RSC Advances

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

Page 1 of 7 RSC Advances

RSC Advances

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

Paper

Synthesis of 3-(4-oxo-4*H*-chromen-3-yl)acrylates through the tandem reaction of 3-(2-buta-2,3-dienoylphenoxy)acrylates

Xuesen Fan,* Nana Shen, Bin Li, Shenghai Guo, and Xinying Zhang*

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

In this paper, we report a novel synthesis of 2-substituted 3-(4-oxo-4*H*-chromen-3-yl)acrylates through base-catalyzed tandem reaction of the readily available 3-(2-buta-2,3-dienoylphenoxy)acrylates. This new synthetic strategy features with extremely mild conditions and good to excellent yields.

Introduction

- ¹⁰ Allene units connected with a carbonyl group are electrophilic and the protons attached to them are thus acidic enough to be abstracted by bases to form alkynylenolate intermediates. Recently, these intermediates have been used as efficient nucleophiles by Hammond et al in the synthesis of carbinol
- ¹⁵ allenate¹ and α, α -disubstituted alkynyl ester.² Using similar strategy, we have developed a synthesis of tricarbonyl compounds through reaction of 1,2-allenic ketones with α -halocarbonyl compounds under the promotion of TBAF in water.³ Inspired by those results, we envisioned a synthetic approach toward the ²⁰ biologically interesting xanthone derivative (**I**) *via* a cascade
- reaction of ethyl 3-(2-buta-2,3-dienoylphenoxy)acrylate (1a) initiated by an intramolecular Michael type reaction of the *in situ* formed alkynylenolate onto the acrylate moiety (Scheme 1).

25 Scheme 1. Proposed synthetic pathway toward xanthone (I).

Results and discussion

To check the feasibility of our proposal, **1a** was prepared *via* a three-step procedure with a total yield of 71% (Scheme 2). Then, it was treated with TBAF in water at 80 °C for 1 h. From this

³⁰ reaction, to our surprise, ethyl 3-(2-methyl-4-oxo-4*H*-chromen-3yl)acrylate (**2a**), instead of the expected xanthone, was obtained in a yield of 50% (Scheme 2).

Scheme 2. Reaction conditions: (a) 3-bromoprop-1-yne, zinc powder, ³⁵ THF/DMF, r.t.; (b) ethyl propiolate, DABCO, CH₂Cl₂, 0 °C; (c) Jones reagent, acetone, 0 °C; (d) TBAF, H₂O, 80 °C, 1 h.

Although the envisioned xanthone (I) was not obtained, we realized that the unexpected formation of 2a might be equally rewarding. It is well known that chromone ring system is not only 40 a common framework found in numerous natural products (Figure 1),⁴ but also considered as a privileged structure⁵ in the search for new lead compounds in pharmaceutical chemistry.^{6,7} In addition, among various chromone derivatives, those bearing an electron-withdrawing vinyl moiety on the C-3 position are found 45 in many pharmaceutically important compounds with anti-tumor, anti-microbial, anti-inflammatory, and anti-allergic activities.⁸ The C-3 functionalized chromones are also versatile synthetic building blocks for the construction of more advanced structures.9 Due to their importance, several strategies to introduce an 50 electron-withdrawing vinyl moiety, including an acrylate unit, onto the C-3 position of chromone scaffold, such as Heck coupling reaction between 3-halochromones and alkene coupling parters,^{9d,10} Pd(II)-catalyzed direct intermolecular alkenylation of chromones,¹¹ condensation of 3-formyl chromone with 55 phenylacetic acid¹² or malonic acid in the presence of pyridine under reflux condition,^{8b} have been developed. In addition, preparation of 3-(4-oxo-4H-chromen-3-yl)acrylate through the classical Wittig reaction or Horner-Wadsworth-Emmons (HWE) reaction has also been reported.9f While the above mentioned 60 literature synthetic methods are generally reliable and efficient, they usually started from precursors already having a chromone scaffold. Moreover, some of the syntheses were realized with the aid of transition metal catalyst or under harsh reaction conditions. Under this circumstance, the reaction of 1a deserves thorough 65 exploration with the aim to develop it into a practical approach toward chromon-3-acrylates without using costly catalyst and realized under mild conditions.

Figure 1. Some naturally occurring products with a chromone unit.

For this purpose, the reaction of **1a** was run again under various conditions. To our delight, when the reaction medium was changed from water to THF, the reaction could proceed smoothly at room temperature and the yield of **2a** increased to 5 68% over 20 min (Table 1, entry 2). With THF as the solvent, different bases were then tried (entries 2-9). Among them, Cs₂CO₃ gave much higher yield than TBAF, TEA, *t*-BuOK, DBU, DABCO, pyridine, or K₂CO₃. As for the amount of base, we were pleased to find that 0.1 equiv of Cs₂CO₃ could give **2a** in

- ¹⁰ a similar yield as that of 1 equiv of Cs_2CO_3 (entries, 7, 10-11). With 0.1 equiv of Cs_2CO_3 as the base, other solvents were also tried (entries 12-16). It was demonstrated that while CH₃CN, CH₃OH, C₂H₅OH, and DMF were less effective in mediating this reaction, a mixed solvent of THF/H₂O (10:1) could afford **2a** in a ¹⁵ yield of 82% albeit the reaction period was longer (entry 12). In summary of the optimization study, treatment of **1a** with 0.1
- summary of the optimization study, treatment of 1a with 0.1 equiv of Cs₂CO₃ in THF at room temperature for 10 min gave 2a in an optimum yield of 86% (entry 11).

Table 1 Optimization studies for the preparation of 2a^a

$\begin{array}{c} 0 \\ \hline \\$					
Entry	Solvent	Base (equiv)	t (min)	Т (°С)	Yield (%) ^b
1	H_2O	TBAF(1)	60	80	50
2	THF	TBAF(1)	20	rt	68
3	THF	TEA(1)	20	rt	42
4	THF	<i>t</i> -BuOK (1)	20	rt	62
5	THF	DBU (1)	30	rt	31
6	THF	DABCO(1)	30	rt	47
7	THF	$Cs_2CO_3(1)$	10	rt	87
8	THF	pyridine (1)	60	rt	trace
9	THF	$K_{2}CO_{3}(1)$	10	rt	72
10	THF	$Cs_2CO_3(0.5)$	10	rt	86
11	THF	Cs ₂ CO ₃ (0.1)	10	rt	86
12	THF/H ₂ O (10/1)	Cs ₂ CO ₃ (0.1)	60	rt	82
13	CH ₃ CN	$Cs_2CO_3(0.1)$	10	rt	78
14	CH ₃ OH	$Cs_2CO_3(0.1)$	10	rt	trace
15	C_2H_5OH	$Cs_2CO_3(0.1)$	10	rt	trace
16	DMF	$Cs_2CO_3(0.1)$	10	rt	63

^a Reaction conditions: 0.5 mmol of 1a, 3 mL of solvent; ^b Isolated yield.

With the optimized reaction conditions in hand, we then studied the scope and generality of the above reaction leading to 3-(4-oxo-4*H*-chromen-3-yl)acrylates (2). Firstly, the effect of ²⁵ different substituents attached on the phenyl ring was studied (Table 2). To our delight, substrates bearing methyl, methoxy, chloro, bromo, dichloro or dibromo substituted phenyl or naphthyl scaffold underwent the reactions smoothly to give the corresponding products in good yields (Table 2, entries 1-8). It is ³⁰ also noted that the structure of (*E*)-ethyl 3-(2,6-dimethyl-4-oxo-

³⁰ also noted that the structure of (*E*)-ethyl 3-(2,6-dimethyl-4-oxo-4H-chromen-3-yl)acrylate (**2d**) was confirmed by X-ray diffraction analysis.¹³

www.rsc.org/xxxxxx | XXXXXXXX

³⁵ ^aReaction conditions: 0.5 mmol of 1, 0.05 mmol (10 mol %) of Cs₂CO₃, 3 mL of THF, rt, 10 min; ^b Isolated yield.

^{CO₂Et} 1h

Secondly, reactions of substrates with a substituent on the terminal position of the allenic moiety were also studied (Table 3). It was found that with phenyl, 2-cyanophenyl, 3,5-dimethoxyl ⁴⁰ phenyl, 4-methylphenyl, or 2-methyl-5-chlorophenyl substituted allene derivatives, the tandem reaction proceeded with an efficient manner (entries 1-9). Moreover, the reaction was also compatible with a terminal methyl group (Table 3, entry 10), thus resulting chromones with diverse substitution patterns.

⁴⁵ Based on the above observations and previous reports,¹⁴ the formation of 2a can be explained on the basis of the process as outlined in Scheme 3. It is postulated that an alkynylenolate intermediate A is firstly formed *via* Cs₂CO₃ promoted deprotonation of 1a.^{1,2} A then undergoes an intramolecular ⁵⁰ Michael type reaction to give intermediate B. Subsequent elimination reaction of B results in the formation of intermediate C. C-C single bond rotation followed by propargyl-allenyl isomerization of C gives D, which then undergoes another intramolecular conjugate addition to give intermediate E.

2h

Page 3 of 7 RSC Advances

RSC Advances

Paper

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

 a Reaction conditions: 0.5 mmol of 1, 0.05 mmol (10 mol %) of Cs_2CO_3, 3 mL of THF, rt, 10 min; b Isolated yield.

Scheme 3. Plausible pathway for the formation of 2a from 1a.

Based on the proposed mechanism as shown in Scheme 3, substrate with a substituent attached on the internal position of the allene moiety, such as (*E*)-ethyl 3-(2-(2-methylbuta-2,3-dienoyl)phenoxy)acrylate (1s, Scheme 4), should not take part in this tandem reaction since with such a substrate the proposed 1s allenic ketone intermediate (D') could not be formed. In consistent with this deduction, no reaction was observed when 1s was treated with Cs₂CO₃ in THF for as long as 6 h.

Scheme 4. Experiment of substrate with an α methyl group.

20 Conclusions

In this paper, we have developed a straightforward preparation of 3-(4-oxo-4*H*-chromen-3-yl)acrylate derivatives *via* Cs₂CO₃ catalyzed tandem reaction of the readily obtainable 3-(2-buta-2,3dienoylphenoxy)acrylates. Notably, the synthesis did not involve ²⁵ a chromone precursor and was realized in the presence of catalytic amount of base without using any expensive transition metal catalyst. Compared with literature procedures toward C-3 functionalized chromones, the strategy developed in this paper showed remarkable advantages such as readily available starting ³⁰ materials, simple procedure, high efficiency, and extremely mild reaction conditions. We expect this protocol to be valuable in expanding the scaffold space of chromone derivatives as valuable candidates in pharmaceutical industry and versatile intermediates in synthetic chemistry.

35 Experimental

The ¹H, ¹³C NMR spectra were recorded at 400 MHz or 100 MHz, respectively. Chemical shifts were reported in ppm from tetramethylsilane (TMS) as internal standard in CDCl₃ solutions. Multiplicity was indicated as follows: s (singlet); d (doublet); t ⁴⁰ (triplet); m (multiplet); dd (doublet of doublets), etc., and coupling constants were given in Hz. High resolution mass

spectra (HRMS) were performed on a time-of-flight (microTOF) mass spectrometer. The conversion of starting materials were monitored by thin layer chromatography (TLC) using silica gel plates (silica gel 60 F254 0.25 mm) and components were s visualized by observation under UV light (254 and 365 nm).

Synthetic procedures for **1a** and **1j**, copies of ¹H and ¹³C NMR spectra for **1a-1h**, **1j** and **2a-2r**, X-ray crystal structure of **2d** are available as electronic supporting information.

A typical procedure for the synthesis of (*E*)-ethyl 3-(2-methyl-10 4-oxo-4*H*-chromen-3-yl)acrylate (2a)

To a flask containing (*E*)-ethyl 3-(2-buta-2,3-dienoylphenoxy) acrylate (**1a**, 0.5 mmol) in THF (3 mL) was added Cs_2CO_3 (0.05 mmol). The mixture was stirred at room temperature for 10 min. Then, the reaction was quenched by addition of aqueous NH₄Cl

- $_{15}$ solution and extracted with ethyl acetate (3×10 mL). The combined organic layer was washed with brine, and then dried over anhydrous $\rm Na_2SO_4$. The solvent was evaporated under vacuum and the crude product was purified by column chromatography on silica gel using petroleum ether-ethyl acetate
- ²⁰ (10:1) as the eluent to give (*E*)-ethyl 3-(2-methyl-4-oxo-4*H*-chromen-3-yl)acrylate (**2a**, 86%). **2b-2r** were obtained in a similar manner.

(E)-Ethyl 3-(2-methyl-4-oxo-4H-chromen-3-yl)acrylate (2a)

- Eluent: petroleum ether-ethyl acetate (10:1); white solid (111 mg, 25 86%), mp 80-82 °C; ¹H NMR (400 MHz, CDCl₃) δ : 1.30 (t, *J* = 6.8 Hz, 3H), 2.59 (s, 3H), 4.22 (q, *J* = 6.8 Hz, 2H), 7.32-7.38 (m,
- 3H), 7.53 (d, J = 16.0 Hz, 1H), 7.59-7.64 (m, 1H), 8.16-8.18 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 14.3, 19.2, 60.4, 116.1, 117.6, 123.0, 123.4, 125.4, 126.2, 133.6, 134.9, 155.0, 167.8, ³⁰ 167.9, 176.2. HRMS (ESI) calcd for C₁₅H₁₅O₄: 259.0970 [M+H], found: 259.0977.

(*E*)-Ethyl 3-(6-bromo-2-methyl-4-oxo-4*H*-chromen-3-yl) acrylate (2b)

Eluent: petroleum ether-ethyl acetate (10:1); white solid (141 mg, 240°) are 1(1 1(2 20) lup) MD (400 MU). CDC(1) S 1 22 (1.11)

³⁵ 84%), mp 161-163 °C; ¹H NMR (400 MHz, CDCl₃) δ : 1.32 (t, *J* = 7.2 Hz, 3H), 2.61 (s, 1H), 4.24 (q, *J* = 7.2 Hz, 2H), 7.29-7.34 (m, 2H), 7.52 (d, *J* = 15.2 Hz, 1H), 7.71 (dd, *J_I* = 8.8 Hz, *J₂* = 2.4 Hz 1H), 8.30 (d, *J* = 2.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 14.3, 19.2, 60.5, 116.3, 118.0, 119.6, 123.6, 124.7, 128.8, 134.4, ⁴⁰ 136.6, 153.8, 167.8, 167.9, 174.9. HRMS (ESI) calcd for

 $C_{15}H_{14}BrO_4$: 337.0075 [M+H], found: 337.0081.

(*E*)-Ethyl 3-(6-chloro-2-methyl-4-oxo-4*H*-chromen-3-yl) acrylate (2c)

Eluent: petroleum ether-ethyl acetate (10:1); white solid (121 mg,

- ⁴⁵ 83%), mp 153-155 °C; ¹H NMR (400 MHz, CDCl₃) δ : 1.30 (t, *J* = 7.2 Hz, 3H), 2.42 (s, 3H), 4.22 (q, *J* = 6.8 Hz, 2H), 7.27 (d, *J* = 8.0 Hz, 1H), 7.34 (d, *J* = 15.2 Hz, 1H), 7.41 (d, *J* = 8.4 Hz, 1H), 7.53 (d, *J* = 15.6 Hz, 1H), 7.94 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 14.3, 21.0, 60.4, 115.8, 117.4, 122.7, 123.0, 125.4, 124.6, 125.4, 152.4,
- ⁵⁰ 134.8, 135.1, 135.4, 153.3, 167.7, 168.0, 176.3. HRMS (ESI) calcd for C₁₅H₁₄ClO₄: 293.0580 [M+H], found: 293.0582. (E) Ethyl 3.(2.6.dimethyl 4. oxo. 4H. chromen 3. yl)acrylate

(*E*)-Ethyl 3-(2,6-dimethyl-4-oxo-4*H*-chromen-3-yl)acrylate (2d)

Eluent: petroleum ether-ethyl acetate (10:1); white solid (116 mg,

ss 85%), mp 113-115 °C; ¹H NMR (400 MHz, CDCl₃) δ : 1.31 (t, *J* = 6.8 Hz, 3H), 2.42 (s, 3H), 2.58 (s, 3H), 4.23 (q, *J* = 7.2 Hz, 2H), 7.27 (d, *J* = 8.8 Hz, 1H), 7.34 (d, *J* = 15.6 Hz, 1H), 7.42 (dd, *J*₁ = 8.0 Hz, *J*₂ = 2.0 Hz, 1H), 7.54 (d, *J* = 16.0 Hz, 1H), 7.95 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ: 14.3, 19.2, 21.0, 60.4, 115.9, 60 117.4, 122.8, 123.1, 125.5, 134.8, 135.1, 135.4, 153.3, 167.7, 168.0, 176.3. HRMS (ESI) calcd for $C_{16}H_{17}O_4$: 273.1127 [M+H], found: 273.1120.

(*E*)-Ethyl 3-(7-methoxy-2-methyl-4-oxo-4*H*-chromen-3-yl) acrylate (2e)

- ⁶⁵ Eluent: petroleum ether-ethyl acetate (10:1); white solid (124 mg, 86%), mp 118-120 °C; ¹H NMR (400 MHz, CDCl₃) δ : 1.27 (t, *J* = 7.2 Hz, 3H), 2.50 (s, 1H), 3.83 (s, 3H), 4.20 (q, *J* = 6.8 Hz, 2H), 6.70 (s, 1H), 6.87 (d, *J* = 8.0 Hz, 1H), 7.28 (d, *J* = 16.0 Hz, 1H), 7.46 (d, *J* = 16.0 Hz, 1H), 8.01 (d, *J* = 8.8 Hz, 1H). ¹³C NMR
- ⁷⁰ (100 MHz, CDCl₃) δ: 14.3, 19.0, 55.8, 60.4, 99.8, 114.6, 115.7, 117.1, 122.7, 127.4, 135.0, 156.6, 164.0, 167.3, 167.9, 175.6. HRMS (ESI) calcd for $C_{16}H_{17}O_5$: 289.1076 [M+H], found: 289.1092.

(E)-Ethyl 3-(6,8-dibromo-2-methyl-4-oxo-4H-chromen-3-yl) 75 acrylate (2f)

- Eluent: petroleum ether-ethyl acetate (10:1); white solid (178 mg, 86%), mp 182-184 °C; ¹H NMR (400 MHz, CDCl₃) δ : 1.33 (t, *J* = 7.2 Hz, 3H), 2.68 (s, 3H), 4.26 (q, *J* = 7.2 Hz, 2H), 7.32 (d, *J* = 16.0 Hz, 1H), 7.51 (d, *J* = 16.0 Hz, 1H), 7.98 (d, *J* = 2.4 Hz, 1H),
- ⁸⁰ 8.27 (d, J = 2.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 14.3, 19.2, 60.6, 112.4, 116.4, 118.7, 124.3, 125.4, 128.3, 133.8, 139.2, 150.8, 167.5, 167.9, 174.2. HRMS (ESI) calcd for C₁₅H₁₃Br₂O₄: 414.9180 [M+H], found: 414.9196.

(*E*)-Ethyl 3-(6,8-dichloro-2-methyl-4-oxo-4*H*-chromen-3-yl) 85 acrylate (2g)

Eluent: petroleum ether-ethyl acetate (10:1); white solid (143 mg, 88%), mp 190-191 °C; ¹H NMR (400 MHz, CDCl₃) δ : 1.33 (t, J = 7.2 Hz, 3H), 2.68 (s, 3H), 4.25 (q, J = 7.2 Hz, 2H), 7.32 (d, J = 15.6 Hz, 1H), 7.52 (d, J = 16.0 Hz, 1H), 7.68 (d, J = 2.4 Hz, 1H),

⁹⁰ 8.07 (d, J = 2.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 14.3, 19.1, 60.6, 116.4, 123.9, 124.3, 124.4, 125.2, 131.1, 133.7, 133.8, 149.5, 167.5, 167.8, 174.4. HRMS (ESI) calcd for C₁₅H₁₃Cl₂O₄: 327.0191 [M+H], found: 327.0196.

(E)-Ethyl 3-(3-methyl-1-oxo-1H-benzo[f]chromen-2-yl) 95 acrylate (2h)

Eluent: petroleum ether-ethyl acetate (10:1); white solid (134 mg, 87%), mp 186-188 °C; ¹H NMR (400 MHz, CDCl₃) δ: 1.34 (t, *J* = 7.2 Hz, 1H), 2.58 (s, 3H), 4.27 (q, *J* = 7.2 Hz, 2H), 7.32-7.39 (m, 2H), 7.57-7.61 (m, 2H), 7.72 (t, *J* = 8.0 Hz, 1H), 7.84 (d, *J* = 100 8.0 Hz, 1H), 7.99 (d, *J* = 8.8 Hz, 1H), 9.98 (d, *J* = 9.2 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ: 14.4, 18.8, 60.5, 116.4, 117.2, 118.3, 123.2, 126.6, 127.0, 128.3, 129.3, 130.4, 130.7, 135.2, 135.5, 156.1, 165.0, 167.9, 178.0. HRMS (ESI) calcd for $C_{19}H_{17}O_4$: 309.1127 [M+H], found: 309.1122.

105 (E)-Ethyl3-(2-(2-cyanobenzyl)-4-oxo-4H-chromen-3-yl)acrylate (2i)

Eluent: petroleum ether-ethyl acetate (20:1); pale yellow solid (131 mg, 73%), mp 141-143 °C; ¹H NMR (400 MHz, CDCl₃) δ : 1.32 (t, *J* = 7.2 Hz, 1H), 4.25 (q, *J* = 7.2 Hz, 2H), 4.49 (s, 2H),

¹¹⁰ 7.34 (d, J = 8.0 Hz, 1H), 7.38-7.42 (m, 4H), 7.53-7.57 (m, 1H), 7.62-7.69 (m, 2H), 7.73 (dd, $J_I = 8.0$ Hz, $J_2 = 1.2$ Hz, 1H), 8.21 (dd, $J_I = 8.4$ Hz, $J_2 = 1.6$ Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 14.3, 36.4, 60.6, 113.4, 116.9, 117.6, 117.9, 123.3, 124.8, 125.8, 126.3, 128.2, 129.5, 133.39, 133.41, 133.7, 134.0, 138.8, 155.1,

¹¹⁵ 165.7, 167.5, 176.4. HRMS (ESI) calcd for C₂₂H₁₈NO₄: 360.1236 [M+H], found: 360.1249.

Paper

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

(E)-Ethyl 3-(2-(3,5-dimethoxybenzyl)-4-oxo-4H-chromen-3-yl) acrylate (2j)

- Eluent: petroleum ether-ethyl acetate (20:1); white solid (138 mg, 70%), mp 149-151 °C; ¹H NMR (400 MHz, CDCl₃) δ: 1.32 (t, J
- $_{5} = 7.2$ Hz, 3H), 3.76 (s, 6H), 4.16 (s, 2H), 4.24 (g, J = 6.8 Hz, 2H), 6.36 (t, J = 2.4 Hz, 1H), 6.45 (d, J = 1.2 Hz, 2H), 7.40 (d, J = 7.6 Hz, 3H), 7.62-7.66 (m, 1H), 7.72 (d, J = 15.2 Hz, 1H), 8.21-8.23 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ: 14.3, 38.4, 55.3, 60.4, 99.1, 106.8, 116.4, 117.8, 123.4, 123.9, 125.5, 126.3, 133.8, 134.5,
- 10 137.3, 155.1, 161.2, 167.8, 168.1, 176.6. HRMS (ESI) calcd for C₂₃H₂₃O₆: 395.1494 [M+H], found: 395.1498.

(E)-Ethyl 3-(2-(5-chloro-2-methylbenzyl)-4-oxo-4H-chromen-3-yl)acrylate (2k)

Eluent: petroleum ether-ethyl acetate (20:1); white solid (149 mg,

- 15 78%), mp 126-128 °C; ¹H NMR (400 MHz, CDCl₃) δ: 1.32 (t, J = 7.2 Hz, 3H), 2.36 (s, 3H), 4.19 (s, 2H), 4.24 (g, J = 7.2 Hz, 2H), 7.08 (d, J = 2.0 Hz, 1H), 7.13-7.18 (m, 2H), 7.33-7.44 (m, 3H), 7.60-7.66 (m, 2H), 8.24 (dd, $J_1 = 8.4$ Hz, $J_2 = 1.6$ Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ: 14.3, 19.4, 35.5, 60.5, 116.8, 117.8,
- 20 123.4, 124.3, 125.7, 126.3, 127.6, 128.7, 131.9, 132.0, 133.9, 134.0, 134.9, 135.4, 155.1, 167.2, 167.6, 176.4, 177.2. HRMS (ESI) calcd for C₂₂H₂₀ClO₄: 383.1050 [M+H], found: 383.1056.

3-(2-(3,5-dimethoxybenzyl)-6-methyl-4-oxo-4H-(E)-Ethyl chromen-3-yl)acrylate (21)

- 25 Eluent: petroleum ether-ethyl acetate (20:1); white solid (163 mg, 80%), mp 119-120 °C; ¹H NMR (400 MHz, CDCl₃) δ : 1.26 (t, J = 7.2 Hz, 1H), 2.35 (s, 3H), 3.76 (s, 6H), 4.14 (s, 2H), 4.24 (q, J =7.2 Hz, 2H), 6.35 (t, J = 2.0 Hz, 1H), 6.44 (d, J = 2.0 Hz, 1H), 7.30 (d, J = 9.2 Hz, 1H), 7.39 (d, J = 15.6 Hz, 1H), 7.44 (dd, $J_I =$
- $_{30}$ 8.4 Hz, $J_2 = 2.0$ Hz, 1H), 7.72 (d, J = 15.6 Hz, 1H), 7.99 (d, J =1.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ: 14.3, 21.0, 38.4, 55.3, 60.4, 99.0, 106.8, 109.4, 116.2, 117.5, 123.6, 125.5, 134.7, 135.0, 137.4, 153.4, 160.4, 161.1, 167.8, 168.0, 176.6. HRMS (ESI) calcd for C₂₄H₂₅O₆: 409.1651 [M+H], found: 409.1642.
- 35 (E)-Ethyl 3-(6-methyl-2-(4-methylbenzyl)-4-oxo-4H-chromen-3-vl)acrvlate (2m)

Eluent: petroleum ether-ethyl acetate (20:1); pale yellow solid (130 mg, 72%), mp 145-147 °C; ¹H NMR (400 MHz, CDCl₃) δ: 1.33 (t, J = 7.2 Hz, 3H), 2.31 (s, 3H), 2.44 (s, 3H), 4.17 (s, 2H),

⁴⁰ 4.25 (q, *J* = 7.2 Hz, 2H), 7.12 (d, *J* = 8.4 Hz, 2H), 7.19 (d, *J* = 8.4 Hz, 2H), 7.29 (d, J = 8.8 Hz, 1H), 7.39-7.45 (m, 2H), 7.74 (d, J = 15.6 Hz, 1H), 7.98 (d, J = 1.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ: 14.3, 20.98, 21.04, 37.9, 60.4, 115.9, 117.5, 123.1, 123.6, 125.5, 128.5, 129.7, 132.2, 134.8, 134.9, 135.5, 137.1,

45 153.4, 167.9, 168.6, 176.7. HRMS (ESI) calcd for C23H23O4: 363.1596 [M+H], found: 363.1599.

(E)-Ethyl 3-(2-(5-chloro-2-methylbenzyl)-6-methyl-4-oxo-4Hchromen-3-yl)acrylate (2n)

Eluent: petroleum ether-ethyl acetate (20:1); pale yellow solid ⁵⁰ (146 mg, 74%), mp 145-148 °C; ¹H NMR (400 MHz, CDCl₃) δ: 1.32 (t, J = 7.2 Hz, 3H), 2.35 (s, 3H), 2.45 (s, 3H), 4.17 (s, 2H), 4.24 (q, J = 7.2 Hz, 2H), 7.07 (s, 1H), 7.13-7.17 (m, 2H), 7.23 (d, *J* = 8.8 Hz, 1H), 7.36 (d, *J* = 15.6 Hz, 1H), 7.44 (d, *J* = 8.8 Hz,

1H), 7.62 (d, J = 15.6 Hz, 1H), 8.01 (s, 1H). ¹³C NMR (100 MHz,

- ⁵⁵ CDCl₃) δ: 14.3, 19.4, 21.0, 35.5, 60.5, 116.7, 117.5, 123.0, 124.1, 125.6, 127.5, 128.7, 131.8, 132.0, 134.2, 134.9, 135.1, 135.4,
- 135.7, 153.4, 167.0, 167.7, 176.5. HRMS (ESI) calcd for C₂₃H₂₂ClO₄: 397.1206 [M+H], found: 397.1193.
- (E)-Ethyl 3-(6-chloro-2-(3,5-dimethoxybenzyl)-4-oxo-4H-60 chromen-3-yl)acrylate (20) Eluent: petroleum ether-ethyl acetate (20:1); white solid (169 mg,

79%), mp 144-146 °C; ¹H NMR (400 MHz, CDCl₃) δ: 1.32 (t, J

= 7.2 Hz, 3H), 3.76 (s, 6H), 4.14 (s, 2H), 4.25 (q, J = 7.2 Hz, 2H),

6.43 (d, J = 2.0 Hz, 2H), 6.49 (d, J = 2.0 Hz, 1H), 7.35-7.39 (m,

Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ: 14.1, 38.0, 55.4, 60.6,

99.2, 106.8, 109.3, 116.5, 119.4, 124.4, 125.5, 131.7, 134.1, 136.9,

153.8, 160.6, 161.2, 167.6, 168.5, 175.5. HRMS (ESI) calcd for

C₂₃H₂₂ClO₆: 429.1105 [M+H], found: 429.1118.

80 C₂₂H₂₀ClO₄: 383.1050 [M+H], found: 383.1052.

3-yl)acrylate (2p)

(E)-Ethyl

acrylate (2q)

65 2H), 7.53-7.59 (m, 1H), 7.69 (d, J = 16.4 Hz, 1H), 8.17 (d, J = 2.0

70 (E)-Ethyl 3-(6-chloro-2-(4-methylbenzyl)-4-oxo-4H-chromen-Eluent: petroleum ether-ethyl acetate (20:1); white solid (136 mg, 71%), mp 150-152 °C; ¹H NMR (400 MHz, CDCl₃) δ: 1.33 (t, J = 7.2 Hz, 3H), 2.32 (s, 3H), 4.18 (s, 2H), 4.26 (q, J = 7.2 Hz, 2H), 75 7.12-7.20 (m, 4H), 7.35-7.41 (m, 2H), 7.57 (dd, $J_1 = 8.4$ Hz, $J_2 =$ 2.8 Hz, 1H), 7.71 (d, J = 16.0 Hz, 1H), 8.17 (d, J = 2.4 Hz, 1H). 13 C NMR (100 MHz, CDCl₃) δ : 14.3, 21.1, 37.8, 60.5, 116.2, 119.5, 124.3, 125.7, 128.5, 129.1, 129.6, 129.8, 131.9, 133.9, 134.1, 137.3, 153.3, 167.7, 168.9, 175.3. HRMS (ESI) calcd for 3-(2-benzyl-6-chloro-4-oxo-4H-chromen-3-yl) Eluent: petroleum ether-ethyl acetate (20:1); white solid (136 mg, 74%), mp 148-150 °C; ¹H NMR (400 MHz, CDCl₃) δ: 1.33 (t, J $_{85}$ = 7.2 Hz, 3H), 4.23-4.28 (m, 4H), 7.28-7.41 (m, 7H), 7.58 (dd, J_1 = 9.2 Hz, J_2 = 1.6 Hz, 1H), 7.71 (d, J = 15.6 Hz, 1H), 8.18 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ: 14.3, 38.2, 60.5, 116.3, 119.5, 124.4, 125.7, 127.6, 128.6, 129.1, 131.5, 134.0, 135.0, 153.5, 167.6, 168.5, 175.4. HRMS (ESI) calcd for C₂₁H₁₈ClO₄:

90 369.0893 [M+H], found: 369.0896.

(E)-Ethyl 3-(2-ethyl-4-oxo-4H-chromen-3-yl)acrylate (2r) Eluent: petroleum ether-ethyl acetate (20:1); white solid (88 mg, 65%), mp 80-82 °C; ¹H NMR (400 MHz, CDCl₃) δ : 1.32 (t, J = 7.2 Hz, 3H), 1.38 (t, J = 7.6 Hz, 3H), 2.95 (q, J = 7.2 Hz, 2H), $_{95}$ 4.25 (q, J = 7.2 Hz, 2H), 7.39-7.44 (m, 1H), 7.59 (d, J = 15.2 Hz, 1H), 7.63-7.68 (m, 1H), 8.22 (dd, $J_1 = 8.0$ Hz, $J_2 = 0.8$ Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ: 12.0, 14.2, 25.8, 60.4, 115.2, 117.6, 123.3, 123.4, 125.4, 126.3, 133.6, 134.4, 155.2, 168.0, 172.0, 176.5. HRMS (ESI) calcd for C₁₆H₁₇O₄: 273.1127 [M+H], 100 found: 273.1133.

Acknowledgements

We are grateful to the National Natural Science Foundation of China (NSFC) (grant numbers 21172057, 21272058), the Research Fund for the Doctoral Program of Higher Education 105 (RFDP) (grant number 20114104110005), and the Program for

Changjiang Scholars and Innovative Research Team in University (PCSIRT) (IRT 1061) for financial support.

Notes and references

School of Chemistry and Chemical Engineering, Collaborative 5 Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan 453007, P. R. China. E-mail: xuesen.fan@htu.cn; xinyingzhang@htu.cn

- 1 B. Xu and G. B. Hammond, Angew. Chem., Int. Ed., 2008, 47, 689.
- 10 2 W. B. Wang, B. Xu and G. B. Hammond, Org. Lett., 2008, 10, 3713.
- 3 X. Fan, Y. He, L. Cui, X. Zhang and J. Wang, *Green Chem.*, 2011, 13, 3218.
- 4 (a) P. J. Houghton, Stud. Nat. Prod. Chem., 2000, **21**, 123; (b) G. R. Beecher, J. Nutr., 2003, **133**, 3248; (c) P.-G. Pietta, J. Nat. Prod.,
- 15 2000, **63**, 1035; (d) I. S. Ismail, Y. Nagakura, Y. Hirasawa, T. Hosoya, M. I. M. Lazim, N. H. Lajis, M. Shiro and H. Morita, J. Nat. Prod., 2009, **72**, 1879.
- 5 D. A. Horton, G. T. Bourne and M. L. Smythe, *Chem. Rev.*, 2003, **103**, 893.
- ²⁰ 6 (a) A. M. Edwards and J. B. L. Howell, *Clin. Exp. Allergy*, 2000,
 30, 756; (b) D. F. Birt, S. Hendrich and W. Wang, *Pharmacol. Ther.*, 2001, **90**, 157; (c) H. P. Kim, K. H. Son, H. W. Chang and S. S. Kang, *J. Pharmacol. Sci.*, 2004, **96**, 229; (d) M. Grazul and E. Budzisz, *Coord. Chem. Rev.*, 2009, **253**, 2588; (e) M. E. Sousa and
- 25 M. M. Pinto, *Curr. Med. Chem.*, 2005, **12**, 2447; (f) S. K. Sharma, S. Kumar, K. Chand, A. Kathuria, A. Gupta and R. Jain, *Curr. Med. Chem.*, 2011, **18**, 3825.
- 7 (a) S. Malik, A. Choudhary, S. Kumar and G. Avasthi, J. Pharm. Res., 2010, 3, 1519; (b) H. W. Dong, K. Li, C. H. Zheng, J. Liu, Z.
- L. Lv, T. J. Li and C. M, Liu, *Acta Chim. Sin.*, 2009, **67**, 819; (c) R.
 Larget, B. Lockhart, P. Renard and M. Largeron, *Bioorg. Med. Chem. Lett.*, 2000, **10**, 835; (d) P. Valenti, A. Bisi, A. Rampa, F.
 Belluti, S. Gobbi, A. Zampiron and M. Carrara, *Bioorg. Med. Chem.*, 2000, **8**, 239; (e) A. Matin, N. Gavande, M. S. Kim, N. X.
- Yang, N. K. Salam, J. R. Hanrahan, R. H. Roubin and D. E. Hibbs, J. Med. Chem., 2009, 52, 6835; (f) B. D. Palmer, K. Henare, S. T. Woon, R. Sutherland, C. Reddy, L. C. Wang, C. Kieda and L. M. Ching, J. Med. Chem., 2007, 50, 757; (g) C. J. Langmead, S. P. Andrews, M. Congreve, J. C. Errey, E. Hurrell, F. H. Marshall, J.
 S. Mason, C. M. Richardson, N. Robertson, A. Zhukov and M.
- Weir, J. Med. Chem., 2012, 55, 1904.
 (a) A. Y. Shaw, C. Y. Chang, H. H. Liau, P. J. Lu, H. L. Chen, C.
- (a) A. T. Snaw, C. Y. Chang, H. H. Llau, P. J. Lu, H. L. Chen, C. N. Yang and H. Y. Li, *Eur. J. Med. Chem.*, 2009, 44, 2552; (b) S. Kumar, B. K. Singh, A. K. Pandey, A. Kumar, S. K. Sharma, H. G.
- ⁴⁵ Raj, A. K. Prasad, E. V. der Eycken, V. S. Parmar and B. Ghosh, *Bioorg. Med. Chem.*, 2007, **15**, 2952; (*c*) E. T. Organesyan, V. A. Tuskaev, L. S. Sarkisov and A. S. Saraf, *Pharmaceutical Chem. J.*, 1995, **29**, 685; (*d*) L. J. Legoabe, A. Petzer and J. P. Petzer, *Bioorg. Med. Chem. Lett.*, 2012, **22**, 5480.
- ⁵⁰ 9 (a) A. T. Dang, D. O. Miller, L. N. Dawe and G. J. Bodwell, Org. Lett., 2008, **10**, 233; (b) J. Gong, F. Xie, H. Chen and Y. Hu, Org. Lett., 2010, **12**, 3848; (c) C. M. M. Santos, A. M. S. Silva and J. A. S. Cavaleiro, Eur. J. Org. Chem., 2009, **15**, 2642; (d) Z. Lv, C. Sheng, T. Wang, Y. Zhang, J. Liu, J. Feng, H. Sun, H. hong, C. Niu
- and K. Li, J. Med. Chem., 2010, 53, 660; (e) Y. Zhang, Z. Lv, M. Zhang and K. Li, *Tetrahedron*, 2013, 69, 8839; (f) A. T. Dang, D. O. Miller, L. N. Dawe and G. J. Bodwell, Org. Lett., 2008, 10, 233; (g) J. Gong, F. Xie, H. Chen and Y. Hu, Org. Lett., 2010, 12, 3848; (h) H. Chen, F. Xie, J. Gong and Y. Hu, J. Org. Chem., 2011, 76, 8495.
- 10 (a) S. G. Davies, B. E. Mobbs and C. J. Goodwin, J. Chem. Soc., Perkin Trans., 1987, 1, 2597; (b) K. Dahlén, E. A. A. Wallén, M. Grøtli and K. Luthman, J. Org. Chem., 2006, 71, 6863; (c) Dawood, K. M, Tetrahedron., 2007, 63, 9642; (d) C. M. M. Santos,
- A. M. S. Silva and J. A. S. Cavaleiro, *Synlett*, 2007, 20, 3113; (e) K. Tatsuta, S. Kasai, Y. Amano, T. Yamaguchi, M. Seki and S. Hosokawa, *Chem. Lett.*, 2007, 36, 10; (f) T. Patonay, A. Vasas, A. Kiss-Szikszai, A. M. S. Silva and J. A. S. Cavaleiro, *Aust. J. Chem.*,

2010, 63, 1582.

- 70 11 D. Kim and S. Hong, *Org. Lett.*, 2011, **13**, 4466.
- T. Patonay, A. Kiss-Szikszai, V. M. L. Silva, A. M. S. Silva, D. C. G.
 A. Pinto, J. A. S. Cavaleiro and J. Jekő, *Eur. J. Org. Chem.*, 2008, 11, 1937.

www.rsc.org/xxxxxx | XXXXXXXX

- 13 The molecular structure of (*E*)-ethyl 3-(2,6-dimethyl-4-oxo-4*H*chromen-3-yl)acrylate (2d) was determined by X-ray crystallographic analysis. CCDC-979580 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- 80 14 (a) L. Zhao, F. Xie, G. Chang, Y. Hu, *Angew. Chem. Int. Ed.*, 2009, 48, 6520; (b) J. Yan, M. Cheng, F. Hu and Y. Hu, *Org. Lett.*, 2012, 14, 3206.

75

A graphical contents entry

Synthesis of 3-(4-oxo-4*H*-chromen-3-yl)acrylates through the tandem reaction of 3-(2-buta-2,3-dienoylphenoxy)acrylates

Xuesen Fan,* Nana Shen, Bin Li, Shenghai Guo, and Xinying Zhang*

A straightforward and efficient synthesis of 2-substituted 3-(4-oxo-4*H*-chromen-3-yl)acrylates through base-catalyzed tandem reaction of the readily available 3-(2-buta-2,3-dienoylphenoxy) acrylates under extremely mild conditions has been developed.

