This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Brønsted Acid-Catalyzed Synthesis of Carbazoles from 2-Substituted Indoles

Qingjiang Li, Xiao-Shui Peng, Henry N. C. Wong

A simple and efficient method for the synthesis of disubstituted carbazoles has been developed. In this approach, carbazoles are synthesized from o-haloanilines and terminal alkynes using a two-step strategy, namely, Sonogashira coupling and an intramolecular cyclization to provide indoles, which are followed by a p-TSA•H₂O-catalyzed carbazole formation.

Tricyclic carbazole nucleus is one of the most important heterocycles since it is not only found in many natural products and bioactive molecules but also broadly served as building blocks for potential electroluminescent materials due to its special thermal and electrical properties, as well as host materials for triplet emitters in organic light-emitting diodes. Accordingly, a variety of well-documented traditional and modern methods have been developed for the construction of carbazoles and their derivatives. These synthetic methods are mainly classified into two broad categories: one is the formation of the pyrrole core from biphynyls, and the other is the formation of a benzene ring from indoles. However, these literature methods have suffered from some drawbacks such as harsh reaction conditions, low yields, and poor atom economy. Therefore it is still of interest to uncover new synthetic methods for the realization of these important molecules.

Synthetic pathways towards carbazoles from indoles have drawn a great deal of attention because indole substances abundantly exist. For example, Ma and coworkers reported a Au-catalyzed cyclization of 1-(indol-2-yl)-3-alkyn-1-ols for the synthesis of carbazoles (Scheme 1a). Cyclization reaction of 1-(indol-2-yl)-2,3-allenols involving Pt, Au, and Pd-catalysis were also achieved by Ma and Aleaide, respectively (Scheme 1b). Knöker also reported the many application of iron-mediated and palladium-catalysed approaches for the synthesis of carbazole derivatives. In 1995, Mahboobi reported a carbazoles synthesis from 1-(N-Benzylindol-2-yl)-3-(1,3-dioxolan-2-yl)-propan-1-ol in the presence of HCl, but only one example was recorded. In this paper, we report herein our preliminary results on the synthesis of disubstituted carbazoles using a two-step procedure from o-haloanilines and terminal alkynes (Scheme 1c).

Scheme 1. Carbazoles synthesis from indoles.

In order to introduce different substituents on the indole ring, the starting materials, 1a-j, are prepared mainly through a Sonogashira coupling reaction and then with an intramolecular cyclization, starting from o-haloanilines and terminal alkynes. We initiated our studies by examining different protecting groups of 3 with terminal alkyne 4a under classical Sonogashira conditions. When R was H, Me, or Ac, indole products were not given, but only the direct Sonogashira coupling product 5 was generated. However, a Ts
protecting group was found to give the desired indole product 1a with an acceptable yield of 67% (Equation 1).

Equation 1. Protecting group's effect on 3 to form indole 1.

After determining the optimal protecting group, we turned our attention to the optimization of the carbazole formation reaction conditions. 5,5-Dimethoxy-2-(1-tosyl-1H-indol-2-yl)pentan-2-ol 1a was employed as a model substrate. A variety of reaction conditions (catalyst, temperature) were examined and some of the representative results are shown in Table 1. It was found that p-TSA•H2O was more effective than the other acids, such as Amberlyst 15, albeit capable of promoting the reaction but with lower yield (entries 1, 2). When the reaction was conducted at a higher temperature (40 °C), it rapidly gave the carbazole product in 95% yield within 1.5 h (entry 3). Decreasing the amount of catalyst to 20 mol% and prolonging the reaction time to 3 h led to the best result (entry 4).

Table 1. Reaction optimization.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst (eq.)</th>
<th>Temperature (°C)</th>
<th>Time (h)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Amberlyst 15 (2)</td>
<td>40</td>
<td>14</td>
<td>69</td>
</tr>
<tr>
<td>2</td>
<td>p-TSA•H2O (2)</td>
<td>23</td>
<td>48</td>
<td>93</td>
</tr>
<tr>
<td>3</td>
<td>p-TSA•H2O (2)</td>
<td>40</td>
<td>1.5</td>
<td>95</td>
</tr>
<tr>
<td>4</td>
<td>p-TSA•H2O (0.2)</td>
<td>40</td>
<td>3</td>
<td>96</td>
</tr>
</tbody>
</table>

* Reaction conditions: 1a (0.2 mmol), catalyst, in ClCH2CH2Cl (2 mL). Isolated yield.

With the optimized conditions in hand, we next investigated the substrate scope of this reaction. As illustrated in Scheme 2, the transformation was found to be very general. Various substituted indoles can successfully give the corresponding carbazole derivatives (2a-2h). However, electron-withdrawing groups (F, NO2, and CF3) on indole slowed down the reaction, and needed higher temperature (60 °C), but products were still isolated in moderate to good yields (56%-85%) (2f-2h). Moreover, R2 could also be an aryl group (2i), or H (2j).

A plausible mechanism for the annulation of 5,5-dimethoxy-2-(1-tosyl-1H-indol-2-yl)pentan-2-ol 1a catalyzed by p-TSA•H2O is presented in Scheme 3. The intermediate acetal 6 is formed through the elimination of MeOH from indole 1a in the presence of p-TSA•H2O, which was also isolated as diastereoisomers in a nearly 1:1 ratio. Then successive elimination of water/MeOH from intermediates 7 and/or 8 could give carbazole product 2a.13

Scheme 2. Sonogashira coupling for indole synthesis and p-TSA•H2O-catalyzed carbazole synthesis.

<table>
<thead>
<tr>
<th>entry</th>
<th>3</th>
<th>4</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I</td>
<td>NHTs</td>
<td>3a</td>
<td>1a, 67%</td>
</tr>
<tr>
<td>2</td>
<td>Me</td>
<td>NHTs</td>
<td>3b</td>
<td>1b, 75%</td>
</tr>
<tr>
<td>3</td>
<td>Br</td>
<td>NHTs</td>
<td>3c</td>
<td>1c, 66%</td>
</tr>
<tr>
<td>4</td>
<td>MeO</td>
<td>NHTs</td>
<td>3d</td>
<td>1d, 49%</td>
</tr>
<tr>
<td>5</td>
<td>Br</td>
<td>NHTs</td>
<td>3e</td>
<td>1e, 64%</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>Br</td>
<td>3f</td>
<td>1f, 92%</td>
</tr>
<tr>
<td>7</td>
<td>O2N</td>
<td>Br</td>
<td>3g</td>
<td>1g, 48%</td>
</tr>
<tr>
<td>8</td>
<td>F3C</td>
<td>Br</td>
<td>3h</td>
<td>1h, 69%</td>
</tr>
<tr>
<td>9</td>
<td>3b</td>
<td>4b</td>
<td>1i, 77%</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3b</td>
<td>4c</td>
<td>1j, 62%</td>
<td></td>
</tr>
</tbody>
</table>

* Indole synthesis conditions: 3 (0.8 mmol), 4 (0.88 mmol), PdCl2(PPh3)2 (0.04 mmol), CuI (0.04 mmol), N,N-diisopropylethylamine (3.2 mmol), DMF (2 mL), at 60 °C for 12 h,
isolated yield. Carbazole synthesis conditions: 1 (0.2 mmol), p-TSA•H₂O (0.04 mmol), CICH₂CH₂Cl (2 mL), at 40 °C for 3 h, isolated yield. 8 At 60 °C.

Scheme 3. A Plausible Mechanism.

Conclusions

In summary, we have developed a simple and efficient two-step approach (Sonogashira/intramolecular cyclization for indole synthesis and p-TSA•H₂O-catalyzed carbazole synthesis) for the synthesis of diversified substituted carbazoles from ortho-haloanilines 3 and terminal alkynes 4 in good isolated yields under mild conditions. Because of the ready availability of the starting materials and the potential of the products, this method should be useful in organic synthesis and medicinal chemistry. Further studies on the synthetic applications of this reaction are in progress in our laboratory.

Acknowledgements

This work was supported by the National Natural Science Foundation of China/Research Grants Council Joint Research Scheme (N_CUHK4511/13), the Research Grants Council of the Hong Kong SAR, China (GRF Project 403012) and a grant to the State Key Laboratory of Synthetic Chemistry from the Innovation and Technology Commission, and The Chinese Academy of Sciences–Croucher Foundation Funding Scheme for Joint Laboratories, and the National Natural Science Foundation of China (NSFC No. 21272199). The Shenzhen Science and Technology Innovation Committee for the Municipal Key Laboratory Scheme (ZDSY20130401150914965), and the Shenzhen Basic Research Program (JCYJ20120619151721025) are also gratefully acknowledged.

Notes and references

This paper is dedicated to Professor Ei-ichi Negishi on the occasion of his 80th birthday.

COMMUNICATION

A simple and efficient approach for the synthesis of disubstituted carbazoles has been developed from o-haloanilines and terminal alkynes using a two-step strategy, namely, Sonogashira coupling and an intramolecular cyclization.

\[
\text{Ar}^1 \text{NH}^+ \text{Ts}^+ + R_2^1 R_2^2 \xrightarrow{\text{Sonogashira coupling}} \text{Ar}^1 \text{NH}^+ \text{Ts}^+ + R_2^1 R_2^2 \xrightarrow{\text{intramolecular cyclization}} \text{Carbazole}
\]

10 examples, 56-98% yields

\[X = I, Br\]