

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

1	PET depolymerisation in supercritical ethanol catalysed by [Bmim][BF ₄]
2	
3	Cátia Santos Nunes, Michael Jackson Vieira da Silva, Danielle Cristina da Silva, Adonilson
4	dos Reis Freitas, Fernanda Andréia Rosa, Adley Forti Rubira, Edvani Curti Muniz *
5	
6	Departamento de Química, Universidade Estadual de Maringá,
7	Av. Colombo, 5790, 87020-900, Maringá-PR, Brazil
8 9	*Corresponding author
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	

PET depolymerisation in supercritical ethanol catalysed by [Bmim][BF4], done by C.S. Nunes, M.J. V da Silva, D.C. Silva, A.R. Freitas, F.A. Rosa, A.F. Rubira and E.C. Muniz, *submitted to RSC Advances*

22 Summary

23 Poly(ethylene terephthalate) (PET) was successfully depolymerised under supercritical ethanol. Robust conversion of 98 wt-% from PET to diethylterephthalate (DET) 24 25 was obtained by adding $[Bmim][BF_4]$, as catalyst, accompanied by reduction of depolymerization time from ca. 6 h to 45 min. DET formation in the depolymerization 26 process was characterized by HPLC, ¹H NMR, FTIR, TGA, DSC and SEM showing high 27 purity and yield. The yields for different runs were determined by HPLC combined with 28 interpolation from the standard/calibration curve. A 2^3 factorial design was employed to 29 30 evaluate the effect of different inputs such as (i) reaction time after supercritical condition, 31 (ii) volume of ionic liquid (VIL)and (iii) amount of PET in the yield of DET. By the analysis 32 of variance (ANOVA), including F-test and P-values, it was found that reaction time and 33 amount of PET inputs correspond, respectively, to 44 % and 23 % of the evaluated response. 34 Another positive aspect showed by the factorial design is that the amount of catalyst was not 35 significant in the process, and the depolymerization can be conduct successfully since a small 36 amount (this study used VIL ranging 0.15 to 0.35 mL) is present in the reaction media. The 37 method proposed in this paper is advantageous over others, reported in literature, due to 38 lower reaction time required for PET depolymerization and higher DET yield.

39

Keywords: poly(ethylene terephthalate); depolymerisation; supercritical ethanol; ionic
liquids (ILs); [Bmim][BF₄].

42

PET depolymerisation in supercritical ethanol catalysed by [Bmim][BF4], done by C.S. Nunes, M.J. V da Silva, D.C. Silva, A.R. Freitas, F.A. Rosa, A.F. Rubira and E.C. Muniz, submitted to RSC Advances

44 Introduction

45 The chemical recycling of polymers is an environmentally-friendly process, an alternative which adds value to polymer production waste or post-consumer polymer waste, 46 47 where the product can be converted into its respective monomers and recycled for use in new polymerization products. Several depolymerisation techniques, especially those using 48 49 catalytic reactions, have been studied extensively and the most studied catalysts are bases (ex. NaOH), acids (ex. H_2SO_4),^{1,2} and metal salts.³ Developments in catalysis are being constantly 50 reported, trying to find new catalysts, novel catalytic reactions and alternative methodologies. 51 52 Much of the pressure for this is driven by the economic requirements to develop systems in 53 which the easy separation of products and/or the reuse of the catalyst are possible, along with desired high reactivity and selectivity.⁴ Chemical recycling of poly(ethylene terephthalate) 54 (or PET) started in the 1950s at about the same time that PET was being manufactured on a 55 56 commercial scale.⁵ (PET) is widely used in the manufacture of video and audio tapes, films for X-ray diagnostics, food packaging and soft-drink bottles.⁶ 57

Several processes for PET depolymerization have been put forward with different 58 depolymerizing agents and operation conditions. Alcoholysis processes depolymerize PET to 59 dimethyl terephthalate (DMT) with liquid or gaseous methanol⁷⁻⁹ glycolysis depolymerizes 60 PET to bis-(hydroxyethyl) terephthalate (BHET) with ethylene glycol or other glycol^{10, 11}, 61 and hydrolysis¹ converts PET to terephthalate acid (TPA) under the promotion of acidic or 62 63 basic conditions. All of these processes have both advantages and disadvantages. 64 Methanolysis under normal conditions can be carried out at relative mild temperature and 65 pressure. However, the reaction rate is very slow, and some divalent metal catalysts such as 66 zinc, lead, and manganese acetates, are required to enhance depolymerization rate. The 67 undesired diethylene glycol, the dimer of ethylene glycol, is formed in the glycolysis. There are thus some problems in separation and purification of the product¹². Hydrolysis under 68

RSC Advances Accepted Manuscript

PET depolymerisation in supercritical ethanol catalysed by [Bmim][BF₄], done by C.S. Nunes, M.J. V da Silva, D.C. Silva, A.R. Freitas, F.A. Rosa, A.F. Rubira and E.C. Muniz, *submitted to RSC Advances*

acidic or basic conditions may cause corrosion and pollution problems¹³, whilst both 69 70 terephthalic acid formed in the reaction and the acidic catalysts favour the formation of 71 diethylene glycol. Some new experimental methods have been introduced for the decomposition of PET. As an example, microwave irradiation was used as energy source in 72 solvolysis of PET¹⁴, and a high-pressure calorimeter has been used for measure the 73 decomposition degree¹⁵. In recent years, supercritical fluids are very attractive media for 74 75 conducting chemical transformations, primarily because the solvent and transport properties of a single solution can be appreciably and continuously varied with relatively minor changes 76 in either temperature and/or pressure to achieve supercritical conditions.¹⁶ Supercritical fluids 77 78 such as water and alcohol are excellent reaction media for the depolymerisation of plastics by 79 using sub and/or supercritical conditions, because the reaction can proceed rapidly and selectively under such conditions.¹⁷ For instance, Kamimura et al.¹⁸ demonstrated the 80 decomposition of waste material composed of polyamide 6 (nylon-6) into valuable 81 82 compounds such as methyl 6-hydroxycapronate and methyl 5-hexenoate, in a ratio of approximately 1:1 and yield of 80 %, using methanol under supercritical conditions. 83 Gutiérrez et al.¹⁹ proposed a process that combines green solvents and supercritical fluid 84 85 extraction to recycle polystyrene wastes, with a reduced volume, almost completely free of solvent and without degradation. 86

Processes involving the depolymerisation of PET under supercritical conditions were first used in Japan in 1997, where PET was depolymerised using supercritical water²⁰ or supercritical methanol. ²¹ More recently, supercritical ethanol (scEtOH) was employed for depolymerising PET from multilayer packaging films, and diethyl terephthalate (DET) was obtained as the main product with high purity and an at 80% yield.²²

Ethanolysis as a PET depolymerisation method is a good alternative for the recycling
industry, especially in countries (Brazil, for instance) where ethanol from sugarcane is

PET depolymerisation in supercritical ethanol catalysed by [Bmim][BF4], done by C.S. Nunes, M.J. V da Silva, D.C. Silva, A.R. Freitas, F.A. Rosa, A.F. Rubira and E.C. Muniz, *submitted to RSC Advances*

94	abundant and relatively inexpensive. ²³ Ionic liquids (ILs), considered "green solvents", ^{24, 25}
95	have attracted enormous research interest due to their unique features, including optimization
96	of compound characteristics through a broad selection of anion and cation combinations,
97	thermal stability, non-volatility, electrochemical stability, and low flammability. ²⁶ In the last
98	decade, ILs have been widely used in extraction, catalysis, electrochemistry, ²⁷ organic
99	synthesis ²⁸ and may have applications in polymer research. ²⁹ Growing interest has focused on
100	ILs as catalysts, in either homogenous or heterogeneous media, ^{24, 25} combining the
101	advantages of a solid for a surface-immobilizing catalyst and the advantages of a liquid for
102	allowing the catalyst to move freely. ³⁰
103	In this study, [Bmim][BF ₄] was used as the catalyst for the depolymerisation of PET
104	under scEtOH. The aim of this work was to determine the influence of reaction time, amount
105	of PET and volume of $[Bmim][BF_4]$ in the feed on PET depolymerisation under scEtOH and
106	whether this procedure had potential technological applications. This work combines two
107	important alternatives for sustainable reactions: the supercritical environment and the ionic
108	liquid. ^{24, 25} To our knowledge, no literature has been published focusing this specific issue, in
109	spite recent publication anticipated these conditions as future perspective for sustained
110	developing of polymer chemistry. ^{24, 25}
111	Experimental

112 Chemicals

Anhydrous ethanol (99.5 GL purity) was supplied by Nuclear (Diadema - SP, Brazil).
Diethylterephthalate (DET) and bis-(hydroxyethyl) terephthalate (BHET), used as standards,
were purchased from Sigma-Aldrich (New Jersey, USA). Reagents used for synthesis of
[Bmim][BF₄] were N-methylimidazole (99%) (Sigma-Aldrich, St. Louis, MO, USA), 1chlorobutane, acetonitrile and dichloromethane (Merck, Whitehouse Station, New Jersey,
USA). Potassium tetrafluoroborate was acquired from Strem Chemicals Inc. (Newburyport,

RSC Advances Accepted Manuscript

PET depolymerisation in supercritical ethanol catalysed by [Bmim][BF₄], done by C.S. Nunes, M.J. V da Silva, D.C. Silva, A.R. Freitas, F.A. Rosa, A.F. Rubira and E.C. Muniz, *submitted to RSC Advances*

119	MA, USA). Acetonitrile (Merck, Whitehouse Station, New Jersey, USA) was distilled over
120	phosphorus pentoxide (P ₂ O ₅), ³¹ 1-chlorobutane (Whitehouse Station, New Jersey, USA) was
121	used as received, Ethyl acetate (Merck, Whitehouse Station, New Jersey, USA) was distilled
122	over $P_2 O_5^{31}$

PET (pellets, average largest dimension ca. 1 mm) from waste soft drinks bottles (Plaspet Reciclagens Ltda company, Maringa, Brazil) was washed and dried in an oven at 50 °C to a constant weight. Viscosity measurements of PET (from the same source) at 25 °C in a 1:1 solution of 1,2-dichlorobenzene/phenol (w/w) estimate³ the average molecular weight viscosity of PET (M_v) as being 54,600 g mol⁻¹.

128 Equipments and procedures

FTIR spectra used to characterize the chemical structures of the depolymerisation 129 products were recorded using a (Bomem model MB-100 spectrometer, Quebec, Canada) in 130 the range of 4000-400 cm⁻¹. To quantify the DET formed at the end of each depolymerisation 131 132 run, RP-HPLC analysis was performed using a Thermo Surveyor LC Pump Plus, PDA Plus 133 Detector set at 240 nm and a reverse-phase C18-Kromasil column (250 x 4.6 mm) with a 134 particle size of 5 μ m and an average pore size of 100 Å. A methanol/water 80/20 v/v mixture was used as the mobile phase at a flow rate of 1 mL min⁻¹. Injection of 50 μ L (after be 135 136 degassed) and a photodiode detector with a 5 cm optic length were used. An analytical curve using standard DET solutions at concentrations ranging from 0.24 to 2.00 mg mL⁻¹ was built. 137 ¹H NMR spectra were used to characterize the chemical structures of depolymerisation 138 products and were obtained on a (Varian model Mercury Plus, 300 spectrometer, Palo 139 140 Alto, CA, USA) operating at 300 MHz and calibrated with tetramethysilane (TMS) as an internal reference. Analyses of ¹H NMR were performed according to the methods published 141 by Castro et al.²³ ¹H NMR spectrum of standard DET was obtained and used for comparison. 142 Scanning electron microscope (SEM, Shimadzu, model SS550 Superscan, Japan), applying 143

PET depolymerisation in supercritical ethanol catalysed by [Bmim][BF4], done by C.S. Nunes, M.J. V da Silva, D.C. Silva, A.R. Freitas, F.A. Rosa, A.F. Rubira and E.C. Muniz, *submitted to RSC Advances*

144	voltage of 15.0 kV and current of 30 mA, was used for morphology analyses. Before the
145	SEM analyses, the DET obtained at the final of depolymerization reaction (run 8) was
146	precipitated in water and further freeze dried. Finally, the treated DET sample was coated
147	with a thin gold film and analyzed by SEM. SEM of standard DET was obtained and used for
148	comparison.
149	The thermal properties of raw PET and depolymerisation products were investigated
150	by TGA and DSC. TGA experiments were carried out in a thermogravimetric analyzer
151	(Netzsch, model STA 409 PG/4/G Luxx, New Castle, Delaware, USA) at 30 to 550 °C at a
152	rate of 10 °C min ⁻¹ under N_2 gas flowing at a rate of 20 mL min ⁻¹ . DSC analyses were
153	performed on a calorimeter (Netzsch, model STA 409 PG/4/G Luxx, New Castle, Delaware,
154	USA) at a temperature range of 40-210 °C, heating rate of 10 °C min ⁻¹ and nitrogen flow of
155	50 mL min ⁻¹ .
156	Synthesis of 1-n-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4])
157	The 1-butyl-3methylimidazolium chloride was synthesized according to the methods
158	described by Dong et al. ³² For this, a 100 mL, three-necked, round-bottomed flask equipped
159	with a heating oil bath, a nitrogen inlet adapter, an internal thermometer adapter, an overhead
160	mechanical stirrer, and a reflux condenser were used. The flask was flushed with nitrogen and
161	charged with 5 g (0.06 mol) of freshly distilled N-methylimidazole, 5 mL of acetonitrile
162	(CH ₃ CN) and 7.22 g (0.078 mol) of 1-chlorobutane, brought to a gentle reflux (75-80 $^{\circ}$ C,
163	internal temperature), heated under reflux for 48 h and cooled to room temperature. The

volatile material was removed from the resulting yellow solution under reduced pressure. The
remaining light-yellow oil was re-dissolved in dry acetonitrile (8.1 mL) and added drop-wise
via cannula to 30 mL of a well-stirred solution of dry ethyl acetate and one seed crystal of 1butyl-3-methylimidazolium chloride placed in a 100 mL, three-necked, round-bottomed flask
equipped with a nitrogen inlet adapter and an overhead mechanical stirrer. The imidazolium

PET depolymerisation in supercritical ethanol catalysed by [Bmim][BF₄], done by C.S. Nunes, M.J. V da Silva, D.C. Silva, A.R. Freitas, F.A. Rosa, A.F. Rubira and E.C. Muniz, *submitted to RSC Advances*

169	salt began to crystallize exothermically almost immediately, and after addition of the
170	acetonitrile solution had been completed, the flask was cooled at -30 °C for 2 h. The
171	supernatant solution was removed via filtration through a filter cannula and the resulting
172	white solid dried under reduced pressure (0.1 mbar) at 30 °C for 6 h to yield 9.33 g (89%) of
173	1-butyl-3-methylimidazolium chloride ([Bmim][Cl]) having a melting point (mp) of 66-
174	67 °C.
175	The [Bmim][BF ₄] was synthesized according to the methods outlined by Dupont et
176	al. ³² using the previously prepared [Bmim][Cl]. For this, a 100 mL, one-necked, round-
177	bottomed flask was charged with 5 g (0.028 mol) of finely powdered [Bmim][Cl] and 3.6 g
178	(0.028 mol) of potassium tetrafluoroborate in 10 mL of distilled water. The system was

stirred at room temperature for 2 h yielding a heterogeneous mixture and the water removed
under reduced pressure (0.1 mbar) at 80 °C until a constant weight was reached. In sequence,
6 mL of dichloromethane and 1.88 g of anhydrous magnesium sulphate were added to the
remaining suspension. After 1 h, the suspension was filtered and the volatile material
removed under reduced pressure (0.1 bar) at 30 °C for 2 h to yield 5.65 g (0.025 mol, 91%) of

184 1-butyl-3-methylimidazolium tetrafluoroborate as a light yellow, viscous liquid having a mp
185 of -74 °C.

186

187 Depolymerisation of PET under scEtOH catalysed by [Bmim][BF₄]

The process was performed according to the methodology¹⁴ using the same apparatus. The degradation reaction was carried out in a 0.1-L home-made batch-type reactor made of 316[®] stainless steel equipped with inlet and outlet valves, a manometer, a thermometer, and a heating collar controlled by a programmable temperature controller used to heat the reactor to the desired temperature (255 °C, with a precision estimated to be 5 °C, measured by a J-type thermocouple). For the experiments, the desired mass of PET, anhydrous ethanol and

PET depolymerisation in supercritical ethanol catalysed by [Bmim][BF4], done by C.S. Nunes, M.J. V da Silva, D.C. Silva, A.R. Freitas, F.A. Rosa, A.F. Rubira and E.C. Muniz, *submitted to RSC Advances*

194	[Bmim][BF ₄] were added to the reactor at room temperature according to a 2 ³ factorial design
195	(see Table 1) and heated (at heating rate of about 8 °C min ⁻¹) to a reaction temperature of 255
196	°C. Reactor pressure (115 atm) was attained by nearly filling the vessel with desired amount
197	of PET (pellets) and ethanol and keeping the reactor properly closed, avoiding the need of
198	using pressurized gas for the ethanol to reach supercritical conditions. After a required
199	reaction time, the heating collar was removed and the vessel quickly cooled to room
200	temperature using large amounts of water, taking less than 5 min to reach room temperature
201	(around 25 °C).
202	Recovering of the ionic liquid
203	
204	After PET despolymerization (run 8) ethanol was evaporated and the main product
205	(DET) was precipitated in the water and filtered. The residual ionic liquid [Bmim][BF4]
206	remaining in the filtrate aqueous was lyophilized prior the ¹ HNMR analyses. The spectrum
207	were obtained as earlier described and presented in supplementary information (Figure S1).
208	Factorial design experiments
209	The influences of reaction time (RT), amount of PET (W_{PET}) and ionic liquid volume
210	(VILs) used for PET depolymerisation by scEtOH on the yield of DET were investigated. A
211	two level factorial (2^3) design for evaluating each of these parameters was used [RT: (+) 45
212	min, (-) 0 min; W_{PET} : (+) 1.5 g, (-) 0.5 g and VILs: (+) 0.35 mL, (-) 0.15 mL] and DET yield
213	(in wt-%) was analysed (see Table 1) as response. A linear model was applied to fit the
214	experimental data. The response surface, produced after applying a given linear model to the
215	data, was obtained and the respective analysis of variance (ANOVA) as performed using the
216	(Design Expert DX7 [©] software Version 7.0, Minneapolis, MN, USA). The sequence of runs
217	was random.
218	

PET depolymerisation in supercritical ethanol catalysed by [Bmim][BF4], done by C.S. Nunes, M.J. V da Silva, D.C. Silva, A.R. Freitas, F.A. Rosa, A.F. Rubira and E.C. Muniz, *submitted to RSC Advances*

219 Results and discussion

220	Products obtained from the depolymerisation of PET under scEtOH catalysed by $[Bmim][BF_4]$
221	The stability of $[Bmim][BF_4]$ under supercritical ethanol (scEtOH) used for PET
222	depolymerisation was analysed. FTIR and ¹ H NMR spectra of [Bmim][BF ₄], before and after
223	the ionic liquid (IL) exposure to 115 atm and 255 °C for 60 min, were obtained. No changes
224	were observed in the [Bmim][BF ₄] FTIR and ¹ HNMR spectra (Figures S2 and S3,
225	Supplementary information) after exposure, which indicated [Bmim][BF4] was chemically
226	stable when exposed to these T and P conditions for 60 min.
227	The products obtained from PET depolymerisation under scEtOH were primarily DET
228	and either ethylene glycol (EG), nono- (hydroxyethyl) terephthalate (MHET) and bis-
229	(hydroxylethyl) terephthalate (BHET) with the possibility of other by-products like ethylene
230	terephthalate (ET), dimers and oligomers. These data verified the reaction in which DET and
231	EG were formed as the main products (Scheme 1). ³³ For that, each PET ester linkage used
232	one ethanol molecule in the depolymerisation process, creating two ethyl end-groups to form
233	one DET molecule and yielding two diethyleneglycol (EG) molecules for each DET
234	molecule, while BHET was formed by further reaction between DET and EG.
235	The proposed mechanism for the PET depolymerisation reaction investigated in the
236	present work is shown in Scheme 1, based in a paper published by Liu et al. ³³
237	
238	Scheme 1
239	
240	Influence of reaction time (RT), VILs and W_{PET} on PET depolymerisation under scEtOH
241	The influence of $[Bmim][BF_4]$ in the chemical recycling of the PET under
242	supercritical ethanol (T = 255 °C and P = 115 atm) was investigated through a 2^3 factorial
243	design. Table 1 shows the conditions used in each of the eight runs and Table 2 shows the

	PET depolymerisation in supercritical ethanol catalysed by [Bmim][BF4], done by C.S. Nunes, M.J. V da Silva, D.C. Silva, A.R. Freitas, F.A. Rosa, A.F. Rubira and E.C. Muniz, <i>submitted to RSC Advances</i>
244	ANOVA obtained after treating the data collected from such factorial design. The effects of
245	reaction time (RT), ionic liquid volume (VILs) and amount of PET (W_{PET}) inputs, their
246	second order interactions on DET yield, and the respective F-ratio values are presented in
247	Table 2.
248	
249	Table 1
250	
251	After applying the linear model:
252	yield = $63.56 + 17.14$ (RT) + 5.11 (VILs) + 12.56 (W _{PET}) + 8.99 RT VILs - 9.66 (RT W _{PET})
253	to the data, the R^2 coefficient value was 0.968 obtained dividing the sum of squares for the
254	model (5,214.30) by the sum of squares for the total correlation (5,384.96). The R^2 value
255	indicated a good fit of the model to the experimental data. The analysis of variance
256	(ANOVA) was also used to estimate the significance of the main and interaction effects of
257	input in the response (DET yield). The mean squares in Table 2 were used to estimate the F
258	value (F-test) for each parameter (model, inputs and input interactions) at 95% confidence.
259	
260	Table 2
261	
262	Analyses of data presented in Table 2 suggested that RT had the greatest effect on
263	PET depolymerisation, followed by W_{PET} in the feed. VILs did not exert significant effect on
264	DET yield (see the value of <i>F</i> -test on Table 2) when taking into account the range for this
265	input (0.15 to 0.35 mL). Statistically significant interactions between RT and VILs and also
266	between W_{PET} and VILs were found, as DET yield increased by simultaneously changes the
267	inputs to same direction (up or down). In addition, the response surface shown in Figure 1
268	indicated that the amount of IL (VILs) itself was not statistically significant input but its

PET depolymerisation in supercritical ethanol catalysed by [Bmim][BF4], done by C.S. Nunes, M.J. V da Silva, D.C. Silva, A Rubira and E.C. Muniz, <i>submitted to RSC Advances</i>	A.R. Freitas, F.A. Rosa, A.F.
importance to DET yield during depolymerisation of PET by scEtOH was	s due to its

270 interaction with RT and W_{PET} , an inherent characteristic of catalysts for a given chemical

- 271 reaction.
- 272

269

- 273
- 274

Figure 1

When W_{PET} , RT and VILs were maintained at higher levels ($W_{PET} = 1.5$ g, RT = 45 275 min; VILs = 0.350 mL), DET was formed at a yield of 98 wt-%. According to Castro et al.,²³ 276 using scEtOH without ionic liquid the reaction yielded 66 wt-% after 5 hours of reaction, 277 while using the ionic liquid at 120-200 °C at room pressure,²⁹ a complete depolymerisation of 278 279 PET occurred after 6-10 h. Therefore, the combination of scEtOH and ionic liquid, as used 280 for PET depolymerisation in this study, enabled shorter times for near-complete PET 281 depolymerisation with higher DET yields and represents a good and sustained strategy for 282 depolymerisation. So as stated in literature, the use of ionic liquids and/or supercritical conditions are important for polymer synthesis.^{24, 25} This work shows that it is also important 283 284 for PET depolymerisation reactions. It is shown in this paper that the combination of scEtOH 285 and IL lead to almost complete depolymerisation of PET in short reaction times (less than 1 286 hour). This can be in future an alternative for depolymerization of PET contributing to solve 287 environmental concerns. 288 When W_{PET} , RT and VILs were maintained at lower levels ($W_{PET} = 0.5$ g, RT = 0

289 min, VILs = 0.150 mL, (or run 1, Table 1), higher amounts of BHET were formed (as

compared to run 8 in which such inputs were maintained at higher levels). HPLC

chromatograms of the products obtained during PET depolymerisation (run 1, RT = 0 min;

run 8, RT = 45 min) are shown in Figure 2.

316

317

318

RSC Advances

PET depolymerisation in supercritical ethanol catalysed by [Bmim][BF4], done by C.S. Nunes, M.J. V da Silva, D.C. Silva, A.R. Freitas, F.A. Rosa, A.F. Rubira and E.C. Muniz, *submitted to RSC Advances*

294	Figure 2
295	
296	The results in Figure 2 indicated that DET, probably formed at the beginning of the
297	PET depolymerisation reaction under scEtOH, further reacted with EG producing BHET. It
298	should be noted that RT value was established as the period of time in which the system
299	achieved scEtOH condition (T = 255 $^{\circ}$ C and P = 115 atm). In other words, the RT
300	commenced when the system achieved the appropriate T and P condition, ca. 30 min after the
301	heating apparatus was turned on. Therefore, RT equal to 0 min (run 1) indicated that the
302	system had not achieved scEtOH condition, rather subcritical ethanol conditions, and BHET
303	was formed in higher amounts in this condition (Figure 2). This suggested that BHET should
304	be more thermodynamically stable than DET, as the amount of BHET formed was higher at
305	subcritical, rather than at supercritical ethanol conditions. However, for longer reaction times
306	under scEtOH condition, DET was formed in greater amounts due to the presence of larger
307	amounts of ethanol compared to EG, which pushed the equilibrium towards DET. These data
308	indicated that the amount of BHET and/or DET formed during PET depolymerisation under
309	scEtOH can be tuned by controlling temperature, pressure and reaction time.
310	
311	Activity of [Bmim][BF ₄] during PET depolymerisation
312	[Bmim][BF ₄] showed significant activity during chemical depolymerisation by
313	scEtOH. According to Garcia-Miaja et al. ³⁴ in a mixture of ethanol and $[Bmim][BF_4]$, BF_4
314	anion is poorly capable of cross-associating with alcohol molecules, preferring to auto-
315	associate, which is due to an increased system entropy (positive ΔS_m). The effect of ionic

liquids (ILs) in creating and/or altering the pathway of a given chemical reaction could be

carbocations and carbanions. From a synthetic chemistry point of view, the major benefit in

observed in reactions involving polar or electrically-charged intermediates such as

RSC Advances Accepted Manuscript

PET depolymerisation in supercritical ethanol catalysed by [Bmim][BF₄], done by C.S. Nunes, M.J. V da Silva, D.C. Silva, A.R. Freitas, F.A. Rosa, A.F. Rubira and E.C. Muniz, *submitted to RSC Advances*

the use ILs is the elevation of the reaction rate and selectivity related to others solvents.³⁵ It can be pointed out that elevation of the reaction rate resulted from a decrease in free energy due to the presence of ILs that enables the formation of complexes that are more stable and have longer lifetimes in that media.³⁶ Despite the complete understanding of the catalytic mechanism of ionic liquids being in its infancy,³³ it was possible to predict/infer the mechanisms by which ILs such as $[Bmim][BF_4]$ acts.

325 Ionic liquids are composed only of ions and the ionic nature of ILs can affect the course of the chemical reactions.³⁵ Published data suggest that the strong electrostatic field 326 327 possessed by dialkyl imidazolium cations, mediated by counterions, may play an important role in initiating the desired reaction.³⁵ Liu et al.^{33, 37} developed an IL ([Bmim][Ac]) that acts 328 329 as a catalyst for the depolymerisation of polycarbonate (PC) in the presence of methanol, and 330 the effects of temperature, reaction time, methanol and [Bmim][Ac] concentration on the 331 methanolysis were examined. The authors show that the conversion of PC into its respective 332 monomers was nearly 100%, with a 95 wt-% yield of bisphenol A (BPA) formed at ambient pressure and 90 °C over a period of 2.5 h. Zhou et al.³⁸ obtained ca. 71 wt-% BHET yield 333 during PET depolymerisation by the IL 1,3-diethylimidazolium triaceticzincate 334 ([Deim][Zn(OAc)₃]) at 180 °C and under ambient pressure. 335 336 Other runs performed in this study (under conditions not included in Table 1) showed that the presence of water in the system negatively affected [Bmim][BF₄]-catalysed PET 337 338 depolymerisation under scEtOH. For instance, using the conditions described for run 8, but in 339 the presence of water at 1, 2, and 4 wt-% (relative to amount of ethanol), DET yield 340 decreased to 28.4, 13.8 and 13.8 wt-%, respectively. The presence of water may have altered 341 the interactions between the counterions of [Bmim][BF₄], resulting in decreased catalytic

- activity. According to Khupse and Kumar,³⁹ the presence of water, even in small amounts,
- decreases the viscosity of [Bmim][BF₄] in hydrophilic and hydrophobic solvents, affecting

344	counterion mobility and allowing dissociation into more free cations and anions. In this work,
345	this could be responsible for the decreased catalytic effect of [Bmim][BF4] during PET
346	depolymerisation under scEtOH in presence of low amounts of water.
347	According to literature, supercritical fluids, specifically supercritical water (Tc
348	= 674.3 K, $Pc=22.0 \text{ MPa}$) ²⁰ and supercritical methanol (Tc=512.3 K, Pc=8.09 MPa) ²¹ have
349	been used for PET depolymerization. PET hydrolysis with supercritical water has very high
350	reaction rate. But, in practice, this process is not easy to operate due to the severe reaction
351	conditions (above 670 K, 30 MPa). In addition, the hydrolysis leads to low yield of ethylene
352	glycol (about 20%). Comparing to supercritical hydrolysis, the supercritical methanolysis ²¹
353	operated at relatively mild conditions. In same direction, ethanolysis ²³ is also easy to operate.
354	The process described in this work combines the IL and supercritical ethanol for PET
355	depolymerization is a novelty and an alternative for PET recovering.
356	Characterization of the main product
357	Characterization through HPLC
358	Chromatograms (Figure 2) obtained in runs 1 and 8 showed peaks at efflux times
359	collected up to 10 min. The peak related to BHET appears at 3.6 min and the peak for DET is
360	in 7 min. Peaks with minor intensities appear in the range from 2.4 to 3.3 min. The peak at
361	2.4 min has nearly the same intensity (and area) in both chromatograms. In the chromatogram
362	of run 8, the peak at 2.6 min had a decreased intensity (and area), while the peak that
363	appeared at 3.3 min had an increased intensity (and area) attributed to presence of dimers
364	existing in the product, even with a 45 min for reaction time. According to Figure 2, the
365	amount of DET in run 1 is much lower than in run 8. Also in chromatogram of run 1 a peak
366	related to mono-(hydroxyethyl) terephthalate (MHET) appears at 5.5 min. This peak almost
367	disappeared in the chromatogram of products obtained in run 8.
368	Characterization through FTIR spectroscopy

369	FTIR spectra of DET from runs 1 and 8 (after precipitation in water and freeze
370	drying), raw PET, and standard DET are given in Figure 3. The FTIR spectra for DET
371	obtained from runs 1 and 8 are quite similar to FTIR spectrum for the standard DET at certain
372	wavelengths, but new bands appear in the both spectra (from runs 1 and 8) such as the weak
373	bands present at 3300 cm ⁻¹ and 3550 cm ⁻¹ , which were attributed to OH groups. These data
374	indicated that small amount of BHET (or partially hydroxylated ones such as MHET) may be
375	still present in the depolymerised DET sample from runs 1 and 8 (in run 8 in the intensities of
376	such bands are smaller) even after precipitation in water. The absorption bands at 700-800
377	cm ⁻¹ and 1403 cm ⁻¹ in the FTIR spectrum of the product were assigned to the vibration of the
378	benzene ring, while the strong absorption peaks at 1712 cm ⁻¹ and 1270 cm ⁻¹ indicated the
379	presence of C=O and C-O, respectively.
380	
381	Figure 3
381 382	Figure 3
381 382 383	Figure 3 Characterization through ¹ H NMR spectroscopy
381 382 383 384	Figure 3 Characterization through ¹ H NMR spectroscopy The ¹ H NMR spectra for the products obtained at $RT = 0$ min and $RT = 45$ min
381 382 383 384 385	Figure 3 <i>Characterization through ¹H NMR spectroscopy</i> The ¹ H NMR spectra for the products obtained at RT = 0 min and RT = 45 min (period of time after the supercritical conditions were reached in runs 1 and 8, respectively,
 381 382 383 384 385 386 	Figure 3 <i>Characterization through ¹H NMR spectroscopy</i> The ¹ H NMR spectra for the products obtained at RT = 0 min and RT = 45 min (period of time after the supercritical conditions were reached in runs 1 and 8, respectively, see Table 1) are shown in Figures 4a and 4b, respectively. The samples were precipitated in
 381 382 383 384 385 386 387 	Figure 3 <i>Characterization through ¹H NMR spectroscopy</i> The ¹ H NMR spectra for the products obtained at RT = 0 min and RT = 45 min (period of time after the supercritical conditions were reached in runs 1 and 8, respectively, see Table 1) are shown in Figures 4a and 4b, respectively. The samples were precipitated in water and freeze dried prior ¹ H NMR analyses. Six signals were observed in the ¹ H NMR
 381 382 383 384 385 386 387 388 	Figure 3 <i>Characterization through ¹H NMR spectroscopy</i> The ¹ H NMR spectra for the products obtained at RT = 0 min and RT = 45 min (period of time after the supercritical conditions were reached in runs 1 and 8, respectively, see Table 1) are shown in Figures 4a and 4b, respectively. The samples were precipitated in water and freeze dried prior ¹ H NMR analyses. Six signals were observed in the ¹ H NMR spectra in Figure 4a (run 1) and five in Figure 4b (run 8). The signal at δ 8.1 ppm attributed to
 381 382 383 384 385 386 387 388 389 	Figure 3 <i>Characterization through ¹H NMR spectroscopy</i> The ¹ H NMR spectra for the products obtained at RT = 0 min and RT = 45 min (period of time after the supercritical conditions were reached in runs 1 and 8, respectively, see Table 1) are shown in Figures 4a and 4b, respectively. The samples were precipitated in water and freeze dried prior ¹ H NMR analyses. Six signals were observed in the ¹ H NMR spectra in Figure 4a (run 1) and five in Figure 4b (run 8). The signal at δ 8.1 ppm attributed to the four hydrogen atoms linked to the aromatic ring (labelled as number 1), were present in
 381 382 383 384 385 386 387 388 389 390 	Figure 3 Characterization through ¹ H NMR spectroscopy The ¹ H NMR spectra for the products obtained at RT = 0 min and RT = 45 min (period of time after the supercritical conditions were reached in runs 1 and 8, respectively, see Table 1) are shown in Figures 4a and 4b, respectively. The samples were precipitated in water and freeze dried prior ¹ H NMR analyses. Six signals were observed in the ¹ H NMR spectra in Figure 4a (run 1) and five in Figure 4b (run 8). The signal at δ 8.1 ppm attributed to the four hydrogen atoms linked to the aromatic ring (labelled as number 1), were present in both spectra. The signals at δ 4.3 and δ 1.39 ppm attributed to hydrogen atoms in the ethyl
 381 382 383 384 385 386 387 388 389 390 391 	Figure 3 Characterization through ¹ H NMR spectroscopy The ¹ H NMR spectra for the products obtained at RT = 0 min and RT = 45 min (period of time after the supercritical conditions were reached in runs 1 and 8, respectively, see Table 1) are shown in Figures 4a and 4b, respectively. The samples were precipitated in water and freeze dried prior ¹ H NMR analyses. Six signals were observed in the ¹ H NMR spectra in Figure 4a (run 1) and five in Figure 4b (run 8). The signal at δ 8.1 ppm attributed to the four hydrogen atoms linked to the aromatic ring (labelled as number 1), were present in both spectra. The signals at δ 4.3 and δ 1.39 ppm attributed to hydrogen atoms in the ethyl group of DET (labelled as 2 and 3, respectively) appeared in Figures 4a and 4b. The two
 381 382 383 384 385 386 387 388 389 390 391 392 	Figure 3 Characterization through ¹ H NMR spectroscopy The ¹ H NMR spectra for the products obtained at RT = 0 min and RT = 45 min (period of time after the supercritical conditions were reached in runs 1 and 8, respectively, see Table 1) are shown in Figures 4a and 4b, respectively. The samples were precipitated in water and freeze dried prior ¹ H NMR analyses. Six signals were observed in the ¹ H NMR spectra in Figure 4a (run 1) and five in Figure 4b (run 8). The signal at δ 8.1 ppm attributed to the four hydrogen atoms linked to the aromatic ring (labelled as number 1), were present in both spectra. The signals at δ 4.3 and δ 1.39 ppm attributed to hydrogen atoms in the ethyl group of DET (labelled as 2 and 3, respectively) appeared in Figures 4a and 4b. The two triplets (labelled as 4 and 5) attributed to the hydrogen atoms in the ethylene groups of

394	Hydrogen signals from the aromatic rings of DET and BHET were too close to be identified
395	separately. The signal that appeared at δ 4.9 ppm (labelled as 6) was attributed to the -CH ₂ -
396	CH ₂ - groups present in the oligomer structure, and the weak signal at δ 2.1 ppm in both
397	spectra was due to acetone (C ₃ H ₆ O) residues in the C ₃ D ₆ O solvent. The ¹ H NMR analyses
398	showed that there were other signals attributed to residues such as oligomers (dimers,
399	trimers), MHET and BHET in the sample from run 1 compared to the sample from run 8,
400	based on the decreased H5 and H6 spectral signals in Figure 4b. This matched the FTIR
401	analysis as discussed (Fig. 3). Figure 4c shows the ¹ H NMR spectra for the product obtained
402	in run 8 and the ¹ H NMR spectrum of standard DET. It can be seen that the two spectra are
403	quite similar, but some signals that appear in the ¹ H NMR spectrum of product from run 8 do
404	not in the ¹ H NMR of standard DET indicating that the hydroxylated products such as BHET
405	or MHET are still present in the product from run 8 even after separation by precipitation in
406	water.
407	
407 408	Figure 4
407 408 409 410	Figure 4 Thermal characterization through TGA and DSC
407 408 409 410 411	Figure 4 <i>Thermal characterization through TGA and DSC</i> The thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC)
407 408 409 410 411 412	Figure 4 <i>Thermal characterization through TGA and DSC</i> The thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) curves of raw PET and the main depolymerisation product of PET from run 8 (DET) are
407 408 409 410 411 412 413	Figure 4 <i>Thermal characterization through TGA and DSC</i> The thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) curves of raw PET and the main depolymerisation product of PET from run 8 (DET) are shown in Figures 5a and 5b, respectively, in addition to the curves for the standard DET. The
407 408 409 410 411 412 413 414	Figure 4 <i>Thermal characterization through TGA and DSC</i> The thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) curves of raw PET and the main depolymerisation product of PET from run 8 (DET) are shown in Figures 5a and 5b, respectively, in addition to the curves for the standard DET. The TGA curve of raw PET showed significant weight loss at 397 °C which was attributed to
407 408 409 410 411 412 413 414 415	Figure 4 <i>Thermal characterization through TGA and DSC</i> The thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) curves of raw PET and the main depolymerisation product of PET from run 8 (DET) are shown in Figures 5a and 5b, respectively, in addition to the curves for the standard DET. The TGA curve of raw PET showed significant weight loss at 397 °C which was attributed to thermal decomposition of this material. ³⁹ The TGA curve for the main depolymerisation
407 408 409 410 411 412 413 414 415 416	Figure 4 <i>Thermal characterization through TGA and DSC</i> The thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) curves of raw PET and the main depolymerisation product of PET from run 8 (DET) are shown in Figures 5a and 5b, respectively, in addition to the curves for the standard DET. The TGA curve of raw PET showed significant weight loss at 397 °C which was attributed to thermal decomposition of this material. ³⁹ The TGA curve for the main depolymerisation product obtained from run 8, namely DET, exhibited a lower onset of temperature
407 408 409 410 411 412 413 414 415 416 417	Figure 4 <i>Thermal characterization through TGA and DSC</i> The thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) curves of raw PET and the main depolymerisation product of PET from run 8 (DET) are shown in Figures 5a and 5b, respectively, in addition to the curves for the standard DET. The TGA curve of raw PET showed significant weight loss at 397 °C which was attributed to thermal decomposition of this material. ³⁹ The TGA curve for the main depolymerisation product obtained from run 8, namely DET, exhibited a lower onset of temperature decomposition at 119 °C and was quite similar to the TGA curve of the standard DET.
407 408 409 410 411 412 413 414 415 416 417 418	Figure 4 Thermal characterization through TGA and DSC The thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) curves of raw PET and the main depolymerisation product of PET from run 8 (DET) are shown in Figures 5a and 5b, respectively, in addition to the curves for the standard DET. The TGA curve of raw PET showed significant weight loss at 397 °C which was attributed to thermal decomposition of this material. ³⁹ The TGA curve for the main depolymerisation product obtained from run 8, namely DET, exhibited a lower onset of temperature decomposition at 119 °C and was quite similar to the TGA curve of the standard DET. The DSC curve of raw PET showed an endothermic peak at ~235 °C related to the

PET depolymerisation in supercritical ethanol catalysed by [Bmim][BF4], done by C.S. Nunes, M.J. V da Silva, D.C. Silva, A.R. Freitas, F.A. Rosa, A.F. Rubira and E.C. Muniz, *submitted to RSC Advances*

420	The intensity of peak attributed to crystallization is sensitive to ageing ⁴⁰ and to the thermal					
421	history ³² of the PET sample. DSC of the product obtained from run 8 (DET) exhibited only					
422	an endothermic event that was attributed to the melting process. Comparing DSC and TGA					
423	curves of DET from run 8 to DSC and TGA curves of the standard DET suggested that the					
424	thermal properties of the product obtained from run 8 was quite similar to that of the standard					
425	DET. The minor differences in the DSC and TGA curves were attributed to the small fraction					
426	of BHET and MHET that are present in the sample as discussed earlier.					
427						
428	Figure 5					
429						
430	Characterization of morphology					
431	Figure 6 shows micrographs by SEM of DET from run 8 (Fig. 6a-b) and standard					
432	DET (Fig. 6c). Fig. 6a clearly shows that the DET from run 8 has a rod shape. The enlarged					
433	image presented in Fig. 6b indicates that such product has irregular morphology with folding					
434	and porous structure. Compared to the smooth surface of the PET ⁴¹ , the morphology of					
435	product from run 8 is completely different. The morphology of standard DET (Fig. 6c) is					
436	different of those presented in Figs. 6a-b but the morphology is also irregular with folding					
437	and porous structure as observed for DET from run 8.					
438						
439	Figure 6					
440						
441	Conclusions					
442	The depolymerisation of PET under supercritical ethanol (scEtOH) in presence of the					
443	ionic liquid [Bmim][BF ₄] was conducted, primarily yielding mainly diethyl terephthalate					
444	(DET) for longer reaction times (45 min). Physical and chemical characterization of the main					

PET depolymerisation in supercritical ethanol catalysed by [Bmim][BF4], done by C.S. Nunes, M.J. V da Silva, D.C. Silva, A.R. Freitas, F.A. Rosa, A.F. Rubira and E.C. Muniz, *submitted to RSC Advances*

445	products were performed by FTIR, ¹ H NMR, HPLC, TGA/DSC and SEM. Compared to
446	results obtained for PET depolymerisation under scEtOH but in absence of an ionic liquid,
447	the addition of [Bmim][BF ₄] in the reaction vessel resulted in a faster reaction rate and the
448	yield of DET approached 100 wt-%. The use of ionic liquids, in addition to supercritical
449	ethanol, represented an extremely promising combination for PET depolymerisation in a
450	sustained way. Further studies using this system addressing the reuse of [Bmim][BF ₄],
451	understanding the effects of water and whether PET particle size has an influence on DET
452	yield during depolymerisation under scEtOH is going on in our lab.
453	
454	Acknowledgements
455	The authors would like to thank CAPES/Brazil, for the doctoral fellowship (CNS) and
456	CNPq/Brazil for financial support (Grant number 309005/2009-4).

457

PET depolymerisation in supercritical ethanol catalysed by [Bmim][BF4], done by C.S. Nunes, M.J. V da Silva, D.C. Silva, A.R. Freitas, F.A. Rosa, A.F. Rubira and E.C. Muniz, *submitted to RSC Advances*

459 **References**

- 1. T. Yoshioka, T. Sato and A. Okuwaki, *Journal of Applied Polymer Science*, 1994, **52**,
- 461 1353-1355.
- 462 2. M. Z. S.D. Mancini, *Polímeros*, 2002, **12**, 34-40.
- 463 3. M. E. Viana, A. Riul, G. M. Carvalho, A. F. Rubira and E. C. Muniz, *Chemical Engineering Journal*, 2011, **173**, 210-219.
- 465 4. C. M. Gordon, *Applied Catalysis a-General*, 2001, **222**, 101-117.
- 466 5. G. P. Karayannidis, D. S. Achilias, I. D. Sideridou and D. N. Bikiaris, *European*467 *Polymer Journal*, 2005, 41, 201-210.
- 468 6. D. Paszun and T. Spychaj, *Industrial & Engineering Chemistry Research*, 1997, 36,
 469 1373-1383.
- 470 7. US Pat., 3321510, 1967.
- 471 8. *Eur Pat.*, 662446, 1995.
- 472 9. *PL Pat.*, 126009, 1985.
- 473 10. J. Y. Chen, C. F. Ou, Y. C. Hu and C. C. Lin, *Journal of Applied Polymer Science*,
 474 1991, 42, 1501-1507.
- 475 11. S. Baliga and W. T. Wong, *Journal of Polymer Science Part a-Polymer Chemistry*,
 476 1989, 27, 2071-2082.
- 477 12. M. Ghaemy and K. Mossaddegh, *Polymer Degradation and Stability*, 2005, 90, 570478 576.
- 479 13. C. Y. Kao, W. H. Cheng and B. Z. Wan, *Journal of Applied Polymer Science*, 1998,
 480 70, 1939-1945.
- 481 14. A. Krzan, Journal of Applied Polymer Science, 1998, 69, 1115-1118.
- 482 15. Y. Kishimoto, T. Kajihara and S. Kato, *Polymer Bulletin*, 1999, **42**, 295-300.

- 483 16. Hutchenson, In Supercritical Fluid Technology in Material Science and Engineering,
- 484 New York, 2002.
- 485 17. M. Goto, Journal of Supercritical Fluids, 2009, 47, 500-507.
- 486 18. A. Kamimura, K. Kaiso, S. Suzuki, Y. Oishi, Y. Ohara, T. Sugimoto, K. Kashiwagi
 487 and M. Yoshimoto, *Green Chemistry*, 2011, 13, 2055-2061.
- 488 19. C. Gutierrez, M. T. Garcia, I. Gracia, A. de Lucas and J. F. Rodriguez, *Journal of*489 *Material Cycles and Waste Management*, 2012, 14, 308-316.
- 490 20. Y. Yang, Y. J. Lu, H. W. Xiang, Y. Y. Xu and Y. W. Li, *Polymer Degradation and*491 *Stability*, 2002, **75**, 185-191.
- 492 21. T. Sako, T. Sugeta, K. Otake, N. Nakazawa, M. Sato, K. Namiki and M. Tsugumi,
 493 *Journal of Chemical Engineering of Japan*, 1997, **30**, 342-346.
- 494 22. S. L. Favaro, A. R. Freitas, T. A. Ganzerli, A. G. B. Pereira, A. L. Cardozo, O. Baron,
- E. C. Muniz, E. M. Girotto and E. Radovanovic, *Journal of Supercritical Fluids*,
 2013, 75, 138-143.
- 497 23. R. E. N. de Castro, G. J. Vidotti, A. F. Rubira and E. C. Muniz, *Journal of Applied*498 *Polymer Science*, 2006, **101**, 2009-2016.
- 499 24. K. Schroder, K. Matyjaszewski, K. J. T. Noonan and R. T. Mathers, *Green Chemistry*,
 2014.
- 501 25. P. Pollet, E. A. Davey, E. E. Urena-Benavides, C. A. Eckert and C. L. Liotta, *Green Chemistry*, 2014.
- 503 26. M. Kosmulski, J. Gustafsson and J. B. Rosenholm, *Thermochimica Acta*, 2004, 412,
 504 47-53.
- 505 27. M. Galinski, A. Lewandowski and I. Stepniak, *Electrochimica Acta*, 2006, **51**, 5567506 5580.

- 507 28. H. Hagiwara, Y. Sugawara, K. Isobe, T. Hoshi and T. Suzuki, Organic Letters, 2004,
- **6**, 2325-2328.
- 509 29. H. Wang, Z. Li, Y. Liu, X. Zhang and S. Zhang, *Green Chemistry*, 2009, 11, 1568510 1575.
- 511 30. R. Morland, American Chemical Society Division of Industrial and Engineering
 512 Chemistry, San Diego, 2001.
- 513 31. C. S. C. J. Dupont, P. A. Z. Suarez, R. F. de souza, *Org. Synt. Coll.*, 2004, 2002, 10,
 514 79, 184, 236.
- 515 32. W. Dong, J. Zhao, C. X. Li, M. L. Gu, D. L. Zhao and Q. R. Fan, *Polymer Bulletin*,
 516 2002, 49, 197-203.
- 517 33. F. Liu, L. Li, S. Yu, Z. Lv and X. Ge, *Journal of Hazardous Materials*, 2011, 189,
 518 249-254.
- 519 34. G. Garcia-Miaja, J. Troncoso and L. Romani, *Fluid Phase Equilibria*, 2008, 274, 59520 67.
- 521 35. M. A. P. Martins, C. P. Frizzo, D. N. Moreira, N. Zanatta and H. G. Bonacorso,
 522 *Chemical Reviews*, 2008, **108**, 2015-2050.
- 523 36. Z. Y. Duan, Y. L. Gu and Y. Q. Deng, *Journal of Molecular Catalysis a-Chemical*,
 524 2006, 246, 70-75.
- 525 37. F. Liu, Z. Li, S. Yu, X. Cui and X. Ge, *Journal of Hazardous Materials*, 2010, 174,
 526 872-875.
- 527 38. X. Zhou, X. Lu, Q. Wang, M. Zhu and Z. Li, *Pure and Applied Chemistry*, 2012, 84,
 528 789-801.
- 39. N. D. Khupse and A. Kumar, *Indian Journal of Chemistry Section a-Inorganic Bio- Inorganic Physical Theoretical & Analytical Chemistry*, 2010, 49, 635-648.

- 40. E. A. McGonigle, J. H. Daly, S. Gallagher, S. D. Jenkins, J. J. Liggat, I. Olsson and R.
- 532 A. Pethrick, *Polymer*, 1999, **40**, 4977-4982.
- 533 41. H. Wang, Y. Q. Liu, Z. X. Li, X. P. Zhang, S. J. Zhang and Y. Q. Zhang, European
- 534 *Polymer Journal*, 2009, **45**, 1535-1544.
- 535
- 536
- 537

RSC Advances Accepted Manuscript

PET depolymerisation in supercritical ethanol catalysed by [Bmim][BF4], done by C.S. Nunes, M.J. V da Silva, D.C. Silva, A.R. Freitas, F.A. Rosa, A.F. Rubira and E.C. Muniz, *submitted to RSC Advances*

538 Figure captions

539

- Figure 1 Response surface for W_{PET} and RT inputs after applying the linear model to the data collected from the eight runs, as described in Table 1.
- **Figure 2** HPLC chromatograms of products obtained after PET depolymerisation under
- scEtOH from runs 1 and 8; conditions described in Table 1.
- 544 Figure 3 FTIR spectra of raw PET, DET (the main product of the depolymerisation
- reaction, runs 1 and 8) and standard DET.
- **Figure 4** ¹H NMR spectra of: (a) product from run 1; (b) product from run 8; and (c) ¹H
- 547 NMR spectra of DET from run 8 and standard DET.
- 548 Figure 5 TGA (a); and DSC (b) curves of: raw PET, main product obtained from run 8, and
- the standard DET.
- **Figure 6** SEM images of: DET from run 8 (a,b); and standard DET.

551

- 552 Scheme caption
- **Scheme 1** Proposed mechanism for PET depolymerisation under scEtOH in the presence of
- the ionic liquid [Bmim][BF₄]. Adapted from ref.³³

PET depolymerisation in supercritical ethanol catalysed by [Bmim][BF4], done by C.S. Nunes, M.J. V da Silva, D.C. Silva, A.R. Freitas, F.A. Rosa, A.F. Rubira and E.C. Muniz, submitted to RSC Advances

Table 1 - Experimental design based on a 2^3 factorial (RT, VILs and W_{PET} as inputs) and

557 Yield (wt-%) as a response.

Runs	Inputs			Vield (wt-%)
Kulls	RT	VILs	W _{PET}	I icid (wt-70)
1	-	-	-	34.6
2	+	-	-	64.0
3	-	+	-	13.8
4	+	+	-	91.6
5	-	-	+	66.0
6	+	-	+	69.2
7	-	+	+	71.3
8	+	+	+	98.0

558

559

560

561

562

563

PET depolymerisation in supercritical ethanol catalysed by [Bmim][BF4], done by C.S. Nunes, M.J. V da Silva, D.C. Silva, A.R. Freitas, F.A. Rosa, A.F. Rubira and E.C. Muniz, *submitted to RSC Advances*

Source of variation	Sum of squares	Degree of freedom	Mean square	F value	P value
Model	5,214.30	5	1,042.86	12.22	0.0774
A: RT	2,349.55	1	2,349.55	27.53	0.0345
B: LIs	209.10	1	209.10	2.45	0.2580
C: W _{PET}	1,262.53	1	1,262.53	14.80	0.0614
A B	646.20	1	646.20	7.57	0.1106
A C	746.91	1	746.91	8.75	0.0978
Residual	170.66	2	85.33		
Total Correl.	5,384.96	7			

Table 2 - Analysis of Variance (ANOVA) for 2^3 factorial design.

Figure 1 - Response surface for WPET and RT inputs after applying the linear model to the data collected from eight runs, as described in Table 1. 312x232mm (96 x 96 DPI)

Figure 2 - HPLC chromatograms of products obtained after PET depolymerisation under scEtOH from runs 1 and 8; conditions described in Table 1. 99x100mm (300 x 300 DPI)

Figure 3 - FTIR spectra of raw PET, DET (the main product of the depolymerisation reaction, runs 1 and 8) and standard DET. 99x80mm (300 x 300 DPI)

Figure 4a - 1H NMR spectra of the main products obtained for: (a) 0 min reaction time, during the depolymerisation of PET under scEtOH. 99x84mm (300 x 300 DPI)

Figure 4b - 1H NMR spectrum of product from run 8. 99x70mm (300 x 300 DPI)

Figure 5a - TGA curves of raw PET, main product obtained from run 8, and the standard DET. 109x79mm (300 x 300 DPI)

Figure 5b - DSC curves of: raw PET, main product obtained from run 8, and the standard DET. 99x65mm (300 x 300 DPI)

Figure 6a - SEM image of DET from run 8. Mag 40x 148x100mm (218 x 226 DPI)

Figure 6b - SEM image of DET from run 8. Mag 1000x 149x101mm (218 x 226 DPI)

Figure 6c - SEM image of standard DET. 338x233mm (96 x 96 DPI)

Scheme 1 - Proposed mechanism for PET depolymerisation under scEtOH in the presence of the ionic liquid [Bmim][BF4]. Adapted from ref.33 99x103mm (300 x 300 DPI)

Graphical Abstract - The depolymerisation of PET from wast bottles, under supercritical ethanol catalysed by [Bmim][BF4] 203x114mm (96 x 96 DPI) PET depolymerisation in supercritical ethanol catalysed by [Bmim][BF₄].

Table of contents

Poly(ethylene terephthalate) was depolymerised under supercritical ethanol, 98 wt-% of diethylterephthalate was obtained after 45 min, by adding [Bmim][BF₄] as catalyst.