ORGANIC CHEMISTRY

FRONTIERS

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard **Terms & Conditions** and the **Ethical guidelines** still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

http://rsc

http://rsc.li/frontiers-organic

Dynamic Article Links ►

RESEARCH ARTICLE

Manusc

rganic Chemistry Frontiers Acce

Palladium-catalyzed 1,4-addition of secondary alkylphenylphosphines to α , β -unsaturated carbonyl compounds for the synthesis of phosphorusand carbon-stereogenic compounds[†]

Chun Li,^b Qing-Long Bian,^b Sheng Xu^b and Wei-Liang Duan^{a,*}

s Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

Highly stereoselective 1,4-addition of alkylphenylphosphines to α , β -unsaturated carbonyl compounds catalyzed by PCP or NCN pincer–Pd complexes is described to synthesize chiral ¹⁰ phosphorus compounds bearing both P- and C-stereogenic centers with good to excellent enantioselectivity (up to 99.6% ee).

Chiral phosphines are ligands widely used in catalytic reactions to control reactivity and enantioselectivity.¹ Among 15 these phosphines, axially chiral, carbon-stereogenic, or planar-chiral phosphine ligands, such as binap, diop, and josiphos, are frequently used to construct optically active compounds from prochiral starting materials. By contrast, phosphorus (P)-chiral phosphines are relatively less employed ²⁰ in catalysis.² The first reported chiral phosphine ligand contains only one P-stereogenic center,³ likely because the preparation of P-chiral compounds is synthetically more challenging compared with other compounds.⁴ Reported methods always involve the optical resolution of racemates or 25 desymmetrization of prochiral compounds with stoichiometric amounts of chiral reagents. These methods also require multiple-step transformations. Direct construction of a P-C bond, along with P-chiral center formation via asymmetric catalysis, appears to be a promising approach to solving this ³⁰ synthetic problem.^{5,6} Several methods, including transition metal-catalyzed arylation and alkylation of secondary phosphines with good to excellent enantioselectivities, have been reported by Glueck et al. and Toste/Bergman et al., respectively.7 Asymmetric Michael addition of 35 methylphenylphosphine to enones was recently reported to generate P- and C-chiral phosphorus compounds with up to 82% ee by Leung et al.8 However, certain limitations still in terms of the extent of stereoselectivity and generality of the substrates must be addressed. In the present study, we 40 describe a palladium-catalyzed asymmetric addition of disubstituted phosphines to α,β -unsaturated carbonyl compounds for the synthesis of P- and C-stereogenic phosphorus compounds with good to excellent enantioselectivities.

Scheme 1 Proposed protocol for P-chiral compound synthesis.

We previously reported the bisphosphine (PCP) pincer Pdcatalyzed asymmetric addition of diarylphosphines to electron-deficient alkenes for the synthesis of diverse chiral ⁵⁰ phosphine compounds.⁹ A Pd-diphenylphosphido intermediate was generated from the reaction of diphenylphosphine with Pd catalyst and proposed as the active nucleophile toward electrophiles in the catalytic cycle.^{9a} We hypothesized that the use of secondary phosphine nucleophiles bearing two different ⁵⁵ groups (e.g., methylphenylphosphine) could generate two Pdphosphido diastereomers within a chiral environment induced by two methyl groups at the benzylic position of the catalyst. Subsequent functionalization of these intermediates could lead to the formation of P-stereogenic phosphorus compounds ⁶⁰ (Scheme 1)

We initiated the reaction of alkylphenyl phosphines with chalcone in the presence of pincer-Pd catalysts. The reaction of methylphenylphosphine 2a with enone 1a in the presence of catalyst (S,S)-4^{10,11} only afforded products in low ee and dr 65 (Table 1, entry 1).¹² Solvent screening and temperature reduction to -30 °C did not lead to satisfactory results (entries 2-5). Changing the methyl group to ethyl and n-butyl groups in the P nucleophiles increased the ee and diastereomeric ratios of products (entries 6-7). Interestingly, introduction of 70 an isopropyl group to substrate 2d significantly improved the ee of the product to 99% as well as its diastereoselectivity (entry 8; dr>10/1). To increase stereoselectivity in the reaction of methylphenyl phosphine with chalcone, bisimidazoline (NCN) pincer catalysts 5a-5i were synthesized 75 and examined.¹³ Catalyst (S,S)-5a derived from (S)phenylglycinol bearing a 4-methoxyphenyl group on the nitrogen atom afforded two diastereomers with good ee (entry

60

9: 74 and 83% ee; 1.3/1 dr) at -30 °C.¹⁴ By changing the substituted groups on the imidazoline ring to benzyl, isopropyl, and isobutyl groups, catalysts 5b-5d produced products with decreased enantioselectivity (entries 10-12). 5 Investigations on temperature effects showed that reaction at room temperature yields products with 81% and 91% ee (entry 14). By changing the substituted group to 4-tolyl on the nitrogen atom or installation of a methoxy group at the phenyl ring of the catalyst, catalysts (S,S)-5e and 5f did not exhibit 10 beneficial effects on the ee and dr (entries 15-16). Use of catalysts 5g and 5h featuring chloride or iodide anions caused a decrease in ee (entries 17-18). Changing KOAc to K₂CO₃ or removing KOAc in the reaction led to decreased ee (entries 19-20). Catalyst 5i bearing acetate anions also afforded 15 products with lower ee than 5a (entry 21) via a slightly peculiar manner, the reason for which remains unclear at this point. Afterward, extensive examination of the solvents revealed that dichloromethane is optimal compared with other solvents (entries 22-25) at room temperature; toluene and tert-20 amyl alcohol afforded products with slightly low ee. Unexpectedly, using toluene as the solvent at -5 °C, products with the highest ee were isolated (entry 27: 87% and 96% ee). Further temperature reduction to -10 °C decreased the ee of both diastereomers (entry 28: 86% and 79% ee). For P 25 nucleophiles 2b-2c, catalyst 5a only produced the corresponding products with moderate ee compared with catalyst 4 (entries 29-31).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49 50

 Table 1
 Palladium-catalyzed addition of alkylphenylphosphines 2 to

 30
 chalcone 1a.

	O Ph 1a 1.5 equiv	P h + H−R (±)-2 ^R 2a: R = Me; 2 2c: R = <i>n</i> -Bu;	1) 2 ma 5 mol% 5 ar solven 2) E 2b: R = Et 2d: R = <i>i</i> -Pr	ol% (S,S)- nd 50 mol9 <u>t, temp., 2</u> 8H ₃ • SMe ₂	4 or % KOAc 4 h P	H ₃ B O *P h 3	Ph −R `Ph
Entry	Phosphine	Catalyst	Solvent	Temp (°C)	Yield (%) ^[a]	Dr ^[b]	ee (%) [[]
1	2a	(S,S)-4	Toluene	rt	83	1.7/1	22/47
2	2a	(S,S)-4	Toluene	-5	55	1.9/1	32/43
3	2a	(<i>S</i> , <i>S</i>)-4	Toluene	-30	96	3.0/1	28/32
4	2a	(S,S)-4	CH_2Cl_2	-30	83	3.9/1	56/28
5	2a	(S,S)-4	THF	-30	88	2.5/1	40/47
6	2b	(S,S)-4	Toluene	-5	96	11/1	86/65
7	2c	(<i>S</i> , <i>S</i>)-4	Toluene	-5	85	4.7/1	58/86
8	2d	(S,S)-4	Toluene	-5	80	>10/1	99.5
9	2a	(S,S)-5a	CH_2Cl_2	-30	74	1.3/1	74/83
10	2a	(<i>S</i> , <i>S</i>)-5b	CH_2Cl_2	-30	93	1.7/1	53/75
11	2a	(S,S)-5c	CH_2Cl_2	-30	93	1.8/1	44/67
12	2a	(<i>S</i> , <i>S</i>)-5d	CH_2Cl_2	-30	75	2.0/1	24/51
13	2a	(S,S)-5a	CH_2Cl_2	0	83	1.3/1	81/90
14	2a	(S,S)-5a	CH_2Cl_2	rt	87	1.4/1	81/91
15	2a	(<i>S</i> , <i>S</i>)-5e	CH_2Cl_2	rt	81	1.3/1	60/85
16	2a	(<i>S</i> , <i>S</i>)-5f	CH_2Cl_2	rt	83	1.4/1	78/83
17	2a	(S,S)- 5g	CH_2Cl_2	rt	87	1.4/1	80/88
18	2a	(<i>S</i> , <i>S</i>)-5h	CH_2Cl_2	rt	94	1.5/1	61/75
19 ^[d]	2a	(S,S)-5a	CH_2Cl_2	rt	97	1.2/1	71/74

20 ^[e]	2a	(<i>S</i> , <i>S</i>)-5a	CH_2Cl_2	rt	94	1.4/1	61/80
21 ^[e]	2a	(<i>S</i> , <i>S</i>)-5i	CH_2Cl_2	rt	97	1.4/1	75/84
22	2a	(<i>S</i> , <i>S</i>)-5a	Toluene	rt	70	1.3/1	82/89
23	2a	(S,S)-5a	t-AmOH	rt	74	1.2/1	80/89
24	2a	(S,S)-5a	MeOH	rt	33	2.5/1	15/25
25	2a	(S,S)-5a	DMF	rt	77	1.5/1	58/71
26	2a	(S,S)-5a	Toluene	0	80	1.3/1	83/95
27	2a	(<i>S</i> , <i>S</i>)-5a	Toluene	-5	98	1.1/1	87/96
28	2a	(S,S)-5a	Toluene	-10	95	0.9/1	86/79
29	2b	(S,S)-5a	Toluene	-5	88	2.7/1	36/34
30	2c	(<i>S</i> , <i>S</i>)-5a	Toluene	-5	98	2.2/1	66/7
31	2d	(<i>S</i> , <i>S</i>)-5a	Toluene	-5	81	1.6/1	12/73

^{*a*} Isolated yields. ^{*b*} Determined by ¹H NMR analysis of the crude product. ^{*c*} Determined by HPLC with hexane/2-propanol. ^{*d*} 50 mol% K₂CO₃ used.. ^{*e*} Without addition of KOAc.

The scope of substrates was examined under optimum conditions, and the results are shown in Table 2. Methylphenylphosphine reacted with enones bearing diverse 40 substituted groups (i.e., alkyl, methoxy, halide, and nitro) smoothly, thereby yielding a series of phosphorus compounds with good to excellent enantiomeric excess (Table 2: entries 1–9). For substrates bearing an isopropyl moiety at the β position, the ee of products is lower than that in the case of 45 aryl groups (entry 10). α , β -Unsaturated N-acyl pyrroles have been reported to be good acceptors in asymmetric addition reactions.¹⁵ The pyrrole group can be easily converted into various moieties.¹⁶ Experimental results indicate that various α,β -unsaturated N-acyl pyrroles show properties comparable 50 with those of enones in terms of ee and dr (entries 11-17), which further extends the applicability of the current catalytic system. Table 3 summarizes the reactions of isopropylphenylphosphines with α,β -unsaturated enones and N-acyl pyrroles. All of the products were isolated with almost 55 perfect enantioselectivities and moderate to good diastereomeric ratios (Table 3: entries 1-8; 98 to 99.6% ee). To illustrate the utility of the current method, a bisenone was reacted with a secondary phosphine 2d to yield a chiral bisphosphine bearing four stereogenic centers in 99% ee 60 (Scheme 2); this biphosphine is a useful ligand for the preparation of P-chiral pincer metal catalysts.^{6q,17}

Table 2 Palladium-catalyzed asymmetric addition of	
methylphenylphosphines to $\alpha \beta$ -unsaturated carbonyl compound	s

65	0 R ¹ 11.5 e	R ² +	Ph H−P (±)-2a	1) 5 mol% (S,S)-5 50 mol% KOAc toluene, -5 °C, 24 2) BH ₃ •SMe ₂	a H ₃ B h O P Ph R ¹ R ² major diastereomer m	H ₃ B O P Me R ¹ R ² inor diastereomer
	Entry	R ¹		R ²	Yield(%)/(dr) [a,b]	Ee of major- and minor- product

2 | Org. Chem. Front., 2014, 1, 00–00

This journal is © The Royal Society of Chemistry 2014

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60 55

60

75

80

				(%) ^[c,d]
1	Ph	Ph	98 (1.1/1)	87/96
2	Ph	$4-MeC_6H_4$	97 (1.1/1)	88/95
3	Ph	4-MeOC ₆ H ₄	92 (1.2/1)	89/95
4	Ph	$3-BrC_6H_4$	94 (1.1/1)	87/96
5	Ph	$4-BrC_6H_4$	98 (1.1/1)	83/96
6	Ph	$4-O_2NC_6H_4$	94 (1.2/1)	87/97
7	Ph	$4-CF_3C_6H_4$	86 (1.3/1)	81/95
8	$4-BrC_6H_4$	Ph	88(1.2/1)	89/94
9	Me	$4-BrC_6H_4$	98(1.7/1)	89/94
10	Ph	<i>i</i> -Pr	91(2.6/1)	72/85
11	1-pyrrolyl	Ph	84(1.2/1)	86/93
12	1-pyrrolyl	$4-MeC_6H_4$	97(1.2/1)	84/93
13	1-pyrrolyl	2-naphthyl	91(1.2/1)	85/93
14	1-pyrrolyl	4-MeOC ₆ H ₄	95(1.1/1)	83/92
15	1-pyrrolyl	$4-NO_2C_6H_4$	97(1.1/1)	85/93
16	1-pyrrolyl	$3-BrC_6H_4$	98(1.2/1)	84/95
17	1-pyrrolyl	4-BrC ₆ H ₄	96(1.2/1)	86/96

^a Isolated yields. ^b Determined by ¹H NMR analysis of the crude product. ^c Determined by HPLC with hexane/2-propanol. d The absolute configurations of products were determined to be S_i, S_p for major diastereomers and $S_{r}R_{p}$ for minor diastereomers by X-ray crystal 5 diffraction of 1,4-adducts in entries 9 and 17 (see Supporting Information for details).18

Table 3 Palladium-catalyzed asymmetric addition of isopropylphenylphosphine to α,β -unsaturated carbonyl compounds.

$\begin{array}{c} O \\ R^{1} \\ \hline \\ R^{2} \\ \hline \\ R^{2} \\ \hline \\ R^{2} \\ \hline \\ \\ H^{2} \\ \hline \\ H^{2} \\ H^{2}$					
Entry	R ¹	R ²	Yield(%)/(dr	$ee (\%)^{[b,c]}$	
1	Ph	Ph	80(>10/1)	99.5	
2	Ph	4-MeOC ₆ H ₄	84(>10/1)	98	
3	Ph	$4-NO_2C_6H_4$	85(>10/1)	99	
4	$3-BrC_6H_4$	Ph	88(>10/1)	99.4	
5	1-pyrrolyl	Ph	83(7/1)	98	
6	1-pyrrolyl	$4-BrC_6H_4$	80(5/1)	99.6	
7	1-pyrrolyl	3-BrC ₆ H ₄	81(6/1)	99	
8	1-pyrrolyl	2-Naphthyl	78(5/1)	>99.5	

¹⁰ ^a Isolated yields. ^b Determined by ¹H NMR analysis of the crude product. ^c Determined by HPLC with hexane/2-propanol. d The absolute configurations of products were determined to be S, R_p by X-ray crystal diffraction of 1,4-adduct in entry 1 (see Supporting Information for details).¹⁸

Scheme 2 Synthesis of an optically pure P-stereogenic bisphosphine.

In summary, we have described the enantioselective addition of alkylphenylphosphines to α,β -unsaturated carbonyl compounds catalyzed by PCP and NCN pincer Pd catalysts to 20 yield chiral phosphorus compounds bearing both P- and Cstereogenic centers with good to excellent enantioselectivity under mild conditions. Further studies will elucidate the stereochemistry-determining factors and applications of Pchiral compounds as ligands to transition metals in catalysis.

We thank the National Basic Research Program of China (973 Program 2010CB833300), the NSFC (20902099, 21172238), and SIOC for funding this work.

Notes and references

^a State Key Laboratory of Organometallic Chemistry, Shanghai Institute 30 of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China. Fax: (+86)-21-6416-6128; Tel: (+86)-21-5492-5203; E-mail: <u>wlduan@mail.sioc.ac.cn</u>

^b School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China

- 35 † Electronic Supplementary Information (ESI) available: Detailed experimental procedures, and analytical data for all new compounds. See DOI: 10.1039/b00000x/.
 - (a) Phosphorus Ligands in Asymmetric Catalysis: Synthesis and Applications, Vols. 1-3. (Ed.: A. Börner), Wiley-VCH: Weinheim,
- 2008. (b) W. Tang and X. Zhang, Chem. Rev., 2003, 103, 3029; (c) 40 X. Cui and K. Burgess, Chem. Rev., 2005, 15, 3272; (d) J.-H. Xie, S.-F. Zhu and Q.-L. Zhou, Chem. Rev., 2011, 111, 1713; (e) D.-S. Wang, Q.-A. Chen, S.-M. Lu and Y.-G. Zhou, Chem. Rev., 2012, 112 2557
- 45 2 For recent examples of P-chiral ligands in catalysis, see: (a) T. Imamoto, J. Watanabe, Y. Wada, H. Masuda, H. Yamada, H. Tsuruta, S. Matsukawa and K. Yamaguchi, J. Am. Chem. Soc., 1998, 120, 1635; (b) I. D. Gridnev, N. Higashi, K. Asakura and T. Imamoto, J. Am. Chem. Soc., 2000, 122, 7183; (c) W. Tang and X. 50
 - Zhang, Angew. Chem. Int. Ed., 2002, 41, 1612; (d) W. Tang, W. Wang and X. Zhang, Angew. Chem. Int. Ed., 2003, 42, 943; (e) W. Tang, W. Wang, Y. Chi and X. Zhang, Angew. Chem. Int. Ed., 2003, 42, 3509; (f) T. Imamoto, K. Sugita and K. Yoshida, J. Am. Chem. Soc., 2005, 127, 11934; (g) T. Imamoto, Y. Saitoh, A. Koide, T.
 - Ogura and K. Yoshida, Angew. Chem. Int. Ed., 2007, 46, 8636; (h) A. M. Taylor, R. A. Altman and S. L. Buchwald, J. Am. Chem. Soc., 2009. 131. 9900; (i) T. Imamoto, K. Tamura, Z. Zhang, Y. Horiuchi, M. Sugiya, K. Yoshida, A. Yanagisawa and I. D. Gridnev, J. Am. Chem. Soc., 2012, 134, 1754; (j) G. Liu, X. Liu, Z. Cai, G. Jiao, G. Xu and W. Tang, Angew. Chem. Int. Ed., 2013, 52, 4235.
 - 3 For early reported P-chiral ligands, see: (a) L. Horner, H. Siegel and H. Büthe, Angew. Chem. Int. Ed., 1968, 7, 942; (b) W. S. Knowles and M. J. Sabacky, Chem. Commun., 1968, 1445; (c) W. S. Knowles, M. J. Sabacky and B. D. Vineyard, J. Chem. Soc. Chem. Commun.,
 - 1972, 10; (d) W. S. Knowles, M. J. Sabacky, B. D. Vineyard and D. J. Weinkauff, J. Am. Chem. Soc., 1975, 97, 2567.
- For reviews on preparation of P-stereogenic phosphines, see: (a) K. 4 M. Pietrusiewicz and M. Zablocka, Chem. Rev., 1994, 94, 1375; (b) K. V. L. Crépy and T. Imamoto, Top. Curr. Chem., 2003, 229, 1; (c)
- K. V. L. Crépy and T. Imamoto, Adv. Synth. Catal., 2003, 345, 79; (d) P.-H. Leung, Acc. Chem. Res., 2004, 37, 169; (e) A. Grabulosa, J. Granell and G. Muller, Coord. Chem. Rev., 2007, 251, 25; (f) O. I. Kplodiazhnyi, Tetrahedron: Asymmetry, 2012, 23, 1. For representative examples, see: (g) W. B. Farnham, R. K. Murray and Jr., K. Mislow, J. Am. Chem. Soc., 1970, 92, 5809; (h) J. Donohue, N. Mandel, W. B. Farnham, R. K. Murray, Jr., K. Mislow and H. P. Benschop, J. Am. Chem. Soc., 1971, 93, 3792; (i) T. Imamoto, T. Oshiki, T. Onozawa, T. Kusumoto and K. Sato, J. Am. Chem. Soc., 1990, 112, 5244; (j) S. Jugé, M. Stephan, J. Laffitte and J. Genet, Tetrahedron Lett. 1990, 31, 6357; (k) T. Oshiki and T. Imamoto, J. Am. Chem. Soc., 1992, 114, 3975; (1) A. R. Muci, K. R. Campos and D. A. Evans, J. Am. Chem. Soc., 1995, 117, 9075; (m) B. Wolfe and T. Livinghouse, J. Am. Chem. Soc., 1998, 120, 5116; (n) K. Nagata, S. Matsukawa and T. Imamoto, J. Org. Chem., 2000, 65, 4185; (o) T. Imamoto, S.-I. Kikuchi, T. Miura and Y. Wada, Org. Lett., 2001,
- 3, 87; (p) Q. Xu, C.-Q. Zhao and L.-B. Han, J. Am. Chem. Soc., 2008, 130, 12648; (q) G. Wang, R. Shen, Q. Xu, M. Goto, Y. Zhao and L.-B. Han, J. Org. Chem., 2010, 75, 3890; (r) Y. Zhou, G. Wang, Y. Saga, R. Shen, M. Goto, Y. Zhao and L.-B. Han, J. Org. Chem., 2010, 75, 7924; (s) Z. S. Han, N. Goyal, M. A. Herbage, J. D. Sieber, B. Qu, Y. Xu, Z. Li, J. T. Reeves, J.-N. Desrosiers, S. Ma, N. Grinberg, H. Lee, H. P. R. Mangunuru, Y. Zhang, D.

This journal is © The Royal Society of Chemistry 2014

75

120

Krishnamurthy, B. Z. Lu, J. J. Song, G. Wang and C. H. Senanayake, J. Am. Chem. Soc., 2013, 135, 2474; (t) O. Berger and J.-L. Montchamp, Angew. Chem. Int. Ed., 2013, 52, 11377.

For reviews on the synthesis of chiral phosphorus compounds, see: (a) 5 D. S. Glueck, Synlett, 2007, 2627; (b) D. S. Glueck, Chem.-Eur. J. 2008, 14, 7108; (c) J. S. Harvey and V. Gouverneur, Chem. Commun., 2010, 7477; (d) D. Zhao and R. Wang, Chem. Soc. Rev., 2012, 41, 2095. For leading examples, see: (e) I. Kovacik, D. K. Wicht, N. S. Grewal, D. S. Glueck, C. D. Incarvito, I. A. Guzei and A. L. Rheingold, Organometallics, 2000, 19, 950; (f) A. D. Sadow, I. 10

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

37

41

42

43

44

45

47

49

51

60

- Haller, L. Fadini and A. Togni, J. Am. Chem. Soc., 2004, 126, 14704; (g) C. Scriban, I. Kovacik and D. S. Glueck, Organometallics, 2005, 24, 4871; (h) C. Scriban, D. S. Glueck, L. N. Zakharov, W. S. Kassel, A. G. DiPasquale, J. A. Golen and A. L. Rheingold, Organometallics, 2006, 25, 5757; (i) A. D. Sadow and A. 15 Togni, J. Am. Chem. Soc., 2005, 127, 17012; (j) C. Genet, S. J. Canipa, P. O'Briena and S. Taylor, J. Am. Chem. Soc., 2006, 128, 9336; (k) B. Join, D. Mimeau, O. Delacroix and A.-C. Gaumont, Chem. Commun., 2006, 3249; (1) G. Nishida, K. Noguchi, M. Hirano and K. Tanaka, Angew. Chem. Int. Ed., 2008, 47, 3410; (m) 20 P. Butti, R. Rochat, A. D. Sadow and A. Togni, Angew. Chem. Int. Ed., 2008, 47, 4878; (n) J. S. Harvey, S. J. Malcolmson, K. S. Dunne, S. J. Meek, A. L. Thompson, R. R. Schrock, A. H. Hoveyda
- and V. Gouverneur, Angew. Chem. Int. Ed., 2009, 48, 762; (o) L. Hong, W. Sun, C. Liu, D. Zhao and R. Wang, Chem. Commun., 25 2010, 2856; (p) W. Sun, L. Hong, C. Liu and R. Wang, Org. Lett., 2010, 12, 3914; (q) M. Nielsen, C. B. Jacobsen and K. A. Jørgensen, Angew. Chem. Int. Ed., 2011, 50, 3211; (r) S. Liu, Z. Zhang, F. Xie, N. Butt, L. Sun and W. Zhang, Tetrahedron: Asymmetry, 2012, 23, 329
- For catalytic asymmetric 1,4-addition of substituted phosphines or 6 phosphine oxides to electron-deficient alkenes, see: (a) A. Carlone, G. Bartoli, M. Bosco, L. Sambri and P. Melchiorre, Angew. Chem. Int. Ed., 2007, 46, 4504; (b) I. Ibrahem, R. Rios, J. Vesely, P. Hammar, L. Eriksson, F. Himo and A. Córdova, Angew. Chem. Int. 35 Ed., 2007, 46, 4507; (c) G. Bartoli, M. Bosco, A. Carlone, M. Locatelli, A. Mazzanti, L. Sambri and P. Melchiorre, Chem. Commun., 2007, 722; (d) X. Fu, Z. Jiang and C.-H. Tan, Chem. Commun., 2007, 5058; (e) I. Ibrahem, P. Hammar, J. Vesely, R. Rios, L. Eriksson and A. Córdova, Adv. Synth. Catal., 2008, 350, 40 1875; (f) D. Zhao, L. Mao, D. Yang and R. Wang, J. Org. Chem.,
- 2010, 75, 6756; (g) S. Wen, L. Li, H. Wu, F. Yu, X. Liang and J. Ye, 35 Chem. Commun., 2010, 4806; (h) Y. Huang, S. A. Pullarkat, L. Li 36 and P.-H. Leung, Chem. Commun., 2010, 6950; (i) A. Russo and A. Lattanzi, Eur. J. Org. Chem., 2010, 6736; (j) X. Luo, Z. Zhou, X. Li, 45 38 X. Liang and J. Ye, RSC Advances, 2011, 1, 698; (k) M.-J. Yang, 39 Y.-J. Liu, J.-F. Gong and M.-P. Song, Organometallics, 2011, 30, 3793; (1) Y. Huang, R. J. Chew, Y. Li, S. A. Pullarkat and P.-H. 40
 - Leung, Org. Lett., 2011, 13. 5862; (m) D. Zhao, L. Wang, D. Yang, Y. Zhang and R. Wang, Chem. Asian. J., 2012, 7, 881; (n) Y. Huang, S. A. Pullarkat, S. Teong, R. J. Chew, Y. Li and P.-H. Leung, Organometallics, 2012, 31, 4871; (o) Y. Huang, S. A. Pullarkat, R. J. Chew, Y. Li and P.-H. Leung, J. Org. Chem., 2012, 77, 6894; (p) M. Hatano, T. Horibe and K. Ishihara, Angew. Chem. Int. Ed., 2013, 52, 4549; (q) B. Ding, Z. Zhang, Y. Xu, Y. Liu, M. Sugiya, T. Imamoto 55
- 46 and W. Zhang, Org. Lett., 2013, 15. 5476. 7 For catalytic asymmetric synthesis of chiral phosphines through arylation or alkylation of substituted phosphines, see: (a) J. R. 48 Moncarz, N. F. Laritcheva and D. S. Glueck, J. Am. Chem. Soc., 2002, 124, 13356; (b) V. S. Chan, I. C. Stewart, R. G. Bergman and 50 F. D. Toste, J. Am. Chem. Soc., 2006, 128, 2786; (c) C. Scriban and D. S. Glueck, J. Am. Chem. Soc., 2006, 128, 2788; (d) N. F. Blank, J. R. Moncarz, T. J. Brunker, C. Scriban, B. J. Anderson, O. Amir, D. 52 S. Glueck, L. N. Zakharov, J. A. Golen, C. D. Incarvito and A. L. 53
- Rheingold, J. Am. Chem. Soc., 2007, 129, 6847; (e) V. S. Chan, R. 65 54 G. Bergman and F. D. Toste, J. Am. Chem. Soc., 2007, 129, 15122; 55 (f) T. J. Brunker, B. J. Anderson, N. F. Blank, D. S. Glueck and A. 56 L. Rheingold, Org. Lett., 2007, 9, 1109; (g) C. Scriban, D. S. Glueck, J. A. Golen and A. L. Rheingold, Organometallics, 2007, 57 26, 1788; (h) V. S. Chan, M. Chiu, R. G. Bergman and F. D. Toste, 58 J. Am. Chem. Soc., 2009, 131, 6021; (i) T. W. Chapp, D. S. Glueck, 59

J. A. Golen, C. E. Moore and A. L. Rheingold, Organometallics, 2010 29 378

- 8 Y. Huang, S. A. Pullarkat, Y. Li and P.-H. Leung, Inorg. Chem. 2012, 51, 2533.
- 9 (a) J.-J. Feng, X.-F. Chen, M. Shi and W.-L. Duan, J. Am. Chem. Soc., 2010, 132, 5562; (b) D. Du and W.-L. Duan, Chem. Commun., 2011, 47, 11101; (c) Y.-R. Chen and W.-L. Duan, Org. Lett., 2011, 13. 5824; (d) J.-J. Feng, M. Huang, Z.-Q. Lin and W.-L. Duan, Adv. Synth. Catal., 2012, 354, 3122. (e) M. Huang, C. Li, W.-L. Duan
- and S. Xu, Chem. Commun., 2012, 48, 11148; (f) D. Du, Z.-Q. Lin, J.-Z. Lu, C. Li and W.-L. Duan, Asian J. Org. Chem., 2013, 2. 392; (g) C. Li, W.-X. Li, S. Xu and W.-L. Duan, Chin. J. Org. Chem. 2013, 33, 799; (h) J. Lu, J. Ye, W.-L. Duan, Org. Lett. 2013, 15, 5016. (i) J. Lu, J. Ye, W.-L. Duan, Chem. Commun., 2014, 50, 698;
- (j) J. Huang, M.-X. Zhao and W.-L. Duan, Tetrahedron Lett., 2014, 55, 629.
- 10 For synthesis and application of the chiral PCP-PdCl complex, see: (a) J. M. Longmire and X. Zhang, Tetrahedron Lett., 1997, 38, 1725; (b) J. M. Longmire, X. Zhang and M. Shang, Organometallics, 1998,
- 17.4374. 11 For reviews on pincer Pd catalysts, see: (a) M. Albrecht and G. van Koten, Angew. Chem. Int. Ed., 2001, 40, 3750; (b) N. Selander and K. J. Szabó, Chem. Rev., 2011, 111, 2048.
- 95 12 Due to oxygen sensitivity of phosphine, the 1,4-adducts were converted to the corresponding phosphine borane complexes for analysis.
 - 13 For use of imidazoline pincer catalysts in asymmetric phosphorus addition reactions, see ref. 6k.
- 100 14 50 mol% KOAc was used in the reaction to replace the bromide on the palladium atom with acetate. The acetate anion on the palladium atom is very important to achieve high ee. For similar observations in catalysis, see. ref. 6k, 6q, and 9a.
- 15 α,β -Unsaturated *N*-acylpyrrole was firstly introduced into asymmetric 105 1,4-addition by Shibasaki et al., see: (a) T. Kinoshita, S. Okada, S.-R. Park, S. Matsunaga and M. Shibasaki, Angew. Chem. Int. Ed., 2003, 42, 4680; (b) T. Mita, K. Sasaki, M. Kanai and M. Shibasaki, J. Am. Chem. Soc., 2005, 127, 514; (c) N. Yamagiwa, H. Qin, S. Matsunaga and M. Shibasaki, J. Am. Chem. Soc., 2005, 127, 13419.
- 110 16 D. A. Evans, G. Borg, K. A. Scheidt, Angew. Chem. Int. Ed., 2002, 41, 3188
- 17 (a) B. S. Williams, P. Dani, M. Lutz, A. L. Spek, and G. von Koten, Helv. Chim. Acta, 2001, 84, 3519; (b) D. Morales-Morales, R. E. Cramer, C. M. Jensen, J. Organomet. Chem., 2002, 654, 44; (c) S. Medici, M. Gagliardo, S. B. Williams, P. A. Chase, S. Gladiali, M. 115 Lutz, A. L. Spek, G. P. M. van Klink and G. van Koten, Helv. Chim. Acta. 2005. 88, 694.
 - CCDC 981792, 981793, and 981794 contains the supplementary 18 crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

4 | Org. Chem. Front., 2014, 1, 00-00

This journal is © The Royal Society of Chemistry 2014