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N-Sulfonyl cyclohexadienimines generated from an 
iodine(III)-induced oxidative dearomatization of N-sulfonyl 
protected para-substituted anilines are ready to undergo an 
imino exchange reaction with another aniline, which provides 
an alternative way to access N-acyl diarylamines and 10 

phenothiazines. 

As a result of the inherent reactivity stored within the aromatic 
systems, dearomatization strategy has been intensively explored 
and utilized as a powerful tool in organic synthesis.1 The 
oxidative dearomatization of para-substituted anilines forms 15 

cyclohexadienimines, and these dearomatized products have 
proved to be highly reactive intermediates for various 1,4-
additions.2,3 However, some of our recent studies revealed that a 
1,2-imino exchange reaction of N-sulfonyl cyclohexadienimines 
might be preferred over the 1,4-addition when another aniline 20 

was used as nucleophile. This reaction offers strategic 
opportunities for preparing a variety of diarylamine derivatives4 
from two anilines. Herein, we wish to present our success in 
applying this strategy in the synthesis of N-acyl diarylamines and 
phenothiazines.  25 

We conceived that the aromatization of the imino exchanged 
product (N-aryl cyclohexadienimine) might perform via a single-
electron-transfer way triggered by a free radical. As shown in 
Scheme 1, the addition of an in situ generated aldehydic radical5 
to the nitrogen-carbon double bond of N-aryl cyclohexadienimine 30 

affords a radical intermediate A.6 After an isomerisation and a β-
scission, N-acyl diarylamine is formed.  

We initiated our investigation on the reaction of N-aryl 
cyclohexadienimine 1 with 4-(trifluoromethyl)benzaldehyde 2 
and TBHP. Among the reaction solvents and temperatures 35 

examined, ethyl acetate proved to be the best reaction media at 80 
ºC. The best ratio of N-aryl cyclohexadienimine, 4-
methoxybenzaldehyde, and TBHP was 1:3:1, leading to N-acyl 
diarylamine 3 in 89% yield. The structure of compound 3 was 
confirmed by its single-crystal diffraction analysis (Scheme 2).7  40 

With the optimized reaction conditions established, the 
synthesis of N-acyl diarylamines from anilines and aldehydes was 
investigated (Table 1). The PhI(OAc)2-induced oxidative 
dearomatization and the Bi(OTf)3-catalyzed 1,2-imino exchange 
reaction were conducted in methanol in one pot. After a simple 45 

workup process, the crude mixture was treated with aldehydes 
and TBHP. For most cases, the reaction proceeded smoothly and 
afforded N-acyl diarylamines in moderate to good yields. With 
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Scheme 1 Synthesis of N-acyl diarylamines using dearomatization 50 
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Scheme 2 Formation of N-acyl diarylamine 3 and its X-ray diffraction 
structure 55 

respect to aldehydes, arylaldehydes bearing a range of 
substituents were suitable reaction partners. The reaction of 
butyraldehyde did not give rise to the desired product. A variety 
of anilines were suitable substrates for this three-step synthesis. 
The imino exchange reaction with 4-amino-pyridine was complex. 60 

Interestingly, under the standard conditions, an unexpected 
product, phenothiazine 23, was isolated in 39% yield from the  
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Table 1 Synthesis of N-acyl diarylamines from anilines and aldehydes 

1) (1.1 equiv) PhI(OAc)2, MeOH, 0 oC, 5 min, 
    then (1.1 equiv) Ar2NH2, (0.1 equiv) Bi(OTf)3, 25 oC, 12-36 h

2) (3 equiv) R4CHO, (1 equiv) TBHP, EtOAc, 80 oC, 24-48 h Ar1 N
Ar2

O R4

Ar1 N
Ts

H

 
Entry Ar1 Ar2 R4 Product (%)a

1 4-MeC6H4 4-MeC6H4 4-CF3C6H4 3 (82) 
2 4-MeC6H4 4-MeC6H4 4-FC6H4 4 (80) 
3 4-MeC6H4 4-MeC6H4 4-CNC6H4 5 (83) 
4 4-MeC6H4 4-MeC6H4 4-NO2C6H4 6 (82) 
5 4-MeC6H4 4-MeC6H4 4-ClC6H4 7 (86) 
6 4-MeC6H4 4-MeC6H4 4-MeOC6H4 8 (79) 
7 4-MeC6H4 4-MeC6H4 C6H5 9 (85) 
8 4-MeC6H4 4-MeC6H4 nPr 10 (0) 
9 4-EtC6H4 4-MeC6H4 4-MeOC6H4 11 (75) 
10 4-nBuC6H4 4-MeC6H4 4-MeOC6H4 12 (80) 
11 4-iPrC6H4 4-MeC6H4 4-MeOC6H4 13 (76) 
12 4-MeC6H4 C6H5 4-MeOC6H4 14 (66) 
13 4-MeC6H4 3,5-(Me)2C6H3 4-MeOC6H4 15 (62) 
14 4-MeC6H4 3,4-(Me)2C6H3 4-MeOC6H4 16 (77) 
15 4-MeC6H4 4-MeOC6H4 4-MeOC6H4 17 (81) 
16 4-MeC6H4 4-ClC6H4 4-MeOC6H4 18 (85) 
17 4-MeC6H4 4-FC6H4 4-MeOC6H4 19 (76) 
18 4-MeC6H4 4-pyridyl 4-MeOC6H4 20 (0) 

 

aReported yields are of the isolated products. 
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Scheme 3 Formation of phenothiazine 23 

imino exchange reaction with 2-aminobenzenethiol. It is 5 

proposed that this product was formed from an intramolecular 
trapping of the imino exchange intermediate by the thiol group 
(Scheme 3). Phenothiazines constitute a valuable class of 
compounds.8 They are widely used as analgesic,9 
antiinflammatory,10 antiplatelet,11 and multiple drug resistance 10 

reverting agents.12 Because of the importance of these 
compounds, recently, the groups of Jørgensen,13 Ma,14 and Zeng15 
have developed transition-metal catalyzed coupling reactions to 
prepare phenothiazines from a variety of aryl halides.  

To develop an alternative way to access phenothiazines from 15 

anilines, various metal salts were examined to promote the 
formation of phenothiazine 23 in a one-pot reaction (Table 2). 
Copper(I) iodide proved to be the best Lewis acid to promote the 
imino exchange and the intramolecular trapping reaction. In the 
presence of 0.1 equiv of copper(I) iodide, the reaction at reflux 20 

gave rise to phenothiazines 23 in 71% yield (Table 2, entry 15). 
In the absence of the added catalysts, the one-pot reaction still 
produced compound 23 in 37% yield. But the formation of 
compound 23 was not observed when N-Ts cyclohexadienimine 
21 was used in the absence of a catalyst. It is supposed that the 25 

formation of phenothiazine might also be promoted by acetic acid 
metabolized from PhI(OAc)2 in dearomatization reaction. Under 

Table 2 Evaluation of conditions for the formation of phenothiazine 

NH2

N
H

SMe
SH

NHTs

Me

MeOH, 0 oC, 5 min

(1.1 equiv) PhI(OAc)2
(1.5 equiv)

(0.1 equiv) catalyst, Temp.

Entry Catalyst Temperature (°C) 23a (%) 
1 Bi(OTf)3 (0.1 equiv) 0−25 37 
2 Pd(OAc)2 (0.1 equiv) 0−25 28 
3 AgOTf (0.1 equiv) 0−25 26 
4 Sc(OTf)3 (0.1 equiv) 0−25 27 
5 FeCl3 (0.1 equiv) 0−25 25 
6 Yb(OTf)3 (0.1 equiv) 0−25 25 
7 Zn(OTf)2 (0.1 equiv) 0−25 34 
8 Cu(OTf)2 (0.1 equiv) 0−25 43 
9 Cu(OAc)2 (0.1 equiv) 0−25 33 
10 CuCl2 (0.1 equiv) 0−25 36 
11 CuBr2 (0.1 equiv) 0−25 37 
12 CuCl (0.1 equiv) 0−25 41 
13 CuBr (0.1 equiv) 0−25 42 
14 CuI (0.1 equiv) 0−25 48 
15 CuI (0.1 equiv) 0−65 71 
16 CuI (0.05 equiv) 0−65 57 
17 CuI (0.2 equiv) 0−65 67 

 

aReported yields are of the isolated product. 
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Scheme 4 Synthesis of phenothiazines from 2-aminobenzenethiols and 
anilines  
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Scheme 5 Formation of phenothiazin-3-amine 

the optimized conditions, a range of para-substituted anilines 35 

reacted with 2-aminobenzenethiols to afford the corresponding 
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phenothiazines in moderate to good yields (Scheme 4). When 
3,4-dimethylbenzenamine was used, the attack by the thiol group 
at the less hindered position was preferred. 

It is noteworthy that when N-Ts protected 4-aminophenol 34 
was used as substrate, the reaction afforded phenothiazin-3-amine 5 

35 as product. N-Tosyl quinine monosulfonimide 36 isolated 
from the corresponding oxidative dearomatization reaction could 
be converted to compound 35 (Scheme 5).  

In conclusion, we have developed an alternative method to 
prepare N-acyl diarylamines and phenothiazines from anilines 10 

using a dearomatization strategy. The key step in this strategy is 
the imino exchange reaction. Work is currently ongoing to 
explore its reaction mechanism and possible synthetic 
applications, and these results will be reported in due course. 
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