethyl)benzo[d]thiazole-2(3H)-thione (4n) 10 Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 1.91 (d, J = 7.2 Hz, 3H), 2.31 (s, 3H), 6.74 (d, J = 8.4 Hz, 1H), 6.88 (d, J = 8.4 Hz, 1H), 7.19 (d, J = 7.2 Hz, 1H), 7.26 (s, 1H), 7.28-7.35 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 15.1, 20.9, 55.1, 114.1, 121.3, 126.4, 127.3, 127.5, 127.7, 128.9, 134.4, 137.8, 138.2, 189.5.
 - 15 HRMS (ESI): m/z [M+H]⁺ calcd for C₁₆H₁₆NS₂: 286.0724; found: 286.0735. Elemental analysis calcd (%) for C₁₆H₁₅NS₂: C 67.33,

This journal is © The Royal Society of Chemistry [year]

Journal Name, [year], [vol], 00–00 | 5

H 5.30, N 4.91; Found: C 67.48, H 5.43, N 4.85.

mp 86-87°C. ¹H NMR (400 MHz, CDCl₃) δ 2.31 (s, 3H), 2.42 (s, 3H), 4.53 (s, 2H), 7.11 (d, J = 8.0 Hz, 2H), 7.20 (d, J = 8.4 Hz,

- 5 1H), 7.31 (d, J = 8.0 Hz, 2H), 7.49 (s, 1H), 7.76 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.2, 21.4, 37.6, 120.9, 121.0, 127.5, 129.1, 129.4, 133.0, 134.4, 135.5, 137.5, 151.3, 165.3; HRMS (ESI): *m/z* [M+H]⁺ calcd for C₁₆H₁₆NS₂: 286.0724; found: 286.0733. Elemental analysis calcd (%) for C₁₆H₁₅NS₂: C 10 67.33, H 5.30, N 4.91; Found: C 67.38, H 5.35, N 4.89.
- 3-(4-ethylbenzene)-6-methylbenzo[d]thiazole-2(3H)-thione 2.29 (s, 3H), 2.36 (s, 3H), 5.62 (s, 2H), 6.99 (d, J = 8.0 Hz, 1H), 7.06-7.11 (m, 3H), 7.19 (d, J = 8.0 Hz, 2H), 7.27 (s, 1H); ¹³C
- 15 NMR (100 MHz, CDCl₃) δ 20.5, 20.6, 48.8, 112.3, 120.9, 126.6, 127.1, 127.5, 129.1, 130.9, 134.5, 137.2, 139.0, 189.0. mp 54-55°C. ¹H NMR (400 MHz, CDCl₃) δ 2.42 (s, 3H), 4.56 (s, 2H), 7.20 (d, J = 8.4 Hz, 1H), 7.25-7.32 (m, 3H), 7.42 (d, J = 7.6
- 20 Hz, 2H), 7.50 (s, 1H), 7.76 (d, J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.4, 37.8, 120.9, 121.1, 127.5, 127.7, 128.7, 129.1, 134.4, 135.6, 136.3, 151.4, 165.0.

3-benzyl-6-methylbenzo[d]thiazole-2(3H)-thione (4p)^{1g} Yellow solid; mp 154-155°C. ¹H NMR (400 MHz, CDCl₃) δ 2.37 (s, 3H),

25 5.68 (s, 2H), 6.98 (d, J = 8.4 Hz, 1H), 7.08 (d, J = 8.4 Hz, 1H), 7.26-7.31 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 21.0, 49.5, 112.7, 121.4, 127.1, 127.7, 127.9, 128.0, 128.9, 134.5, 135.0, 139.5, 189.7.

2-(4-tribromoethanol)-6-methylbenzo[d]thiazole (3q) Yellow 30 solid; mp 83-84°C. ¹H NMR (400 MHz, CDCl₃) δ 2.41 (s, 3H),

- 4.48 (s, 2H), 7.20 (d, J = 8.4 Hz, 1H), 7.28 (d, J = 8.4 Hz, 2H), 7.39 (d, *J* = 8.4 Hz, 2H), 7.49 (s, 1H), 7.75 (d, *J* = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.5, 37.0, 120.9, 121.2, 121.7, 127.6, 130.8, 131.8, 134.6, 135.6, 135.7, 151.3, 164.4; HRMS
- 35 (ESI): m/z [M+H]⁺ calcd for C₁₅H₁₃BrNS₂: 349.9673; found: 349.9669. Elemental analysis calcd (%) for C₁₅H₁₂BrNS₂: C 51.43, H 3.45, N 4.00; Found: C 51.48, H 3.49, N 3.95. 3-(4-bromobenzyl)-6-methylbenzo[d]thiazole-2(3H)-thione (4q)
- 40 Yellow solid, mp 146-147°C. ¹H NMR (400 MHz, CDCl₃) δ 2.38 (s, 3H), 5.62 (s, 2H), 6.95 (d, J = 8.4 Hz, 1H), 7.10 (d, J = 8.4 Hz, 1H), 7.18 (d, J = 8.4 Hz, 2H), 7.30 (s, 1H), 7.44 (d, J = 8.4 Hz, 0 CDCl₃) δ 49.1, 55.3, 113.6, 114.4, 121.0, 126.0, 127.2, 128.6, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 21.1, 48.9, 112.4, 121.6, 121.9, 127.6, 128.1, 128.9, 132.1, 133.5, 135.2, 139.2, 189.7;
- 45 HRMS (ESI): m/z [M+H]⁺ calcd for C₁₅H₁₃BrNS₂: 349.9673; found: 349.9675. Elemental analysis calcd (%) for C₁₅H₁₂BrNS₂: C 51.43, H 3.45, N 4.00; Found: C 51.38, H 3.35, N 4.05. 6-chloro-2-(1-(4-methoxyphenyl)ethylthio)benzo[d]thiazole (3r) White solid; mp 76-77°C. ¹H NMR (400 MHz, CDCl₃) δ
- 50 1.75 (d, J = 6.8 Hz, 3H), 3.71 (s, 3H), 5.02 (q, J = 7.2 Hz, 1H), 6.78 (d, J = 8.4 Hz, 2H), 7.27-7.32 (m, 3H), 7.61 (s, 1H), 7.71 (d, 3H)J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.6, 46.4, 54.3, 113.1, 119.6, 121.3, 125.7, 127.6, 129.2, 132.6, 135.6, 150.3, 158.2, 165.7; HRMS (ESI): *m/z* [M+H]⁺ calcd for C₁₆H₁₅ClNOS₂:
- 55 336.0284; found: 336.0290. Elemental analysis calcd (%) for C₁₆H₁₄ClNOS₂: C 57.22, H 4.20, N 4.17; Found: C 57.35, H 4.33, N 4.06.

6-chloro-3-(1-(4-methoxyphenyl)ethyl)benzo[d]thiazole-

2(3H)-thione (4r) Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ **2-(4-ethylbenzene)-6-methylbenzo**[*d*]thiazole (30) White solid, 50 1.80 (d, J = 7.2 Hz, 3H), 3.72 (s, 3H), 6.72 (d, J = 9.2 Hz, 1H), 6.80 (d, J = 8.8 Hz, 2H), 6.97 (dd, J = 2.0, 8.8 Hz, 1H), 7.03 (q, J = 6.8 Hz, 1H), 7.14 (d, J = 8.4 Hz, 2H), 7.34 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) & 15.2, 54.9, 55.3, 114.4, 114.9, 120.8, 126.5, 127.6, 128.8, 129.6, 130.4, 138.6, 159.2, 189.7; HRMS (ESI): m/z

 55 [M+H]^+ calcd for C₁₆H₁₅ClNOS₂: 336.0284; found: 336.0279. Elemental analysis calcd (%) for C₁₆H₁₄ClNOS₂: C 57.22, H 4.20, N 4.17; Found: C 57.38, H 4.35, N 4.08. 6-chloro-2-(1-phenylethylthio)benzo/d]thiazole (3s) Colorless

oil. ¹H NMR (400 MHz, CDCl₃) δ 1.74 (d, J = 6.8 Hz, 3H), 5.03 (40)^{1g} White solid, mp 133-134°C. ¹H NMR (400 MHz, CDCl₃) δ 70 (q, J = 7.2 Hz, 1H), 7.16 (d, J = 6.8 Hz, 1H), 7.21-7.25 (m, 3H), 7.36 (d, J = 7.6 Hz, 2H), 7.54 (s, 1H), 7.67 (d, J = 8.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 22.7, 47.7, 120.6, 122.3, 126.7, 127.4, 127.9, 128.8, 130.2, 136.6, 141.7, 151.8, 166.6; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₅H₁₃ClNS₂: 306.0178; found:

2-(benzyl thio)-6-methylbenzo[d]thiazole (3p)²¹ Yellow solid; 75 306.0181. Elemental analysis calcd (%) for C₁₅H₁₂ClNS₂: C 58.91, H 3.95, N 4.58; Found: C 58.95, H 4.08, N 4.45. 6-chloro-3-(1-phenylethyl)benzo[d]thiazole-2(3H)-thione (4s) Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 1.90 (d, J = 7.2 Hz, 3H), 6.75 (d, J = 8.8 Hz, 1H), 7.04 (dd, J = 2.0, 8.8 Hz, 1H), 7.16

30 (q, J = 7.2 Hz, 1H), 7.26-7.32 (m, 2H), 7.35-7.38 (m, 2H), 7.43 (d, J = 2.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 15.1, 55.2, 114.8, 120.9, 126.3, 126.6, 127.9, 128.7, 129.1, 130.4, 137.6, 138.5, 189.8; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₅H₁₃ClNS₂: 306.0178; found: 306.0183. Elemental analysis calcd (%) for 35 C₁₅H₁₂ClNS₂: C 58.91, H 3.95, N 4.58; Found: C 58.99, H 4.05,

N 4.47. 2-(4-methylbenzene)-6-chlorobenzo[d]thiazole (3t) White solid:

mp 99-101 °C. ¹H NMR (400 MHz, CDCl₃) δ 3.76 (s, 3H), 4.52 (s, 2H), 6.83 (d, J = 8.8 Hz, 2H), 7.33-7.36 (m, 3H), 7.66 (d, J = 2.0

- 30 Hz, 1H), 7.76 (d, J = 8.8 Hz, 1H); 13 C NMR (100 MHz, CDCl₃) δ 37.4, 55.3, 114.2, 120.7, 122.1, 126.7, 127.8, 130.1, 130.4, 136.5, 151.8, 159.3, 167.3; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₅H₁₃ClNOS₂: 322.0127; found: 322.0131. Elemental analysis calcd (%) for C₁₅H₁₂ClNOS₂: C 55.98, H 3.76, N 4.35; Found: C
-)5 56.12, H 3.83, N 4.28. 3-(4-methoxide)-6-chlorobenzo[d]thiazole-2(3H)-thione (4t) White solid; mp 152-153 °C. ¹H NMR (400 MHz, CDCl₃) δ 3.76 (s, 3H), 5.58 (s, 2H), 6.84 (d, J = 8.4 Hz, 2H), 7.03 (d, J = 8.8 Hz, 1H), 7.20-7.25 (m, 3H), 7.43 (s, 1H); ¹³C NMR (100 MHz,
- 128.9, 130.8, 140.1, 159.4, 189.8; HRMS (ESI): m/z [M+H]+ calcd for C₁₅H₁₃ClNOS₂: 322.0127; found: 322.0129. Elemental analysis calcd (%) for C₁₅H₁₂ClNOS₂: C 55.98, H 3.76, N 4.35; Found: C 55.89, H 3.85, N 4.40.
-)5 2-(4-chlorobenzylthio)-6-chlorobenzo[d]thiazole (3u) Yellow solid; mp 82-83°C. ¹H NMR (400 MHz, CDCl₃) δ 4.52 (s, 2H), 7.26 (d, J = 8.4 Hz, 2H), 7.34-7.37 (m, 3H), 7.67 (d, J = 1.2 Hz, 1H). 7.76 (d. J = 8.4 Hz. 1H): ¹³C NMR (100 MHz. CDCl₃) δ 36.9, 120.7, 122.2, 126.8, 128.9, 130.3, 130.5, 133.7, 134.7,
- 10 136.5, 151.6, 166.5; HRMS (ESI): m/z [M+H]⁺ calcd for C14H10Cl2NS2: 325.9632; found: 325.9629. Elemental analysis calcd (%) for C14H9Cl2NS2: C 51.54, H 2.78, N 4.29; Found: C 51.39, H 2.82, N 4.25.
- 3-(4-chlorobenzyl)-6-chlorobenzo[*d*]thiazole-2(3*H*)-thione (4u) 15 Yellow solid; mp 162-163 °C. ¹H NMR (400 MHz, CDCl₃) δ 5.62 (s, 2H), 6.97 (d, J = 8.8 Hz, 1H), 7.22 (d, J = 8.4 Hz, 2H), 7.26-

6 | Journal Name, [year], [vol], 00-00

7.31 (m, 3H), 7.48 (d, J = 2.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 48.9, 113.3, 121.2, 127.4, 128.5, 128.8, 129.3, 131.0, 132.5, 134.1, 139.8, 189.9; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₄H₁₀Cl₂NS₂: 325.9632; found: 325.9630. Elemental analysis

- 5 calcd (%) for C₁₄H₉Cl₂NS₂: C 51.35, H 2.88, N 4.21; Found: C 51.39, H 2.82, N 4.25. 6-fluoro-2-(1-(4-methoxyphenyl)ethylthio)benzo[*d*]thiazole
- (**3v**) White solid; mp 68-69 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.81 (d, *J* = 6.8 Hz, 3H), 3.77 (s, 3H), 5.09 (q, *J* = 6.8 Hz, 1H),
- 10 6.85 (d, J = 8.8 Hz, 2H), 7.12 (dt, J = 2.0, 8.8 Hz, 1H), 7.37-7.39 (m, 3H), 7.81 (dd, J = 4.8, J = 8.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 22.7, 47.4, 55.3, 107.4 (d, ² $J_{C-F} = 27$ Hz), 114.1, 114.3 (d, ² $J_{C-F} = 24$ Hz), 122.4 (d, ³ $J_{C-F} = 9$ Hz), 128.6, 133.6, 136.5 (d, ³ $J_{C-F} = 11$ Hz), 149.9, 159.2, 159.9 (d, ¹ $J_{C-F} = 243$ Hz), 165.5;
- 15 HRMS (ESI): m/z [M+H]⁺ calcd for C₁₆H₁₅FNOS₂: 320.0579; found: 320.0583. Elemental analysis calcd (%) for C₁₆H₁₄FNOS₂: C 60.16, H 4.42, N 4.39; Found: C 60.25, H 4.45, N 4.43.
 6-fluoro-3-(1-(4-methoxyphenyl)ethyl)benzo[d]thiazole-2(3H)-thione (4v) White solid; mp 120-121°C. ¹H NMR (400
- 20 MHz, CDCl₃) δ 1.87 (d, J = 7.2 Hz, 3H), 3.79 (s, 3H), 6.80-6.85 (m, 2H), 6.87 (d, J = 8.4 Hz, 2H), 7.11 (q, J = 7.2 Hz, 1H), 7.16 (d, J = 7.2 Hz, 1H), 7.22 (d, J = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 14.7, 54.5, 54.8, 107.7 (d, ²J_{C-F} = 27 Hz), 113.3 (d, ²J_{C-F} = 24 Hz), 113.9, 114.5 (d, ³J_{C-F} = 9 Hz), 127.1, 128.2 (d, ³J_{C-F} =
- 25 10 Hz), 129.2, 135.9, 158.7, 159.2 (d, ¹J_{C-F} = 245Hz), 189.1; HRMS (ESI): *m/z* [M+H]⁺ calcd for C₁₆H₁₅FNOS₂: 320.0579; found: 320.0580. Elemental analysis calcd (%) for C₁₆H₁₄FNOS₂: C 60.16, H 4.42, N 4.39; Found: C 60.20, H 4.38, N 4.45. Crystal data and structure refinement for **4v** (CCDC: 956821): Empirical
- 30 formula: $C_{16}H_{14}FNOS_2$ (Formula weight: 319.40); Temperature: 298(2) K; Wavelength: 0.71073 A; Crystal system, space group Monoclinic, P 21/c; Unit cell dimensions: a = 7.698(3) A, $\alpha = 90^{\circ}$, b = 8.149(4) A, $\beta = 92.030(8)^{\circ}$, c = 23.607(10) A, $\gamma = 90^{\circ}$, Volume: 1480.0(11)A³; Z = 4, Calculated density: 1.433Mg/m³;
- 35 Absorption coefficient: 0.368 mm⁻¹; F(000): 664; Crystal size: 0.23 x 0.21 x 0.15 mm; Theta range for data collection: 1.73 to 25.10 deg.; Limiting indices: -9 <=h <=9, -8 <=k <=9, -28 <=l <=27; Reflections collected /unique: 6527/2586 [R(int) = 0.0404]; Completeness to theta = 25.10: 97.9 %; Absorption correction:
- 40 Semi-empirical from equivalents; Max. and min. transmission: 0.9469 and 0.9202. Refinement method: Full-matrix least-squares on F². Data / restraints / parameters: 2586 / 0 / 193; Goodness-of-fit on F²: 1.092, Final *R* indices [$I > 2\sigma$ (I)]: RI = 0.1140, $\omega R2 = 0.2717$. *R* indices (all data): RI = 0.1202, $\omega R2 =$
- 45 0.2753. Extinction coefficient 0.016(5) .Largest diff. peak and hole: 0.493 and -0.472 $e.A^{\text{-}3}$

2-(4-ethylbenzene)-6-fluorobenzo[*d*]thiazole (3w) White solid; mp 102-103 °C. ¹H NMR (400 MHz, CDCl₃) δ 2.31 (s, 3H), 4.52 (s, 2H), 7.09-7.14 (m, 3H), 7.30 (d, *J* = 7.2 Hz, 2H), 7.38 (d, *J* =

- 50 8.0 Hz, 1H), 7.79 (dd, J = 4.4, 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.1, 37.6, 107.5 (d, ² $J_{C-F} = 27$ Hz), 114.4 (d, ² $J_{C-F} = 24$ Hz), 122.2 (d, ³ $J_{C-F} = 9$ Hz), 129.1, 129.5, 132.9, 136.2 (d, ³ $J_{C-F} = 11$ Hz), 137.6, 149.8, 159.8 (d, ¹ $J_{C-F} = 243$ Hz), 166.1; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₅H₁₃FNS₂: 290.0473; found:
- 55 290.0479. Elemental analysis calcd (%) for C₁₅H₁₂FNS₂: C 62.26, H 4.18, N 4.84; Found: C 62.41, H 4.10, N 4.79.
 3-(4-ethylbenzene)-6-fluorobenzo[*d*]thiazole-2(*3H*)-thione (4w) White solid; mp 164-165°C. ¹H NMR (400 MHz, CDCl₃) δ 2.30

- (s, 3H), 5.62 (s, 2H), 6.99-7.04 (m, 2H), 7.12 (d, J = 7.6 Hz, 2H), 50 7.17-7.21 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 21.1, 49.5, 108.4 (d, ² $J_{C-F} = 26$ Hz), 113.6 (d, ³ $J_{C-F} = 8$ Hz), 114.5 (d, ² $J_{C-F} =$ 24 Hz), 127.1, 128.7 (d, ³ $J_{C-F} = 7$ Hz), 128.8, 129.7, 131.0, 137.9, 160.2 (d, ¹ $J_{C-F} = 244$ Hz), 189.8; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₅H₁₃FNS₂: 290.0473; found: 290.0477. Elemental analysis 55 calcd (%) for C₁₅H₁₂FNS₂: C 62.26, H 4.18, N 4.84; Found: C 62.36, H 4.15, N 4.88.
 - Acknowledgments

Financial Supported from National Natural Science Foundation 70 of China (21002042), Jiangxi Educational Committee (GJJ12169),

- and the Project of Jiangxi Youth Scientist (20122BCB23012) is gratefully acknowledged.
- \dagger Electronic Supplementary Information (ESI) available: CIF files for compound 3j and 4v. See DOI: 10.1039/b000000x/

75 Notes and references

^a Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China

^b Department of Obstetrics and Gynecology, Jiangxi Provincial people's 30 Hospital, Nanchang, Jiangxi 330006, P. R. China

- (a) K. Vera, K. Jan, P. Karel, S. Jirina, D. Hans-Martin and M. Ute, Med. Chem., 2012, 8, 281; (b) I. Hutchinson, S. A. Jennings, B. R. Vishnuvajjala, A. D. Westwell and M. F. G. Stevens, J. Med. Chem., 2002, 45, 744; (c) Naya, A.; Kobayashi, K.; Ishikawa, M.; Ohwaki, K.;
- Saeki, T.; Noguchi, K. and Ohtake, N. *Bioorg. Med. Chem. Lett.*, 2001,
 11, 1219; (d) G. Anton, H. Richard and K, Pavol, *Toxicol. Environ. Chem.*, 1997, 64, 155; (e) K. Waisser, E. Sidoova, Z. Odlerova, W. Goeckeritz and J. Drsata, *Pharmazie*, 1987, 42, 536; (f) W. A. Skinner, F. Gualtiere, G. Brody, A. H. Fieldsteel, *J. Med. Chem.*, 1971, 14, 546;
- (g) D. L. Garmaise, G. Y. Paris, J. Komlossy, C. H. Chambers and R. C. McCrae, J. Med. Chem., 1969, 12, 30; (h) A. Burger and S. N. Sawhney, J. Med. Chem., 1968, 11, 270.
- 2 (a) M. A. Savolainen and J. Wu. Org. Lett. 2013, 15, 3802; (b) X.-Q. Chu, R. Jiang, Y. Fang, Z.-Y. Gu, H, Meng, S.-Y. Wang and S.-J. Ji,
- *Tetrahedron*, 2013, **69**, 1166; (c) H. Wang, L. Wang, J. Shang, X. Li, H. Wang, J. Gui and A. W. Lei, *Chem. Commun.*, 2012, **48**, 76; (d) C. Dai, Z. Xu, F. Huang, Z. Yu and Y.-F. Gao, *J. Org. Chem.*, 2012, **77**, 4414; (e) S. Ranjit, R. Lee, D. Heryadi, C. Shen, J. Wu, P. Zhang, K.-W. Huang and X. Liu. *J. Org. Chem.*, 2011, **76**, 8999; (f) L. Shi, X. Liu, H.
- 20 Zhang, Y. Jiang and D. Ma, J. Org. Chem., 2011, 76, 4200; (g) F. Chen, C. Shen and D. Yang, *Tetrahedron Lett.*, 2011, 52, 2128; (h) Y. Riadi, R. Azzalou, S. Lazar, R. Mamouni, M. Haddad, S. Routier and G. Guillaumet, *Tetrahedron Lett.*, 2011, 52, 3492; (i) D. S. Bose and M. Idrees, *Synthesis*, 2010, 398; (j) M. Teruaki, K. Kiichi and M. Yuji,
- Heterocycles, 2010, 80, 63; (k) P. Saha, T. Ramana, N. Purkait, M. Ali, R. Paul and T. Punniyamurthy, J. Org. Chem., 2009, 74, 8719; (l) X. Fei, Y. Gu, Y. Ban, Z. Liu and B. Zhang, Bioorg. Med. Chem., 2009, 17, 585; (m) T. Itoh. and T. Mase, Org. Lett. 2007, 9, 3687; (n) G. Evindar and R. A. Batey, J. Org. Chem., 2006, 71, 1802.
- 10 3 (a) S. Oae, Organic Sulfur Chemistry: Structure and Mechanism, CRC Press, Boca Raton, Fl, 1991; (b) R. J. Cremlyn, An Introduction to Organo-Sulfur Chemistry, Wiley & Sons, New York, 1996; (c) J. F. Hartwig, Angew. Chem. Int. Ed., 1998, 37, 2046; (d) J. P. Wolfe, S. Wagaw, J.-F. Marcoux and S. L.Buchwald, Acc. Chem. Res., 1998, 31,
- 5 805; (e) J. Hassan, M. Sévignon, C. Gozzi, E. Schulz and M. Lemaire, *Chem. Rev.*, 2002, **102**, 1359.

This journal is © The Royal Society of Chemistry [year]

- 4 (a) M. A. Fernández-Rodríguez, Q. Shen and J. F. Hartwig, *J. Am. Chem. Soc.*, 2006, **128**, 2180; (b) Y.-C. Wong, T. T. Jayanth and C.-H. Cheng, *Org. Lett.*, 2006, **8**, 5613; (c) A. Correa, M. Carril and C. Bolm, *Angew. Chem. Int. Ed.*, 2008, **47**, 2880; (d) B. Basu, B. Mandal, S. Das 25
- 5 and S. Kundu, *Tetrahedron Lett.*, 2009, **50**, 5523; (e) S. Murru, H. Ghosh, S. K. Sahoo and B. K. Patel, *Org. Lett.*, 2009, **11**, 4254; (f) B. Basu, S. Paul and A. K. Nanda, *Green Chem.*, 2010, **12**, 767.

5 J. Barluenga and C. Valdés, Angew. Chem., Int. Ed., 2011, 50, 7486.

- 6 (a) J. Barluenga, P. Moriel, C. Valdés and F. Aznar, Angew. Chem., Int. 30
 10 Ed. 2007, 46, 5587; (b) J. Barluenga, M. Tomas-Gamasa, P. Moriel, F. Aznar and C. Valdés, Chem.-Eur. J., 2008, 14, 4792; (c) W.-Y. Yu, Y.-T. Tsoi, Z. Zhou and A. S. C. Chan, Org. Lett., 2008, 11, 469; (d) Q. Xiao, J. Ma, Y. Yang, Y. Zhang and J. Wang, Org. Lett., 2009, 11, 4732; (e) J. Barluenga, M. Escribano, P. Moriel, F. Aznar and C. 35
- 15 Valdes, *Chem.-Eur. J.*, 2009, 15, 13291; (f) J. Barluenga, M. Tomas-Gamasa, F. Aznar, C. Valdés, *Chem.-Eur. J.*, 2010, 16, 12801; (g) X. Zhao, J. Jing, K. Lu, Y. Zhang and J. Wang, *Chem. Commun.*, 2010, 46, 1724; (h) X. Zhao, G. Wu, C. Yan, K. Lu, H. Li, Y. Zhang and J. Wang, *Org. Lett.*, 2010, 12, 5580; (i) L. Zhou, F. Ye, Y. Zhang and J. Wang, *J.* 10
- 20 Am. Chem. Soc., 2010, 132, 13590; (j) J. Barluenga, L. Florentino, F. Aznar and C. Valdes, Org. Lett., 2011, 13, 510; (k) X. Zhao, G.Wu, Y.

Zhang, J. Wang, J. Am. Chem. Soc., 2011, **133**, 3296; (1) L. Zhou, F. Ye, J. Ma, Y. Zhang and J. Wang, Angew. Chem., Int. Ed. 2011, **50**, 3510; (m) W. Shi, C. Liu and A. Lei, Chem. Soc. Rev. 2011, **40**, 2761;

(n) X. Li, Y. Feng, L. Lin and G. Zou, J. Org. Chem., 2012, 77, 10991;
(o) F. Ye, X. Ma, Q. Xiao, H. Li, Y. Zhang and J. Wang, J. Am. Chem. Soc., 2012, 134, 5742; (p) L. Zhou, F. Ye, Y. Zhang and J. Wang, Org. Lett., 2012, 14, 922.

- 8 (a) X.-W. Feng, J. Wang, J. Zhang, J. Yang, N. Wang and X.-Q. Yu, *Org. Lett.*, 2010, **12**, 4408; (b) J. Barluenga, M. Tomás-Gamasa, F. Aznar and C. Valdés, *Eur. J. Org. Chem.*, 2011, 1520.
- 35 9 (a) J. Barluenga, M. Tomás-Gamasa, F. Aznar and C. Valdés, *Nat. Chem.*, 2009, 1, 433; (b) J. Barluenga, M. Tomás-Gamasa, F. Aznar and C. Valdés, *Angew. Chem. Int. Ed.*, 2010, 49, 4993; (c) Q. Ding, B. Cao, J. Yuan, X. Liu and Y. Peng, *Org. Biomol. Chem.*, 2011, 9, 748; (d) Y. Xia, P. Qu, Z. Liu, R. Ge, Q. Xiao, Y. Zhang and J. Wang,
 - Angew. Chem. Int. Ed., 2013, 52, 2543; (e) J.-B. Liu, H. Yan and G. Lu, Tetrahedron Lett. 2013, 54, 891; (f) Q. Sha and Y.-Y. Wei, Org. Biomol. Chem., 2013, 11, 5615.

Efficient construction of C-S and C-N bond *via* metal-free reductive coupling of N-tosylhydrazones with benzo[d]thiazole-2-thiol

45 Yuqing Lin, a Puying Luo, * Diang Zheng, Yumei Liu, Xiaoyan Sang, and Qiuping Ding*a

Abstract: An efficient procedure for the synthesis of diverse benzo[*d*]thiazole derivatives has been developed *via* metal-free reductive coupling of *N*-tosylhydrazones with benzo[*d*]thiazole-2-thiol. 2-Thio-substituted benzothiazoles are useful synthetic intermediates and promising biologically active compounds. The present process tolerates a wide range of substrates with high efficiency and moderate selectivity.

Graphical Abstract:

50

^{7 (}a) A. Hamze, B. Tréguier, J.-D. Brion and M. Alami, Org. Biomol.

³⁰ Chem., 2011, 9, 6200; (b) T. Xiao, X. Dong and L. Zhou, Org. Biomol. Chem., 2013, 11, 1490.