

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

1	DFT Studies for the Evaluation of Amine Functionalized Polystyrene Adsorbents for Selective
2	Adsorption of Carbon dioxide
3	
4	Rupa Shantamal Madyal and Jyotsna Sudhir Arora*
5	Department of Chemical Engineering,
6	Institute of Chemical Technology,
7	Nathalal Parekh Marg,
8	Matunga, Mumbai 400019, India
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	*Corresponding author: Tel.: +91-022-33612013; fax: +91-022-33611020;
19	e-mail: josharora@gmail.com
20	

1 Abstract

The interaction of carbon dioxide with four amine functionalized polystyrene based 2 adsorbents was investigated by means of Density functional theory (DFT). The structures of the 3 4 adsorbents and CO₂-adsorbent complexes were optimized using the B3LYP/6-311++G(d,p) method. The interaction energies, equilibrium distances, charge transfer from the functionalized adsorbent to 5 CO₂, highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) 6 energy gap and thermochemical parameters of the complexes were evaluated. Weak intermolecular 7 forces were responsible for the interaction between the active centers of functionalized adsorbents 8 and CO₂ as confirmed from experimental studies. The interaction energies and vibrational 9 frequencies confirmed stronger interaction of CO₂ towards imidazole functionalized polystyrene 10 (PS-Imidazole) followed by N-methylpiperazine loaded polystyrene (PS-Piperazine) and found to be 11 the least for the bare adsorbent chloromethylated polystyrene (CMPS). Steric hindrance was found to 12 play a major role in the case of dimethylamine (PS-DMA) and diethanolamine (PS-DEA) 13 functionalized polystyrene during their interaction with CO₂. On the basis of HOMO-LUMO energy 14 gap and calculated density of states, negligible change in the electronic properties of CO₂-adsorbent 15 complexes was observed, indicating physisorption process. The outcomes of the present theoretical 16 studies are in well agreement with the experimental results and it provides detailed insights for 17 understanding the interaction of CO₂ with active centre of the functionalized adsorbent. 18

19

20 Keywords: carbon dioxide, imidazole, *N*-methylpiperazine, diethanolamine, B3LYP, physisorption.

1 **1 Introduction**

The concentration of carbon dioxide (CO_2) in the atmosphere has amplified by about 30% in the last 50 years and is expected to increase over the next few decades as a result of anthropogenic fossil-fuel combustion.¹ Carbon dioxide is considered to be the major contributor to the greenhouse effect and is perceived to be responsible for global warming. Thus, the presence of excess CO_2 in earth's atmosphere has resulted in the gradual increase in temperature. Extensive efforts have been focused to develop efficient technologies for CO_2 capture, storage (sequestration) and utilization.^{2,3}

CO₂ capture by liquid amines (primary and secondary) are amongst the most commonly used 8 processes.^{1,4-6} However, the main drawbacks of the solvent based CO₂ absorption are high energy 9 consumption for solvent regeneration accompanied by degradation of the amine leading to 10 generation of waste, thus resulting in the capital loss.^{1,4,7} Hence, adsorption is considered to be an 11 alternative promising technology for separating CO₂ from gaseous mixtures due to its low energy 12 requirement, easy operation and low maintenance.⁸ It involves binding of a molecule onto the solid 13 surface by strong chemical or weak physical interactions or at times even both and adsorbents 14 regeneration is carried out by either pressure or temperature swing cycles.⁸⁻¹⁵ However, the 15 development of low cost adsorbent with high CO₂ selectivity and adequate adsorption capacity under 16 ambient conditions is an active area of research.¹⁶ The solid sorbents such as activated carbon,¹⁷ 17 zeolites,¹⁸ zeolitic imidazole frameworks (ZIFs),¹⁹ single/multi-walled carbon nanotubes,¹ 18 nanoporous silica-based molecular basket.²⁰ polymers²¹⁻²⁵ and metal-organic frameworks 19 (MOFs)^{1,7,10} have been used for adsorption of CO₂. The recent studies have focused on use of amine 20 functionalized adsorbents for selective separation of CO₂ from flue gas mixtures.^{7,17,20,22-24,26-28} The 21 incorporation of amine functionality on the surface of the adsorbent significantly increases CO₂ 22 selectivity and uptake capacity because CO₂ is an acidic gas.² 23

RSC Advances Accepted Manuscript

As the quest for the development of CO₂-specific adsorbent is continuously increasing, the use 1 of computational studies has become an indispensable tool for understanding the parameters which 2 govern CO₂-adsorbent interactions at the molecular level. Panda et al. performed computational 3 4 studies with a series of ZIFs using different 4,5-functionalized imidazole units, viz., -CH₃. -OH. -Cl. -CN, -CHO and -NH₂ by applying Universal Force field (UFF).¹⁹ The symmetry and 5 polarizability of the functional group exhibited significant influence on CO₂ uptake. MOF,^{1,7,10} CNT¹ 6 and zeolites¹⁸ have also been investigated to predict the selective CO₂ adsorption using *ab initio* 7 calculations. Thakur et al. theoretically studied the adsorption of CO₂ on graphene surface and 8 reported *pi* interaction of CO₂ with the electron rich benzene ring.²⁹ Hussain et al. performed *ab* 9 initio calculations to study the affinity of CO₂ towards 20 naturally occurring amino acids and also 10 proposed amino acids as alternatives to chemical dissolution of CO₂.³⁰ Baei et al. theoretically 11 studied the interaction of CO2 with B12N12 nanoclusters using DFT calculations and reported 12 interaction energy of -2.30 kcal mol⁻¹ on physisorption.¹² Valenzano et al. reported 1:1 adsorption 13 complex of CO, N₂, and CO₂ with the Mg²⁺ adsorption site of Mg-MOF-74 by weak (dispersion) 14 interactions.¹¹ 15

Extensive efforts are being directed from a variety of fields including polymer technology to 16 search better CO₂ capturing materials.^{21-25,31-33} The surface properties of the polymer can easily be 17 tailored with different organic or inorganic ligands. After functionalization of the polymer surface, 18 the accessibility of the amine to capture CO₂ is the most important factor to be considered during 19 adsorption. Primary²²⁻²⁴ and secondary amine^{22,23} functionalized polymeric adsorbents have already 20 been used for CO₂ capture which result in the formation of carbamate species. The regeneration of 21 such adsorbents involve energy intensive temperature swing process.^{22,24,34} However, tertiary amines 22 (in the absence of moisture) do not support formation of carbamate and thus bind CO₂ by physical 23

interactions only.²⁸ Recently, Khot et al. carried out CO₂ sorption studies with tertiary amine 1 functionalized polystyrene as well as with bare polystyrene.⁸ The amine functionality is covalently 2 attached to the macroporous surface of polymeric adsorbent after the bead formation. Hence, the 3 4 surfaces of the pores are expected to be available for adsorption and a molecule like CO₂ diffuses through the pores of the adsorbent beads. Further, these amines are neither mobile nor there will be 5 any loss of functionality from the surface during the adsorption and desorption process. 6

7 The current work includes theoretical studies of these tertiary amine functionalized adsorbents for interaction with CO_2 . Since quantum mechanical calculations involving the entire polymeric 8 structure would be difficult and computationally expensive, only the functional amino group 9 covalently attached to the repeating structure of the polymer viz. styrene moiety, was taken for the 10 current study. The calculations were carried out with the objective to gain fundamental insights into 11 12 equilibrium geometry of the adsorbents and the complexes, interaction energy, charge transfer, band gap, vibrational frequencies and understand the dominant factors responsible for CO₂ complexation. 13 This study is expected to be useful for future designing of CO₂ specific adsorbents. 14

15

2 Computational Methodology

The DFT studies were performed using Gaussian 09³⁵ for investigating the structural and 16 electronic properties during interaction of CO₂ with functionalized adsorbent as well as with the bare 17 polymer, chloromethylated polystyrene (CMPS). The functional considered is Becke's three 18 parameter-Lee-Yang-Parr correlation B3LYP^{4,5,7} with 6-311++G(d,p)^{5,36,37} basis set. The geometry 19 optimization of the adsorbents, free CO₂ and the CO₂-adsorbent complexes was carried out without 20 imposing any initial symmetry restriction. In order to find the most stable equilibrium structure for 21 CO₂-adsorbent complex, several initial guess structures were considered based on the position of 22 CO₂ close to the electron rich sites of the adsorbent and only the minimum energy structures are 23

RSC Advances Accepted Manuscript

r age o or zo

further studied. The stationary points were characterized as no imaginary frequencies were obtained
 during Hessian calculations.

Corrections to the interaction energy for all the complexes were evaluated by considering the 3 basis set superposition error (BSSE) with counterpoise correction (CPC) calculation.^{4,11} Natural 4 population analysis using the Natural Bond Order (NBO) method was performed.⁴ The charge 5 transfer (Q_T) from the donor atoms of the amine loaded adsorbents to CO₂ during the interaction was 6 evaluated by summing up the electrostatic potential (ESP) charges on CO₂ molecule.³⁰ To compare 7 the calculated vibrational frequencies with the experimental values, the calculated frequencies were 8 scaled using a factor of 0.964±0.023.³⁷ The contribution of a group to a molecular orbital was 9 calculated by Mulliken population analysis (MPA). The density of states (DOS) spectra were created 10 by convoluting the molecular orbital information, allowing identification of amine and CO₂ centred 11 orbitals with Gaussian curves of full width at half maximum (fwhm) = 0.3 eV. The DOS diagrams 12 for all the adsorbents and the complexes presented in this work were obtained using the Multiwfn 13 program.³⁸ 14

15

16 **3 Results & Discussion**

17 **3.1 Molecular Electrostatic Potential Analysis of the Adsorbents**

The calculated molecular electrostatic potential surface (MESP) of the optimized structures of the four amine functionalized adsorbents along with CMPS at DFT-B3LYP level are shown in Fig. 1. MESP measures the electrostatic potential onto the isoelectron density surface and simultaneously displays electron and nuclei distribution which provides a good understanding of the relative polarity within the molecule.³⁹ In Fig. 1, the red color refers to the high electron density region (negative ESP) while the blue colored region refers to the positive ESP within the adsorbent.

Out of the four amines, imidazole is a heterocyclic aromatic amine consisting of two 'N' atoms. Out 1 of two 'N' atoms, one has sp² and other has sp³ character, while the remaining three aliphatic amines 2 (*N*-methylpiperazine, dimethylamine (DMA) and diethanolamine (DEA)) contain only sp^3 nitrogen. 3 4 For imidazole functionalized polystyrene (PS-Imidazole), maximum electron density is localised over the sp² nitrogen atom (1(A)). In N-methylpiperazine (PS-Piperazine) and dimethylamine (PS-5 DMA) functionalized polystyrene, the nitrogen centre is electron rich (1(B)) and (1(C)), 6 7 respectively. In diethanolamine functionalized polystyrene (PS-DEA), the electron density is found to spread more over the 'O' atom of hydroxyl groups rather than 'N' of amine (1(D)). In the case of 8 CMPS (1(E)), the electrons are more localised over the chlorine atom as compared to pi-electron rich 9 benzene ring as confirmed from ESP studies. Amongst all the functionalized adsorbents, the electron 10 density lies over either 'N' or 'O' atoms of the amine and thus, poses suitable sites for preferential 11 adsorption CO₂ over other adsorption site viz. the phenyl ring. 12

13 **3.2 Study of CO₂-Adsorbent Complexes: Structure and Stability**

14 The equilibrium geometries of CO₂-adsorbent complexes are given in Fig. 2. The degree of 15 interaction between CO₂ and the adsorbents was investigated by calculating the interaction energy 16 ΔE_{noCPC} as given by eqn (1).

17
$$\Delta E_{noCPC} = TE_{complex} - (TE_{adsorbent} + TE_{CO2})$$
(1)

18 where TE is the total energy of the molecule. The calculated values of ΔE are negative (Table 1), 19 indicating that adsorption of CO₂ is exothermic on all the adsorbents. To understand fully the matrix 20 effect phenomena, the interaction of CO₂ with bare CMPS adsorbent was also performed as the 21 phenyl ring of the polystyrene backbone is present as the competitive adsorption site in all the 22 functionalized adsorbents. For the amine functionalized adsorbents, PS-Imidazole shows relatively 23 stronger interaction with CO₂ followed by PS-Piperazine, PS-DMA, PS- DEA, while CMPS shows

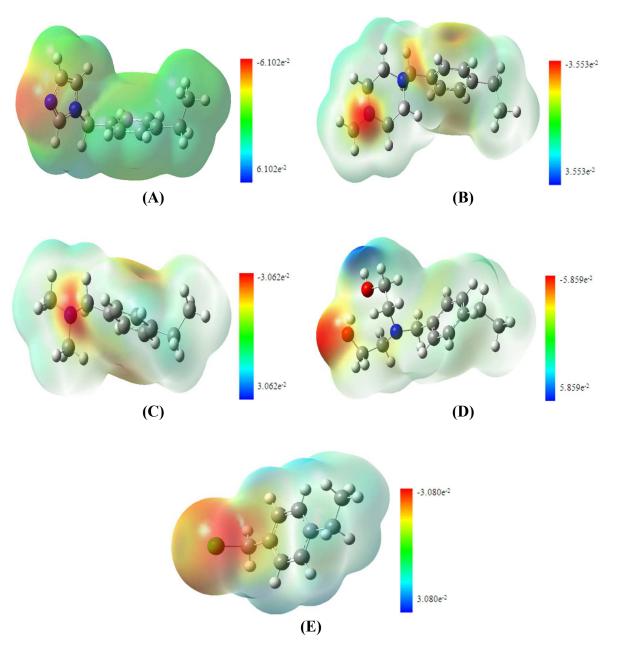
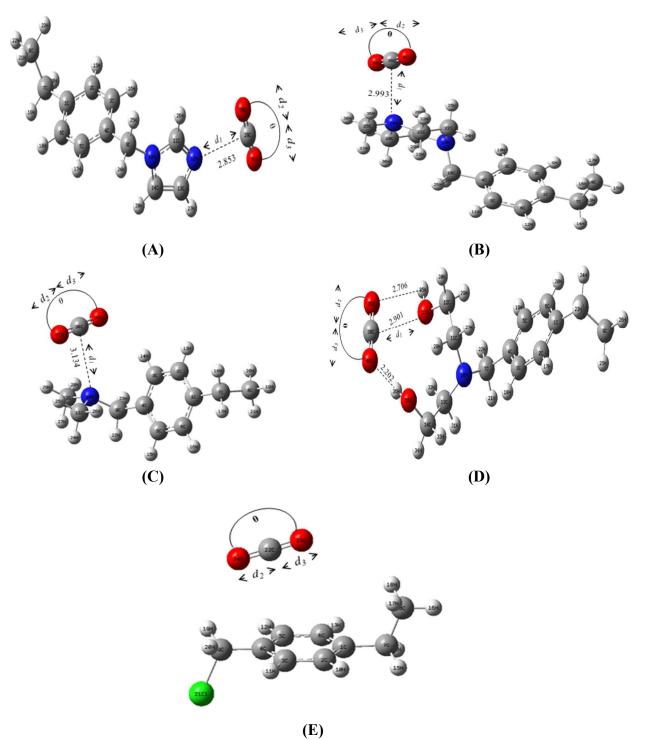


Fig. 1 B3LYP/6-311++G(d,p) calculated mapped electrostatic potential (MEP) surface of PSImidazole (A), PS-Piperazine (B), PS-DMA (C), PS-DEA (D) and CMPS (E). The C, N, O, Cl and
H atoms are depicted by , , , , , , respectively. Red, green, and blue represent negative,
zero, and positive values (au), respectively.

the weakest interaction. The calculation of interaction energy between two chemical species is significantly affected by Basis Set Superposition Error (BSSE).⁴ Note that the B3LYP contribution to the interaction energy not corrected for the counterpoise method (ΔE_{noCPC}), and the BSSE correction, add up to give the final corrected interaction energy (ΔE_{CPC}) as given by eqn (2).

5
$$\Delta E_{CPC,corr} = \Delta E_{noCPC} + BSSE$$
 (2)


6 The smaller values of $\Delta E_{CPC,corr}$ implies that CO₂ experiences weak van der Waals interaction with 7 the adsorbent, thus it is identified as physical in nature.^{2,40} The thermal and entropic contributions 8 were considered to calculate the free energy of the system which is given by eqn (3),⁴

9
$$\Delta G = \Delta E_{CPC,corr} + \Delta (ZPE) + \Delta E_{T/R/V} - RT - T\Delta S$$
(3)

10 where, $\Delta(ZPE)$ is the change in zero point vibrational energy, $\Delta E_{T/R/V}$ is the finite-temperature 11 translational, rotational, and vibrational contributions to the total energy, $T\Delta S$ is the entropic 12 contribution to the change in free energy (ΔG) at T = 303 K and P = 1 bar.

The enthalpic contributions to ΔE were indicative of the specific interactions, but the entropic 13 factors seem to negate the advantage of specific interactions. The ΔG values for the functionalized 14 and the bare adsorbent is positive indicating that the interaction between the adsorbent and CO₂ is 15 weak as the complexes are destabilized by entropic effects and hence the gas phase reaction is 16 17 unfavorable at 303 K and 1 bar. A positive change in free energy, however, should not be taken as a sufficient reason for not pursuing a potentially useful reaction involving CO₂, the kinetics might 18 indeed be favorable. Hence to achieve significant adsorption, increasing the pressure and/or lowering 19 the temperature may enhance the binding of CO2 with amine functionality. The optimized 20 parameters (ΔE and distances between the interacting centers) from the current study are comparable 21 to the positive free energy results reported by Teague et al.⁴ (Table 1). 22

RSC Advances Accepted Manus

- 1 Fig. 2 Optimized structures of PS-Imidazole+CO₂ (A), PS-Piperazine+CO₂ (B), PS-DMA+CO₂ (C),
- 2 PS-DEA+CO₂ (**D**), and CMPS+CO₂ (**E**) complexes. The calculated values of d_1 , d_2 , d_3 and θ are

3 given in Table 2.

1	Table 1 Calculated values of uncorrected adsorbent-CO ₂ interaction energy (ΔE_{noCPC}), ΔE_{BSSE} ,
2	BSSE-corrected energy ($\Delta E_{CPC,corr}$), zero point vibrational energy $\Delta(ZPE)$, finite-temperature
3	translational/rotational/vibrational contributions $\Delta E_{T/R/V}$, entropic contribution (T ΔS), and free-
4	energy of adsorption at 303 K and 1 bar (ΔG), calculated at B3LYP/6-311++G(<i>d</i> , <i>p</i>) (all energy terms
5	are given in kJ mol ⁻¹).

Adsorbents	ΔE_{noCPC}	ΔE_{BSSE}	$\Delta E_{CPC,corr}$	$\Delta(ZPE)$	$\Delta E_{T/R/V}$	$T\Delta S$	ΔG	ΔG^{a}
PS-Imidazole	-12.80	0.95	-11.85	1.67	5.74	-24.18	17.25	12.7
PS-Piperazine	-8.24	1.58	-6.66	2.41	5.94	-28.56	30.25	
PS-DMA	-6.57	1.49	-5.08	2.78	6.02	-30.38	34.10	
PS-DEA	-4.22	1.55	-2.67	3.13	6.18	-30.56	37.19	
CMPS	-3.56	1.51	-2.05	3.24	6.29	-30.77	38.26	

6 *a* interaction between Lewis base, pentafluoro phenolate anion and CO₂, $\Delta E = -23.1$ kJ.mol⁻¹ and the distance between 7 the oxygen of the anion and 'C' of CO₂, 2.43 Å (Teague et al.)⁴

8

The experimental investigations of CO₂ adsorption on these four functionalized adsorbents 9 executed by Khot et al.⁴¹ confirmed the physical nature of adsorption. Also, the IR frequencies of the 10 adsorbents after CO₂ adsorption showed no changes in the C-N stretching frequency towards 11 1609 cm⁻¹ and the asymmetric stretching (v_3) of CO₂ (2349 cm⁻¹), indicating no carbamate and 12 bicarbonate formation.⁸ An improved adsorption of CO₂ on the amine functionalized adsorbents was 13 observed by Khot et al.⁸ during the experimental studies performed by increasing the pressure (~ 40 14 bar). Thus, the above methodology correctly predicts the presence of physisorbed CO₂ on amine 15 functionalized polystyrene. 16

The observed trend in interaction energies can be well correlated to the distance between C_{CO2} donor atom of the functionalized adsorbent (d_1). PS-Imidazole which exhibits the strongest

RSC Advances Accepted Manuscript

interaction with CO₂ has the lowest C-N distance (2.8533 Å), followed by PS-Piperazine (2.9933 Å) 1 and PS-DMA (3.1346 Å). This is because the planar structure of imidazole experiences less steric 2 hindrance allowing the sp² nitrogen atom to move closer to the 'C' of CO₂ as compared to PS-3 Piperazine and PS-DMA. In the case of PS-DEA, due to the inaccessibility of the 'N', electron 4 deficient 'C' of CO₂ interacts with the electronegative –OH groups of DEA. The 'O' atoms of CO₂ 5 strongly interact with the electropositive 'H' atoms of the alcoholic group thus leading to the 6 formation of a hydrogen bonded structure.⁴² However with CMPS, CO_2 exhibits π -quadrupolar 7 interaction with the π -electron rich phenyl ring. In CMPS-CO₂ complex, CO₂ is parallel to the ring 8 but slightly displaced from the centre of mass of phenyl ring.^{25,43} 9 The interaction between CO_2 and the donor atom of the amine functionality leads to varying 10 degrees of distortion in carbon dioxide molecule as well as the interacting centres of the adsorbents. 11

The calculated bond length of free CO₂ is 1.1608 Å, which is comparable to the experimental bond 12 length (1.161 Å).⁴⁴ On analyzing the structure of adsorbed CO₂, we see lengthening of the C=O bond 13 which is closer to the active center $(d_2 - d_0)$ in all systems when compared to the free CO₂ bond 14 length (1.1608 Å) while, the C=O bond farther away from the active center (d_3) is shortened in all 15 the adsorbents $(d_3 - d_0)$. Summing up the two C=O bond lengths $(d_2 \text{ and } d_3)$, yields the overall length 16 (*l*) of the CO₂ molecule, which can be used in determining elongation of the molecule $(l - l_0)$ after 17 interaction, for all the adsorbents. PS-Imidazole and PS-Piperazine display a higher increase in bond 18 length of physisorbed CO2 as compared to that with PS-DMA and PS-DEA (Table 2) owing to the 19 strong interaction with CO₂. Also, the bond lengths of amine functional group changes during the 20 complexation. The Camine-donor atom bond lengths before and after complexation are listed in 21 Table 3. 22

1 **Table 2** Bond distances^{*a*} between the adsorbent-CO₂ complexes, the distortions in CO₂ bond lengths

Adsorbents	d_{I}	d_2	d_3	$(d_2-d_0) \ imes 10^3$	$(d_3-d_0) \times 10^3$	$(l-l_0) \times 10^3$	θ (deg)	Q _T	
CMPS		1.1615	1.1602	0.72	-0.60	0.12	179.54		
PS-Imidazole	2.8533	1.162	1.1607	1.47	-0.01	1.46	176.05	-0.009	
PS-Piperazine	2.9933	1.1616	1.1615	0.80	0.75	1.55	176.74	-0.012	
PS-DMA	3.1346	1.1613	1.1609	0.55	0.15	0.70	177.53	-0.005	
	2.9013							-0.011	
PS-DEA	2.2023	1.1616	1.1599	0.84	-0.90	-0.06	178.06		
	2.7061								

2 and bond angle after complexation and charge transfer to CO_2 (Q_T).

3 ^{*a*}All distances are given in Å. $d_0 = 1.1608$ Å (C=O bond length of unadsorbed CO₂). d_2 and d_3 are C=O bond length of

4 physisorbed CO₂. $l_0 = 2.3216$ Å (Bond length of CO₂ before interaction). $l = d_2 + d_3$ (Bond lengths of CO₂ after 5 interaction).

6

7 Table 3 Comparison of calculated bond lengths of the amine functionalized adsorbents (before and

8 after complexation) (all distances are given in Å)

Adsorbents	Bonds	Before complexation	After complexation
PS-Imidazole	C(10)-N(13)	1.3137	1.3157
PS-Piperazine	C(20)-N(24)	1.4623	1.4662
	C(21)-N(24)	1.4638	1.4669
	C(25)-N(24)	1.4539	1.4571
PS-DMA	C(9)-N(10)	1.4635	1.4706
	C(11)-N(10)	1.4581	1.4611
	C(12)-N(10)	1.4565	1.4601
PS-DEA	O(15)-H(35)	0.9618	0.9626
	O(16)-H(36)	0.9618	0.9641
	C(12)-O(15)	1.4387	1.4413
	C(14)-O(16)	1.4251	1.4275

9

Further, CO₂ molecule undergoes nonlinear distortion, and the calculated deviation of $\angle O-C-O$ 1 from its linear geometry (180°) in the adsorbed state is relatively small, $\sim 1-5^{\circ}$ (Table 2). The extent 2 of bending of CO₂ during complexation is generally considered to be a measure of the basicity of the 3 amine.⁴ Amongst the amine functionalized adsorbents, PS-Imidazole and PS-Piperazine reveal 4 maximum change in the $\angle O$ -C-O bond angle as compared to PS-DMA and PS-DEA, which 5 justifies superior contact with the former adsorbents. CMPS which shows the least interaction with 6 CO₂ at atmospheric pressure exhibits the lowest bent of $\angle O-C-O$ (179.54°) as compared to the 7 functionalized adsorbents (Table 2). Thus, the extent of distortion of CO₂ from the linear geometry 8 and shorter C-donor atom distances (d_1) can be correlated to stronger CO₂-adsorbent interactions. 9

10

11 **3.3** Charge Transfer to CO₂ from the adsorbent

To understand the electronic effects taking place during the interaction of CO₂ with the 12 adsorbents, the charge transfer (Q_T) to CO₂ from amine functionalized adsorbent was investigated 13 and the values are listed in Table 2. For all the CO₂-adsorbent complexes, negative Q_T indicates 14 charge flow from the lone pair of electronegative atoms of the amine functional group to CO₂ which 15 is consistent with Lewis type acid-base interaction.³⁰ Maximum charge transfer occurs in PS-16 Piperazine followed by PS-DEA, PS-Imidazole and least for PS-DMA. In PS-Piperazine, due to the 17 positive inductive effect (+I) of the -CH₃ group attached to 'N' as well as the chair conformation of 18 the ring makes access for interaction of CO₂ with the active center viz., electron rich 'N' atom easier 19 and thus maximum electrons are transferred to CO₂. In case of PS-DEA, the 'N' atom is sterically 20 hindered due to the presence of two ethylene groups which results in the inaccessibility of 'N' 21 22 towards CO₂. This causes weak intermolecular hydrogen bonding with 'O' of CO₂ and thus

maximum electronic charge is transferred from 'O' of alcoholic group to CO₂ resulting in higher Q_T
 value.

3 3.4 Vibrational frequency analysis

The change in bond lengths of the interacting species, asymmetric distortion of CO₂ as well as change in atomic charges after complexation results in a corresponding change of the dipole moment. These changes significantly affect the vibrational frequencies of the interacting centres.^{45,46} The vibrational spectral analyses of the interactive centers ('C' of CO₂ and 'N' of amine functionalized adsorbent) before and after complexation as well as the asymmetric stretching vibration of CO₂ (*v*₃) are given in Table 4.

10

11 Table 4 Comparison of simulated and experimental IR frequencies of CO₂-amine functionalized

12 adsorbents (before and after complexation).

Adsorbents	Bonds	Before (cm ⁻¹)			After (cm	-1)		
			C-donor atom	v_3^{a}	<i>v</i> ₃ ^{<i>a</i>} *	<i>v</i> ₃ *	\triangle	<i>v</i> ₃
							Exp.	Cal.
CO ₂	C=O			2420	2333	2349 ^b	-	-
PS-Imidazole	C(11)-N(12)	1535	1537	2413	2326	2335	14	7
PS-Piperazine	C(20)-N(24)	1219	1221	2411	2324	2336	13	9
PS-DMA	C(9)-N(10)	1115	1116	2415	2328	2348	1	5
	O(15)-H(35)	3315	3345	2420	2333	2348	1	0
PS-DEA	C(12)-O(15)	1039	1043					

 ^aCalculated frequency of C=O. ^{a*}Calculated frequency of C=O multiplied with the scaling factor (0.964).*Experimental
 Frequency.^{8 b}Simulated Frequency of CO₂.⁴⁶

15

16 The simulated frequency values are slightly higher than the experimental values which is due 17 to the fact that the experimental values are anharmonic frequencies while the calculated values are

harmonic frequencies.⁴⁷ Hence, the calculated vibrational frequencies of $CO_2(v_3)$ are compared with 1 experimentally determined FTIR frequency values of physisorbed CO_2^8 after multiplying with the 2 scaling factor (Table 4). Increase in the C=O bond length of CO_2 results in decrease in v_3 (red 3 shift).⁴⁶ As mentioned earlier, PS-Imidazole and PS-Piperazine show a considerable increase in bond 4 length of CO_2 and thus result in the higher v_3 shift as compared to PS-DMA and PS-DEA, 5 respectively. A fairly consistent trend is observed between experimental and DFT calculated v3 6 values.⁸ The stretching frequency of C(10)=N(13) bond in PS-Imidazole exhibited a 2 cm⁻¹ shift on 7 complexation with CO₂. Similarly, the C(20)-N(24) symmetrical stretching shifted from 1219 to 8 1221 cm⁻¹ in PS-Piperazine, while only 1 cm⁻¹ shift in C(9)-N(10) symmetrical stretching was 9 observed for PS-DMA adsorbent. However, in PS-DEA adsorbent the electron rich oxygen center 10 (O(15)) polarizes more on complexation as indicated by increase in its symmetric stretching 11 frequency (C(12)-O(15) exhibits 4 cm⁻¹ while O(15)-H(35) reveals 30 cm⁻¹ shift). 12

13 **3.5 HOMO-LUMO and Density of States (DOS) studies**

14 The calculated frontier molecular orbital (FMO) energies of CO_2 closely matches the 15 reported value obtained at B3LYP/6-31+G* level.⁴⁸ The band gap (E_b) is calculated by using eqn (4) 16 and the FMO energies are reported in Table 5.

17 Band gap
$$(E_b) = E_{LUMO} - E_{HOMO}$$

18 On analysing the FMO's of the adsorbents, the HOMO of PS-Imidazole is the most stable followed

- by PS-DMA > PS-DEA and least is for PS-Piperazine. Further, the HOMO's of all the adsorbents are more stable as compared to the LUMO of CO_2 . Since CO_2 is electrophilic in nature, the HOMO of the adsorbent reacts with the LUMO of CO_2 molecule.⁴⁹
- 22 The molecules which exhibit a large HOMO-LUMO gap are considered as hard molecules and are
- relatively more stable than soft molecules which have a small HOMO-LUMO gap.⁵⁰ To understand

(4)

1 Table 5 The calculated HOMO-LUMO Energies (eV) of the adsorbents and the band gap before and

	Molecule	НОМО	LUMO	E_b	$E_{b,complex}$	ΔE_g
_	CO ₂	-10.50	-0.537	9.963		
	CO_2			(9.909)*		
	PS-Imidazole	-6.371	-0.849	5.522	5.586	0.56
	PS-Piperazine	-5.630	-0.452	5.178	5.273	0.32
	PS-DMA	-5.999	-0.457	5.542	5.691	0.30
	PS-DEA	-5.867	-0.569	5.298	5.082	-0.04

2 after complexation of CO_2 on functionalized adsorbent.

3 * B3LYP/6-31+G* level⁴⁸

the interactions taking place during the adsorption of CO₂, the total and partial density of states 4 5 (TDOS and PDOS, respectively) of the CO_2 -adsorbent systems were determined and were compared with the TDOS of adsorbents without CO_2 (Fig. 3A & 3B). During the interaction of CO_2 with the 6 functionalized adsorbent, the electronegative donor atoms of the adsorbent attract the electron 7 8 deficient 'C' of CO₂ increasing the band gap which leads to stabilization of system, except in the 9 case of PS-DEA-CO₂ complex (Table 5). For the PS-Imidazole-CO₂ complex (Fig. 3A (a)), the red 10 curve (PDOS of imidaole fragment) is high and nearly approaches the black line (TDOS of complex) 11 in the region of -6.8 to -6.1 eV. Hence it can be concluded that imidazole moiety has significant 12 contribution towards HOMO. In contrast, the LUMO is mostly localized on the styrene moiety as there is no such clear contribution of imidazole or CO₂ fragments found in the PDOS diagram. 13 However, for the remaining amine functionalized adsorbents, the % contribution of amine towards 14 15 HOMO decreases indicating lesser overlap between the amine and electron deficient 'C' of CO₂. The PDOS of CO₂ in the LUMO for PS-Piperazine (Fig. 3A (b)) occurs at slightly higher energy 16

RSC Advances Accepted Manuscrip

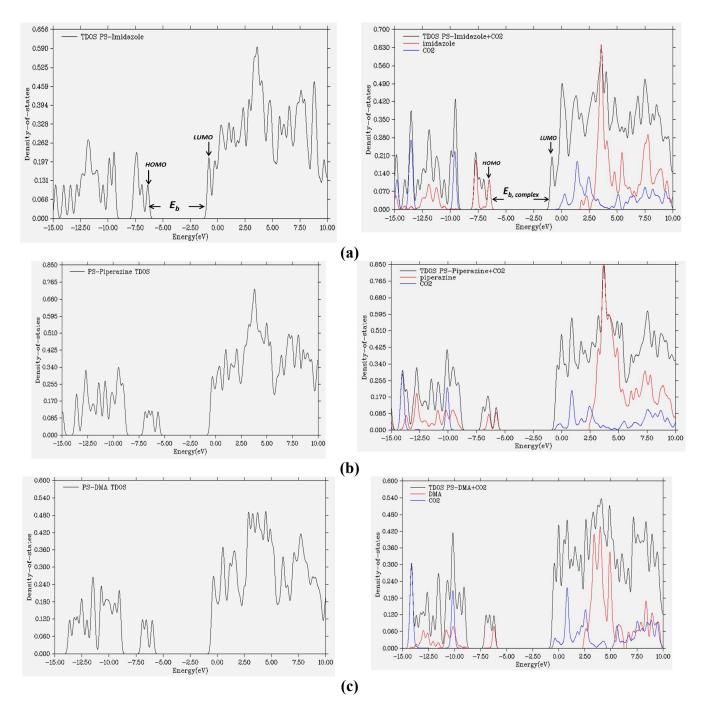


Fig. 3A The density of states of uncomplexed adsorbents (left, TDOS) and CO₂-adsorbent complexes (right, TDOS and PDOS) of PS-Imidazole (a), PS-Piperazine (b) and PS-DMA (c). The curves corresponding to TDOS and PDOS are given by black line, red line for fragment 1 and blue line for fragment 2.

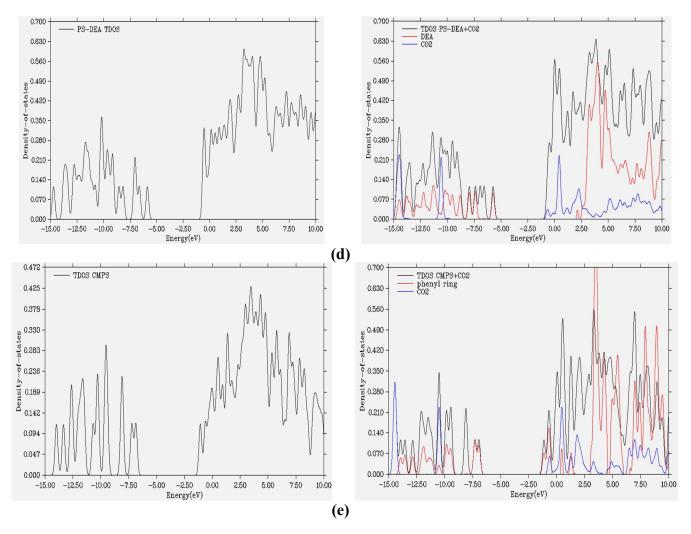
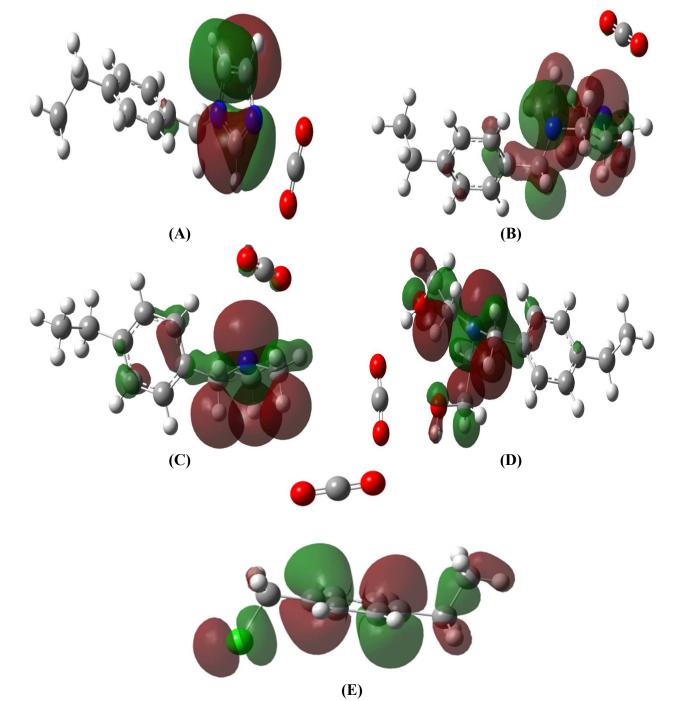



Fig. 3B The density of states of uncomplexed adsorbents (left, TDOS) and CO₂-adsorbent
complexes (right, TDOS and PDOS) of PS-DEA (d), and CMPS (e). The curves corresponding to
TDOS and PDOS are given by black line, red line for fragment 1 and blue line for fragment 2.

- 1 Fig. 4 HOMO's of CO₂ with PS-Imidazole (A), PS-Piperazine (B), PS-DMA (C), PS-DEA (D), and
- 2 CMPS (E) complexes.

3

1	than PS-DEA (Fig. 3B (d)), PS-DMA (Fig. 3A (c)) and CMPS (Fig. 3B (e)). However, the difference
2	is very small (0.01-0.02 eV). The HOMO's of the adsorbent- CO_2 complexes are shown in the Fig. 4.
3	The stability of the complex is measured in terms of ΔE_g which is defined by eqn (5)
4	$\% \Delta Eg = \frac{E_{b,complex} - E_{b,uncomplexed ligand}}{E_{b,uncomplexed ligand}} \times 100 $ (5)
5	The values of $E_{b,complex}$ and ΔEg are reported in Table 5. As the band gap $E_{b,complex}$ increases
6	after complexation, the ability of the adsorbent to attract CO ₂ increases, which indicates increased
7	stability of the system. ⁴⁰ The above discussion is in trend with the values of ΔE_g which is highest
8	for PS-imidazole and lowest for PS-DEA. Since the HOMO of all the complexes presents no
9	contribution from interacting CO ₂ molecule, the interactions are considered as physisorption process.
10	The current work involves the use of specific amines which are loaded on polystyrene and are
11	highly selective in its interaction with CO ₂ . The quadrupole moment of CO ₂ (4.3 x 10^{-31} C.m ²)
12	induces strong and specific Lewis acid-base type interactions with the functionalized adsorbents. ⁸ In
13	these complexes, the 'C' of CO_2 behaves as an electron acceptor and the 'N' of the amine as the
14	donor. The above studies indicate PS-Imidazole to be a superior adsorbent for complexing with CO_2
15	possessing ΔE of -11.85 kJ mol ⁻¹ and shortest C _{CO2} -N _{amine} distance (2.8533 Å). The objective of the
16	current study was to understand the interaction and binding of CO ₂ with amine functional group at
17	the molecular level. The above study highlights the molecular level information about charge
18	transfer, FMO contribution and vibrational frequency analysis occurring during complexation. The
19	results indicate that the CO ₂ -amine interaction is mainly of physisorption augmented by hydrogen
20	bond type chemical interactions. As a result, the CO ₂ is adsorbed reversibly on these adsorbents and
21	its desorption can be facilitated by thermal/ pressure swing for regeneration as studied by Khot et al. ⁸

22 This study aims at understanding the interaction and binding types of CO₂ with amine functionalized

RSC Advances Accepted Manuscript

adsorbents which can provide useful guidance for the designing of newer ligands for CO₂ selective
 adsorption.

3 Conclusions

We investigated the interaction of CO₂ on amine functionalized adsorbents containing 4 tertiary nitrogen at the DFT level. The electrostatic interactions were responsible for the 5 complexation of CO₂ with the adsorbents. PS-Imidazole shows the strongest interaction with CO₂ 6 $(\triangle E = -11.85 \text{ kJ mol}^{-1})$ followed by PS-Piperazine > PS-DMA and least for PS-DEA as evident 7 from the interaction energies and distance between CO_2 -donor atom of the adsorbent (d_1). H-bonding 8 between -OH groups of DEA and 'O' of CO₂ occurs as 'N' atom of DEA is sterically hindered. 9 During complexation, there is considerable elongation of the C=O bond farthest from the interacting 10 centre while the C=O near to donor atom of the adsorbent experiences shortening. The calculated 11 vibrational frequency values clearly indicate that CO₂ is slightly distorted from its linear shape in the 12 13 complex and these calculated frequencies exhibit good correlation with experimental values. Further the analysis of thermodynamical parameters, HOMO-LUMO and DOS studies suggest weak 14 interaction between CO₂ and adsorbents indicating physisorption process. These simulation studies 15 involving parameters of interaction energy, partial charges and vibrational spectral analysis suggest 16 the use of imidazole loaded polystyrene as a suitable adsorbent selective for CO₂ capture. The above 17 molecular level studies help in designing of newer moieties for efficient CO₂ capture systems. 18

19

Acknowledgements: We acknowledge the financial support for computational amenities provided
by Indo-EU DST-AMCOS (Dept. of Science and Technology-Advanced Material for Computational
Studies) project.

1				
		0	P	
	i			
	1	A	4	
		ľ	P	
		2		
	1			
		9	9	
	(
	(2	
	(
1				
	(
	(B	
	Ì		1	
	(9		
	l			
	(ł	p	
	(đ	Ġ	
	(
		C		
	(٩	0	
	1		5	
	1			
	(5	2	
	ł			
	l			
2				
	ļ			
Ì				
ļ				

References 1 1. C. Cazorla, S. A. Shevlin and Z. X. Guo, J. Phys. Chem. C, 2011, 115, 10990. 2 2. J. C. Hicks, J. H. Drese, D. J. Fauth, M. L. Gray, G. Oi and C. W. Jones, J. Am. Chem. Soc., 3 2008, 130, 2902. 4 3. J. J. Chen, W. W. Li, X. L. Li and H. Q. Yu, Phys. Chem. Chem. Phys., 2012, 14, 4589. 5 4. C. M. Teague, S. Dai and D. Jiang, J. Phys. Chem. A, 2010, 114, 11761. 6 7

- 5. H. Yamada, Y. Matsuzaki, F. Chowdhury and T. Higashii, J. Mol. Model., 2013, 19, 4147.
- 6. A. B. Rao and E. S. Rubin, *Environ. Sci. Technol.*, 2002, 36, 4467. 8
- 7. B. Arstad, H. Fjellvåg, K. O. Kongshaug, O. Swang and R. Blom, Adsorption, 2008, 14, 755. 9
- 8. K. M. Khot, P. K. Heer, R. Biniwale and V. G. Gaikar, Sep. Sci. Technol., submitted. 10
- 9. B. Bonelli, B. Civalleri, B. Fubini, P. Ugliengo, C. O. Areán and E. Garrone, J. Phys. Chem. 11 *B*, 2000, **104**, 10978. 12
- 13 10. W. Morris, B. Leung, H. Furukawa, O. K. Yaghi, N. He, H. Havashi, Y. Houndonougbo, M. Asta, B. B. Laird and O. M. Yaghi, J. Am. Chem. Soc., 2010, 132, 11006. 14
- 11. L. Valenzano, B. Civalleri, S. Chavan, G. T. Palomino, C. O. Areán and S. Bordiga, J. Phys. 15 Chem. C, 2010, **114**, 11185. 16
- 12. M. T. Baei, A. A. Peyghan and Z. Bagheri, Bull. Korean Chem. Soc., 2012, 33, 3338. 17
- 13. F. Akhtar, Q. Liu, N. Hedin and L. Bergstrom, Energy Environ. Sci., 2012, 5, 7664. 18
- 14. R. Dawson, A. I. Cooper and D. Adams, J. Polym. Int., 2013, 62, 345. 19
- 15. C. Lu, H. Bai, B. Wu, F. Su and J. F. Hwang, Energy & Fuels, 2008, 22, 3050. 20
- 16. M. G. Plaza, C. Pevida, A. Arenillas, F. Rubiera and J. J. Pis, Fuels, 2007, 86, 2204. 21
- 17. A. Houshmand, M. S. Shafeeyan, A. Arami-Niya and W. M. A. W. J. Daud, J. Taiwan Inst. 22
- Chemical Engineers, 2013, 44, 774. 23

1	18. A. Pulido, M. R. Delgado, O. Bludský, M. Rubeš, P. Nachtigall and C. O. Areán, Energy
2	Environ. Sci., 2009, 2, 1187.
3	19. T. Panda, P. Pachfule, Y. Chen, J. Jiang and R. Banerjee, Chem. Commun., 2011, 47, 2011.
4	20. F. Zheng, D. N. Tran, B. J. Busche, G. E. Fryxell, R. S. Addleman, T. S. Zemanian and C. L.
5	Aardah, Ind. Eng. Chem. Res., 2005, 44, 3099.
6	21. M. Matsuguchi, N. Maeda and Y. Sakai, J. Appl. Polym. Sci., 2002, 83, 401.
7	22. T. Filburn, J. J. Helble and R. A. Weiss, Ind. Eng. Chem. Res., 2005, 44, 1542.
8	23. A. Diaf, J. L. Garcia and E. J. Beckman, J. Appl. Polym. Sci., 1994, 53, 857.
9	24. W. R. Alesi Jr. and J. R. Kitchin, Ind. Eng. Chem. Res., 2012, 51, 6907.
10	25. S. G. Kazarian, M. F. Vincent, F. V. Bright, C. L. Liotta and C. A. Eckert, J. Am. Chem. Soc.,
11	1996, 118 , 1729.
12	26. N. Hiyoshi, K. Yogo and T. Yashima, Microporous Mesoporous Mater., 2005, 84, 357.
13	27. G. P. Knowles, S. W. Delaney and A. L. Chaffee, Ind. Eng. Chem. Res., 2006, 45, 2626.
14	28. A. Sayari, Y. Belmabkhout and E. Da'na, Langmuir, 2012, 28, 4241.
15	29. D. P. Thakur, N. P. Barde, P. P. Bardapurkar and R. S. Khairnar, Ukr. J. Phys., 2013. 58 (9),
16	841.
17	30. M. A. Hussain, Y. Soujanya and G. N. Sastry, Environ. Sci. Technol., 2011, 45, 8582.
18	31. Y. Xie, T. T. Wang, X. H. Liu, K. Zou and W. Q. Deng, Nat. Commun., 2013, 4, 1960.
19	32. Y. Kuwahara, D. Y. Kang, J. R. Copeland, P. Bollini, C. Sievers, T. Kamegawa, H.
20	Yamashita and C. W. Jones, Chem. Eur. J., 2012, 18, 16649.
21	33. H. A. Patel, F. Karadas, A. Canlier, J. Park, E. Deniz, Y. Jung, M. Atilhan and C. T. Yavuz,
22	J. Mater. Chem., 2012, 22, 8431.

0
CLI
5
5
σ
O
Ð
0
Ö
Ο
4
6
Ð
0
dva
0
\mathbf{O}
ň

1	34. P. Muchana, C. Saiwana, D. de Montigny and P. Tontiwachwuthikulb, Chem. Engg. Trans.,
2	2013, 35 , 391.
3	35. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G.
4	Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P.
5	Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K.
6	Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T.
7	Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers,
8	K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.
9	C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox,
10	J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev,
11	A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G.
12	Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö.
13	Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, GAUSSIAN 09 (Revision
14	B.01), Gaussian Inc., Wallingford CT, 2009.
15	36. J. Baltrusaitis and V. H. Grassian, J. Phys. Chem. A, 2010, 114, 2350.
16	37. H. Kayi, R. I. Kaiserab and J. D. Head, Phys. Chem. Chem. Phys., 2011, 13, 11083.
17	38. T. Lu and F. Chen, J. Comp. Chem., 2012, 33, 580.
18	39. R. J. Xavier and P. Dinesh, Spectrochim Acta A-M, 2013, 113, 171.
19	40. A. A. Rafati, S. M. Hashemianzadeh and Z. B. Nojini, J. Phys. Chem. C, 2008, 112, 3597.
20	41. K. M. Khot, P. K. Heer, R. Biniwale and V. G. Gaikar, Sep. Sci. Technol., submitted.
21	42. Y. Danten, T. Tassaing and M. Besnard, J. Phys. Chem. A, 2002, 106, 11831.
22	43. J. G. Vitillo, M. Savonnet, G. Ricchiardi and S. Bordiga, ChemSusChem., 2011, 4, 1281.

44. M. Hargittai and I. Hargittai, Int. J. Quantum Chem., 1992, 44, 1057.

	1	45. A. R	. Patil, J	. S. Arora	and V. G.	Gaikar,	Sep. Sci.	Technol.,	2012, 47	7, 1156.
--	---	----------	------------	------------	-----------	---------	-----------	-----------	----------	----------

- 46. Y. Yao, N. Nijem, J. Li, Y. J. Chabal, D. C. Langreth and T. Thonhauser, *Phys. Rev. B*, 2012,
 85, 1.
- 4 47. Y. Liu, S. Zhao, X. Dong, K. Yuan, H. Tang, G. Zuo, Y. Zhu and X. Liu, *J. At. Mol. Sci.*,
 5 2011, 2, 234.
- 48. N. Kuş, S. Breda, I. Reva, E. Tasal, C. Ogretir and R. Fausto, *Photochem. Photobiol.*, 2007,
 83, 1237.
- 8 49. H. Wu, J. M. Simmons, G. Srinivas, W. Zhou and T. J. Yildirim, J. Phys. Chem. Lett., 2010,
- **9 1**, 1946.
- 10 50. R. G. Pearson, Proc. Natl. Acad. Sci. USA, 1986, 83, 8440.