ORGANIC CHEMISTRY

FRONTIERS

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard **Terms & Conditions** and the **Ethical guidelines** still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

http://rsc

http://rsc.li/frontiers-organic

Organic Chemistry Frontiers

RSCPublishing

Accepted Manusc

ARTICLE

Cite this: DOI: 10.1039/x0xx00000x

Received 00th January 2012, Accepted 00th January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/

Regioselective direct ortho C-acylation of phenol and naphthol derivatives catalyzed by modified ZnCl₂ on Al₂O₃ as a catalyst under solvent-free and microwave conditions

Hossein Naeimi,^{a,*} Atefeh Amini^a and Mohsen Moradian^b

In this study, we attempt to present a new and practical method for the synthesis of some ortho *c*-acylated mono- and di-hydroxyaromatic moieties. A Friedel–Crafts reaction of phenolic substrates was carried out in the presence of zinc chloride supported on the alumina as a catalyst and carboxylic acids as acylated agents that lead to a regioselective ortho *c*-acylated compounds with respect to the phenolic hydroxyl group. The reaction proceeds smoothly under microwave irradiation with a wide range of starting materials. This reaction gives access to a variety of acylated compounds in high yield and in the absence of solvent by using of the more active and stable solid catalyst. Also, this reaction has occurred with highly regioselectivity at ortho position and can be compatible with other reported methods. The obtained hydroxyaryl ketones were characterized and confirmed by physical and spectroscopic data.

Introduction

Acylation reactions are largely employed in fine chemical industry to produce a variety of synthetic fragrances and pharmaceuticals ¹. Ortho-hydroxyacetophenone (o-HAP) is a key intermediate for producing 4-hydroxycoumarin and warfarin, which are both used as anticoagulant drugs ², and it has been also employed for obtaining flavonones ^{3, 4}. Phenolic drugs containing acyl groups are attractive targets for prodrug design due to their extensive first pass metabolism ⁵ (Fig. 1).

^a Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, 87317, I.R. Iran; Tel: +98-361-5912388; Fax; +98-361-5552397; Email: naeimi@kashanu.ac.ir

¹⁵ Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, I.R. Iran Three Major synthetic pathways can be followed in this transformation, 1) the well-known Friedel–Crafts acylation reaction ^{6, 7}, 2) Copper-catalyzed ortho-acylation of phenols with aryl

aldehydes⁸ and 3) metal-catalyzed C-H activation of ketone moieties in the presence of [bis(trifluoroacetoxy)iodo]benzene as oxidant⁹. The Friedel–Crafts acylation of phenols has been generally carried out with Brønsted or Lewis acid catalysts^{10, 11}. The Friedel-Crafts acylation can be achieved by reaction of acid chlorides with a variety of condensing agents such as hydrogen fluoride ¹², concentrated sulfuric acid ¹³, phosphorus pentoxide ¹⁴ polyphosphoric acid ¹⁵ and methane sulfonic acid in alumina ¹⁶. In the past few years the possibility of obtaining o- and p_{\square} hydroxyacetophenone derivatives using solid catalysts with respect to the more active, stable, easily separated and recycled catalysts has been studied. Strong Brønsted solid acids, such as ionic resins, nafion® and heteropolyacids exhibited moderate activity for the liquid-phase Fries rearrangement of phenols and form preferentially p-hydroxy acetophenone because are quickly deactivated by waste formation ¹⁷.

The development of cleaner technologies is a major challenge in green chemistry. Microwave enhanced chemistry represents a fundamental step forward in the capabilities of synthetic chemists. Today, the use of dedicated microwave instrumentations is becoming popular in many undergraduate laboratories, providing students with an in-depth view on the new advancements of the modern synthesis ¹⁸. A solvent-free or solid state reaction may be carried out using the reactants alone or incorporating them in clays, zeolites, silica, alumina or other mixtures ¹⁹. Adsorption of surfactants at the solid–liquid interface is an important topic in numerous processes ranging from mineral beneficiation to detergency ^{20, 21}. Active alumina, due to its high surface area, mechanical strength and thermal stability has been found several

2

3

4

6

7

8

9

10

11

12

13

14

15

16

17 18

19 20

21

22

23

24

25

26

27

30

31

32

33

34

35

36

37

38

54

58 59

5 ₅

catalyzed by alumina supported-Lewis acid as a new catalyst under microwave irradiation and atmospheric pressure conditions. They 40 catalyze two main reaction pathways leading from phenol to ohydroxyacetophenone, i.e. the direct c-acylation of phenol and the oacylation of phenol forming the phenyl acetate intermediate, which is consecutively transformed via intermolecular phenol/phenyl acetate c-acylation (Scheme 1). All of the reactions were accomplished in the absence of solvent, to afford the corresponding ortho-acylated hydroxyaryl compounds in high yields. b OH СН₃СООН a O-acylation C-acylation COCH₃ Р acylation with PA

or

applications as an adsorbent and catalyst ²². The application of zinc

chloride supported on the alumina surface as catalyst were

previously reported^{23, 24}. In organic reactions, microwave-assisted

solvent-free synthesis ^{25, 26} has been of growing interest as an

naphthol compounds with organic acids as acylating agents

In this research, we examined the ortho-acylation of phenol and

efficient, economic and clean procedure ²⁷.

Results and Discussion

ососн₃

Analysis of the catalyst

The heterogeneous ZnCl₂@Al₂O₃ as a new and more active Lewis acid catalyst were investigated by powder X-ray diffraction (XRD) and FT-infrared spectroscopy (FT-IR) indicate successful bonding of zinc ions into the internal surface of solid alumina.

Fig. 2 shows the FT-IR spectra of alumina a and ZnCl₂@Al₂O₃ b, absorption bands near 3411 cm⁻¹ represent O-H mode of the alumina. In the modified catalyst, the bands at 611 cm^{-1} and 735cm⁻¹ according to the Zn-O band are clearly represented ²⁸.

The XRD pattern of alumina and ZnCl₂@Al₂O₃ demonstrates typically reflections between $2\theta = 20$ and 70° . The X-ray diffraction (XRD) pattern of modified alumina with zinc chloride is similar to those of untouched alumina (Fig. 2), which shows the crystallinity of the catalyst is retained.

Catalytic studies

In the first time, we have studied the acylation reaction of hydroquinone (as a phenol moiety) with acetic acid in the 45 presence of alumina supported zinc chloride (ZnCl₂@Al₂O₃) as new solid catalyst under microwave irradiation and solvent free conditions (Scheme 2). The results were shown that in the presence of ZnCl₂@Al₂O₃ the ortho-acylated products were obtained in high yields.

Scheme 2 Acylation of hydroguinone and 2-naphthol

In continuation of this work, we have used $ZnCl_2@Al_2O_3$ for ortho-acylation of various phenol and naphthol derivatives with acetic acid, under microwave conditions (Scheme 3). The corresponding results were indicated in Table 1. As shown in Table 1, the reaction is regioselective in which *c*-acylation is occurred. In all of cases, particularly those with available para positions, the reaction was obtained the *o*-acylated product in high yields and the *para* products nearly were not observed.

Scheme 3 Acylation reaction of various phenols

2

3

4

5

6 7

8 9

10

11 12

13

14

15 16

17

18

19

20 21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59 60 10

^{*a*} Reaction conditions: phenol or naphthol derivatives 0.95 mmol, HOAc 1.2 mmol, [Zn] 0.73 mmol as ZnCl₂@Al₂O₃. ^{*b*} Isolated yield based on the phenol and naphthol substrates. ^{*c*} In the presence of excess clean Al₂O₃ as catalyst. ^{*d*} In the presence of ZnCl₂ (1 mmol) as catalyst.

The hydroxyl groups on the surface of activated alumina were reacted with zinc chloride and formed a new composite modified alumina that the zinc ions bonded to oxygen of the surface (Scheme 4). In this case, the zinc ions supported on the surface and can be applied as catalyst.

Scheme 4 Preparation of the solid heterogeneous ZnCl2@Al2O3 as a catalyst

- Generally, in this method, due to the low activity of the catalyst, the phenol rings with electron withdrawing groups such as halogens and nitro groups hardly reacted and the desired products have low yields (Table 1, entries 8-11). If both *ortho* position of the phenol ring occupied with some other substituent, the reaction does not occur (Table 1, entry 12).
- This sequence is consisted with attention to entry 9 in Table 1 in that 2,6-dimethyl phenol did not produce *para*-acylated product in the reaction conditions. In other cases, *ortho*acylated compounds were chemo-selectively achieved in high violds (Table 1, article 1, 7 and 14). In Table 1, article 11, the
- $_{25}$ yields (Table 1, entries 1-7 and 14). In Table 1, entry 11, the reaction of 4-chlorophenol with acetic acid in the presence of the ZnCl₂@Al₂O₃ as solid catalyst only produce 20 % of the desired product and the initial substituted phenol was remain untouched at end of the reaction.
- ³⁰ For further investigation about catalytic activity of modified alumina, the desired reaction was performed in the presence of clean Al_2O_3 as catalyst and any product was observed. Also, in the presence of $ZnCl_2$ as a neat catalyst, the desired product was formed only with 68 % yield (Table 1, entries 15 and 16).
- A simplified and possible mechanism for this useful protocol was provided in the Scheme **5**. Regioselectivity is fundamental for this methodology and achieved from the key step of zinc chelation to the both phenol and carboxylic acid substrates. After chelation, the acid substrate localized at nearest position
- ⁴⁰ of the phenol substrate. Thereupon, the active phenol ring attacks and then joint to the carbonyl group of carboxylic acid from the *ortho* position (Scheme 5).

For extended application of this solid catalyst in acylation reactions, in continuation, we also examined acylation of hydroquinone with other organic acids, such as propanoic, butanoic, and pentanoic acid under free solvent and microwave conditions. The obtained results are summarized in Table 2. As shown in this Table, in this reaction, the solid catalyst can

tiers Accepted Manuscri

Scheme 5 A possible mechanism of the acylation reaction in the presence of modified alumina as catalyst

The presence of OH stretching broad bands in the 3100–3500 cm⁻¹, C=O stretching strong bands in 1735–1750 cm⁻¹ IR region, and existence of the broad singlet peak with δ (9.4–11.9) ppm in the ¹H NMR data in all of the products, are completely consistent with the *ortho*-acylated phenols and naphthols.

 Table 2 Ortho-Acylation of hydroquinone with various aliphatic carboxylic acids^a

^{*a*} Reaction conditions: hydroquinone 0.95 mmol, various organic acids 1.3 mmol in the presence of 0.73 mmol [Zn] as ZnCl₂@Al₂O₃. ^{*b*} Isolated yields Footnote text.

Experimental Section

A Materials

Chemicals were purchased from the Merck and Fluka
Chemical Companies in high purity. All of the materials were
of commercial reagent grade. The phenols and naphthols were
purified by standard procedures and purity determined by thin
layer chromatography (TLC) and gas chromatography (GC).

Apparatus

IR spectra were recorded as KBr pellet on a Perkin-Elmer 781
Spectrophotometer and an Impact 400 Nickolet FTIR
Spectrophotometer. ¹H NMR and ¹³C NMR spectra were
recorded in CDCl₃ with (400 MHz) Spectrometer using of TMS as an internal reference. Microwave irradiations were

carried out in microwave oven specially designed for organic synthesis (Milestone LAVIS 1000 Basic Microwave) from Milestone Company. Meting points were obtained with a Yanagimoto micro melting point apparatus are uncorrected. The purity determination of the substrates and reactions monitoring were accomplished by TLC on silica-gel polygram SILG/UV 254 plates.

Preparation of supported zinc chloride at alumina

A suspension of activated Al₂O₃ at 300 °C during 5 h (3.0 g) and ZnCl₂ (1.0 g) in 40 ml of THF was refluxed at 80 °C for 15 h. After cooling the resulting masses to room temperature, the solids were filtered, washed successively with acetone and absolute ethanol and was dried under vacuum. The amount of the zinc ion on the surface of solid modified catalyst was obtained from atomic absorption spectroscopy (1.45 mmol/g Al₂O₃). The solid modified catalyst also characterized by FT-IR and XRD spectrophotometers.

Typical procedure for the synthesis of phenol and naphthol derivatives by alumina supported-Lewis acid

- The procedures for the *ortho*-acylation reaction are very simple. In a typical reaction, hydroquinone (0.95 mmol), $ZnCl_2@Al_2O_3$ (0.50 g) and acetic acid (1.2 mmol) were combined for 80 sec under microwave irradiation (450 W) and under atmospheric pressure condition. The reaction-mixture temperatures were reached to about 40 °C during microwave irradiation. After cooling to room temperature, the reaction mixture was dissolved in ethyl acetate (15 ml) and H₂O (about 30 ml). After extract the organic layer, it was washed with aqueous NaHCO₃ (20 ml), dried with CaCl₂, filtered and evaporated to give a crude product. Then crude products were chromatographed on silicagel using petroleum ether as the eluent. The products were confirmed by spectroscopic data and physical methods by being consistent with previously reported data ²⁹⁻³¹.
- ⁴⁵ 2,5-Dihydroxy acetophenone (a) mp 194–196 °C (lit.³¹ mp 198–200 °C); IR (KBr)/ν (cm⁻¹): 3100–3500, 1620, 1500–1580, 1200, 1290; ¹H NMR/DMSO/d⁶/δ ppm: 2.4 (s, 3 H), 6.5–6.9 (m, 3 H), 8.6 (s, 1 H), 9.4(s, 1 H).
- 2,6-Dihydroxy acetophenone (**b**) mp 158–162 °C (lit.³⁰ mp 156–158 °C); IR (KBr)/ν (cm⁻¹): 3100–3500, 1630, 1515, 1586, 1297; ¹H NMR/CDCl₃/δ ppm: 2.6 (s, 3 H), 6.4 (d, 2H, J=5.8 Hz), 7.2 (m, 1 H), 11.8 (s, 2 H).

2,4-Dihydroxy acetophenone (c) mp 142–145 °C (lit. ³¹ mp 144–146 °C); IR (KBr)/ ν (cm⁻¹): 3000–3500, 1620,1570; ¹H NMR/CDCl₃/ δ ppm: 2.7 (s, 3 H), 6.4 (s, 1 H), 7.3–7.7 (m, 3 H),

- 75 NMR/CDCl₃/δ ppm: 2.7 (s, 3 H), 6.4 (s, 1 H), 7.3–7.7 (m, 3 H), 12.8 (s, 1 H).
 2 Hudrawa 2.5 dimethal particular sector have a (d) Oil h σ 220 °C
 - 2-Hydroxy-3,5-dimethyl acetophenone (**d**) Oil, b.p. 230 °C (lit.²⁹ b.p. 227 °C); IR (KBr)/ν (cm⁻¹): 3100–3450, 1770, 1650, 1190, 1250; ¹H NMR/CDCl₃/δ ppm: 1.9 (s, 3 H), 2.4 (s, 3 H), 2.8 (s, 3 H), 6.8 (s, 1 H), 7.3 (s, 1 H), 12.6 (s, 1 H).
- ^{2,3}-*Dihydroxy acetophenone* (e) mp 96–97 °C (lit. ²⁹ mp 97–98 °C); IR (KBr)/ ν (cm⁻¹): 3100–3600, 1724, 1450; ¹H NMR/CDCl₃/ δ ppm: 2.6 (s, 3 H), 6.8 (t, 1H, J=5.2 Hz), 7.1 (d, 1H, J=5.3 Hz), 7.6 (d, 1H, J=5.4 Hz), 5.8 (s, 1 H), 12.4 (s, 1 H). ^{2,4}*cetyl-1-naphthol* (f) mp 96–98 °C (lit.²⁹ mp 98 °C); IR (KBr)/ ν (cm⁻¹) 3100–3500, 1632, 1573, 1599; ¹H NMR/CDCl₃/ δ ppm: 2.7 (s, 3 H), 6.85 (d, 1H, J=6.4 Hz), 7.3 (m, 2 H), 7.62 (t, 2H, J=5.5 Hz), 6.49 (d, 1H, J=5.6 Hz), 14.2 (s,
- 1 H).
 D. Acylation of hydroquinone with various organic acids in the presence of ZnCl₂@Al₂O₃ catalyst; 0.1 gr (0.95 mmol) of hydroquinone, 0.1 ml (1.3 mmol) of propanoic acid and ZnCl₂@Al₂O₃ catalyst (prepared by the method described in

59

2

3

4

70

80

85

- part 2.3.1), was treated together for 110 s under microwave irradiation, with 450W powers. Extraction and identification of the products were carried out as same as procedure that was mentioned in previous section.
- 5 1-(2,5-Dihydroxy phenyl)-1-propanone (g) mp 96-99 °C (lit.³¹ mp 95-99 °C) IR (KBr)/v (cm⁻¹): 3100-3500, 1735, 1440, 1520, 6 1180; ¹H NMR/CDCl₃/δ ppm: 1.1 (t, 3 H, J=6.1 Hz), 2.5(m, 2 7 H), 6.5 (s, 1 H), 6.7 (d, 1 H, J=5.8 Hz), 6.9 (d, 1 H, J=5.8 Hz), 8 8.6 (s, 1 H), 9.4(s, 1 H). 9
- 1-(2,5-Dihydroxy phenyl)-1-butanone (h) bp 346.5 °C; IR 10 10 (KBr)/v (cm⁻¹): 3250-3500, 1750, 1600, 1650, 1180; ¹H 11 NMR/CDCl₃/ δ ppm: 1.1 (t, 3 H, J=5.5 Hz), 1.8 (m, 2 H), 2.5 12 (m, 2 H), 6.8 (d, 1 H, J=7.1 Hz), 6.9 (d, 1H, J=7.1 Hz), 7.1 (s, 13 1H), 5.5 (s, 1H), 11.9 (s, 1 H).
- 1-(2,5-Dihydroxy phenyl)-1-pentanone (i) bp 357.5 °C; IR 15 14 (KBr)/v (cm⁻¹): 3160-3400, 1740, 1510, 1190; ^{1}H 15 NMR/CDCl₃/δ ppm: 0.9 (m, 3 H), 1.4 (m, 2 H), 1.6 (m, 2 H), 16 2.5 (t, 2 H, J=6.0 Hz), 6.5(s, 1 H), 6.7 (d, 1 H, J=5.5 Hz), 6.8 (d, 17 1 H, J=5.3 Hz), 8.6 (s, 1 H), 9.4(s, 1 H). 18

20

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33 34

36

37

38 39 40

41 42

43

46

47

48

49

53

54

55

56

57

58

59 60

Conclusions

This new solid catalyst can be used for acylation of mono- and di-hydroxybenzene moieties, to form ortho-hydroxyaryl ketones in high yields. This reaction using the solid acid has advantages such as; reduced pollution, low cost, easy process and workup with high efficiency. The reactions have also occurred in solvent-free conditions under microwave irradiation with respect to the development of cleaner technologies in green chemistry. Also we reported the way for preparation of new compounds with different chemical characteristics that increase the range of underlying causes of this product and achieve optimal conditions for the preparation of this material.

Acknowledgments 35 35

The authors are grateful to University of Kashan for supporting this work by Grant No. 159148/15.

Notes and references

- H. K. Kouwenhoven and H. Van Bekkum, Handbook of Heterogeneous catalysis, VCH, Weinheim, Germany, 1997.
- 44 2 K. K. and N. Böker, 1,2-, 1,4-, 2,9- and 9,10-anthraquinones and higher fused polycyclic quinone derivatives, Thieme Verlag, Stuttagart, 2006. 45
 - 3 M. J. Climent, A. Corma, S. Iborra and J. Primo, J. Catal., 1995, 151, 45 60-66.
 - 4 M. T. Drexler and M. D. Amiridis, J. Catal., 2003, 214, 136-145.
 - 5 C. Santos, M. L. Mateus, A. P. dos Santos, R. Moreira, E. de Oliveira and P. Gomes, Bioorgan. Med. Chem, 2005, 15, 1595-1598.
- Z. Rappoport, The chemistry of phenols, Wiley-Interscience, 2003. 6 50 7 50
- J. H. P. Tyman, Synthetic and natural phenols, Elsevier Science, 1996. 51 J. Hu, E. A. Adogla, Y. Ju, D. Fan and Q. Wang, Chem. Commun., 2012, 8 **48**, 11256-11258. 52
 - 9 F. Mo, L. J. Trzepkowski and G. Dong, Angew. Chem. Int. Ed. Engl., 2012, 124, 13252-13256.
 - 55 10 I. Neves, F. Jayat, P. Magnoux, G. Perot, F. Ribeiro, M. Gubelmann and M. Guisnet, J. Mol. Catal. A, 1994, 93, 169-179.
 - G. Y. Popova, A. A. Davydov and T. V. Andrushkevich, React. Kinet. 11 Catal. Lett., 1990, 41, 33-38.
 - 12 L. F. Fieser and E. B. Hershberg, J. Am. Chem. Soc., 1940, 62, 1640-60 1645.

- 13 R. D. Haworth, J. Chem. Soc., 1932, 0, 2717-2720.
- 14 J. W. Cook, J. Chem. Soc., 1933, 0, 1592-1597.
- 15 J. Koo, J. Org. Chem., 1963, 28, 1134-1135.
- H. Sharghi and B. Kaboudin, J. Chem. Res.(S), 1998, 628-629. 16 M. J. Climent, A. Corma, S. Iborra and A. Velty, J. Catal., 2004, 221, 17
- 474-482. R. S. Varma and V. V. Namboodiri, Pure Appl. Chem, 2001, 73, 1309-18
- 1313
- 19 G. Nagendrappa, Resonance, 2002, 7, 59-68.
- 20 W. Wang and J. C. T. Kwak, Colloid. Surface A 1999, 156, 95-110. 21 L. Huang, C. Maltesh and P. Somasundaran, J. Colloid Interf. Sci., 1996, 177, 222-228.
- 22 M. Trueba and S. P. Trasatti, Eur. J. Inorg. Chem., 2005, 2005, 3393 3403.
- 23 N. Bukhanko, A. Samikannu, W. Larsson, A. Shchukarev, A.-R. Leino K. Kord ás, J. Wärn å and J.-P. Mikkola, ACS Sustainable Chem. Eng., 2013. 1. 883-893
- 24 Z. Fu, Y. Yu, D. Yin, Y. Xu, H. Liu, H. Liao, Q. Xu, F. Tan and J. Wang J. Mol. Catal. A-Chem., 2005, 232, 69-75.
- 25 D. Habibi, M. Nasrollahzadeh and A. T. Kamali, Green Chem., 2011, 13 3499-3504.
 - 26 A. Loupy, A. Petit, J. Hamelin, F. Texier-Boullet, P. Jacquault and D Mathe, Synthesis, 2000, 1998, 1213-1234.
- 27 R. Gedye, F. Smith, K. Westaway, H. Ali, L. Baldisera, L. Laberge and J Rousell, Tetrahedron Lett., 1986, 27, 279-282.
- 28 K. B. Kumar and P. Raji, Rec. Res. Sci. Tech., 2011, 3, 48-52.
- 29 R. W. Stoughton, J. Am. Chem. Soc., 1935, 57, 202-204.
- 30 J. J. Gorman, B. L. Ferguson and T. B. Nguyen, Rapid Commun Mass Sp., 1996, 10, 529-536.
- S. Paul, P. Nanda, R. Gupta and A. Loupy, Synthesis, 2003, 2003, 2877 31 2881.