Organic Chemistry Frontiers

Cp2TiCl-catalyzed highly stereoselective intramolecular epoxide allylation using allyl carbonates

Journal:	Organic Chemistry Frontiers
Manuscript ID:	QO-RES-01-2014-000012.R1
Article Type:	Research Article
Date Submitted by the Author:	11-Feb-2014
Complete List of Authors:	Marquez, Irene; University of Granada, Organic Chemistry Millan, Alba; University of Granada, Organic Chemistry Campaña, Araceli; University of Granada, Organic Chemistry Cuerva, Juan; University of Granada, Organic Chemistry

SCHOLARONE[™] Manuscripts Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

ARTICLE TYPE

Cp₂TiCl-catalyzed highly stereoselective intramolecular epoxide allylation using allyl carbonates

Irene R. Márquez, Alba Millán, Araceli G. Campaña* and Juan M. Cuerva*

Received (in XXX, XXX) Xth XXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

A useful method for the diastereoselective synthesis of vinyl substituted carbo- and heterocycles is described. Highly functionalized structures difficult to achieve by other methodologies are obtained in one single step by this 10 procedure.

Epoxides are highly versatile functional groups in organic synthesis owing to the fact that their manipulation yields many attractive final products. Thus for example, diverse carbon nucleophiles such as Grignard and organolithium reagents or 15 organocuprates, have been used in ring-opening reactions to install a new C-C bond.^{1,2} The intramolecular version of this reaction would allow the preparation of different carbon and heterocycles with different size and functionality. Nevertheless, the synthesis of the suitable polyfunctionalized starting materials 20 is not simple taking into account the chemical incompatibilities between the required reactive partners. In this context, neutral pronucleophiles like olefins or allylsilanes (I, $LG = SiR_3$, Scheme 1) are more convenient since they allow better control of the reaction and functional group compatibility.³ A valuable 25 advantage of the reactions of epoxides with allylsilanes, comparing with alkenes is their ability to stabilize β -carbocations (III, Scheme 1), and thereby controlling which carbon of the alkene is the nucleophilic carbon.⁴ Moreover the allylsilane can control the direction of the final elimination acting as a good 30 leaving group that stabilizes the generated positive charge (IV, Scheme 1). On the other hand, its main drawback is related to the electrophilic character of the reaction, which implies the use of Lewis acids, such as TiCl₄, and a strict control over the temperature. Another disadvantage of allylsilanes relative to 35 simple alkenes is that extra synthetic steps are necessary owing to they are generally prepared from oxygenated-allyl groups. Therefore, the direct employment of allylic oxygenated functionalities in epoxide ring-opening reactions retaining the favourable characteristics of allyl silane analogues using very 40 mild reaction conditions would represent an important advance in organic synthesis.

The limitation of this approach is that the corresponding β carbocations (Scheme 1, III, LG = OCOR) would not be stabilized and the control of the direction of elimination would ⁴⁵ remain a challenge due to the lack of a carbocation stabilizing group and also a good leaving group. As a result, a cationic pathway can be discarded in this case, and an alternative reaction pathway based on carbon-centered radicals was considered. ⁵⁵ After the homolytic opening of the epoxide, the β-titanoxy radical generated **V** would undergo further radical cyclization generating a carbon-centered radical **VI**. At this point, we expected that a oxygenated function in the β-position would act as good leaving group, thus directing the final elimination towards **IV** assisted by 60 Cp₂TiCl as Lewis acid.^{27,28} In fact, we had previously observed the Cp₂TiCl-mediated radical fragmentation of β-acetoxy alkyl radicals toward the corresponding alkenes.^{21,29}

In this alternative radical pathway, Cp₂TiCl would play a crucial dual role for the intramolecular epoxide allylation with ⁶⁵ oxygenated-allyl groups: i) starting the reaction by homolytic opening of the oxirane ring and ii) controlling the final product obtained by radical fragmentation.

Scheme 1. Working hypothesis

Here we want to communicate that epoxides can formally be allylated intramolecularly in a highly diastereoselective manner under smooth reaction conditions using easily prepared and handled allylic carbonates as allylation reagents. This approach

60

1

This journal is © The Royal Society of Chemistry [year]

[journal], [year], **[vol]**, 00–00 | 1

Cp₂TiCl⁵-mediated homolytic epoxide opening is a well-known ⁵⁰ reaction,⁶⁻¹⁹ which has allowed many remarkable transformations, including a highly successful bioinspired approach to different natural products.²⁰⁻²⁶ Epoxyallylcarboxylates I (LG = OCOR, Scheme 1) are expected to react with Cp₂TiCl, yielding radical intermediates type-V.

also allows the preparation of different carbo and heterocycles with different functionalities.

 Due to the known oxophilic character of Ti(III), our initial studies began testing different allyl pronucleophiles **1a-d**, and **3**, s including different oxygenated functional groups such as carbonate, acetate, benzoate, methoxyl or hydroxyl groups. Moreover, an epoxyallylsilane **6** was also tested in order to compare the observed results with oxygenated functions. Remarkably, the new developments in titanocene(III)-10 regenerating agents now allow the use of substoichiometric amounts of Cp₂TiCl₂ as a precatalyst. In this context, the combination 2,4,6-collidine and trimethylsilyl chloride developed in our lab³⁰ has been extensively used and it was the choice in this case.

¹⁵ Treatment of compounds **1a-d**, with Cp₂TiCl led to the expected cyclic compound **2** with variable yields from 50-85% (Scheme 2). Noteworthy, compound **2** was obtained as a single diastereomer in all cases. NOE-diff. experiments (see experimental section) showed a *cis* relationship between hydroxyl group at C-3 and ²⁰ vinyl group at C-5.

Scheme 2.Ti(III)-mediated cyclization of model compounds **1a-d**. Reaction conditions: i) **1a-d** (1.0 mmol) Cp₂TiCl₂ (0.2 mmol), Mn (8.0 mmol), Me₃SiCl (4.0 mmol), 2,4,6-collidine (6.0 mmol), THF, RT, 16 h. Isolated yields after column chromatography.

When epoxyallylic alcohol **3** was treated with Cp₂TiCl, cyclic compounds **4** and **5** were isolated in a 2/1 ratio (Scheme 3). In this case, the lack of a better leaving group resulted in a different final process. After homolytic oxirane-opening and subsequent ³⁰ cyclization, Ti(III)-mediated hydrogen abstraction in the radical intermediate yields aldehyde **4** (Scheme 3, process(a).³¹ Besides, the radical intermediate can abstract a hydrogen-atom from the solvent (THF) leading to reduced product **5** (Scheme 3, process b).³²

collidine (6.0 mmol), THF, RT, 16 h. Isolated yields after column chromatography.

Silyl derivative **6** was assayed under the same reaction ⁴⁰ conditions, leading to a mixture of trimethylsilyl containing compounds **7** and **8** in 1/0.6 ratio (Scheme 4).²³ These two compounds were obtained by similar hydrogen-atom abstractions mentioned above. Ethyl carbonate derivative **1a** (85% yield, Scheme 2) resulted in the best yield and therefore ethyl carbonate ⁴⁵ was the leaving group of choice for the following reactions.

With the optimized conditions in hand, we explored substrates with different linkers, functionality and substitution patterns. The results are summarized in Table 1.

Scheme 4. Ti(III)-mediated cyclization of compound 6. Reaction conditions: i) 6 (1.0 mmol) Cp₂TiCl₂ (0.2 mmol), Mn (8.0 mmol), Me₃SiCl (4.0 mmol), 2,4,6-collidine (6.0 mmol), THF, RT, 16 h. Isolated yield after column chromatography. Compounds 7 and 8 were not separated.

 Table 1. Substrate scope of [Ti]-catalyzed intramolecular epoxide allylations

| Journal Name, [year], [vol], 00–00

This journal is © The Royal Society of Chemistry [year]

eliminated was also obtained (see SI for further details)

The reaction successfully gave different five- and six-membered carbo-and heterocycles with excellent diastereoselectivities in almost all the tested substrates. Titanium-induced cyclization of ⁵ compound *E*-1a (Table 1, entry 1) led to the compound 2 as *Z*-1a (Scheme 2), revealing the stereoconvergent nature of the process. Additionally, the reaction proved to be compatible with different functional groups, including esters (Table 1, entries 1-7 and 11-12), sulfones (Table 1, entry 10), sulphonamides (Table 1, entries 10 8 and 9) or free hydroxyl groups (Table 1, entry 11), and permitted different substitution patterns in the oxirane ring (Table 1, entries 1-4) as well as in the involved alkene (Table 1, entries 5 and 11).

The regiochemistry of the radical epoxide opening mainly ¹⁵ depends upon the substitution pattern³³ and controls the size of the obtained final cycle (Table 1, entries 1 *vs* 2, and entries 8 *vs* 9). As shown in entry 4, treatment of compound **13** with Cp₂TiCl led to the formation of a 1/1 mixture of five- and six-member ring, as expected from an 1,2-disubstituted oxirane ring.^{8,9} ²⁰ However in compound 18 electronic effects control the homolytic epoxide opening thus only affording the six-membered ring 19. Stereoconvergency was further demonstrated as diasteromeric mixture 28 (entry 11) gave rise to a single cyclic diasteromer 29. It is also noteworthy that the stereoselectivity of this cyclization
²⁵ allows the setting of two stereocenters in six-membered and notably five-membered rings (entries 2 and 9). When the stereocenters are located in 1,3-relative positions a *cis* stereochemistry between hydroxyl group at C-3 and vinyl group at C-5 is observed as in the case of compounds 2, 17 and 23
³⁰ (entries 1, 5 and 8). On the other hand, compounds presenting contiguous stereocenters showed a *trans* (entries 2, 7, 9 and 12) or *cis* relationship (entry 3) between the vinyl and hydroxymethyl group depending on the substitution pattern of the intermediate radical. Interestingly, in more functionalized substrates even three

³⁵ stereocenters can be allocated stereoselectively (entries 6 and 11). In the case of 1,3-relative positions, *cis* stereochemistry between hydroxyl group at C-3 and vinyl group at C-5 is preserved. The additional stereocenter at C-4 presents a *trans* stereochemistry with respect to the other two stereocenters.

⁴⁰ All these stereochemical findings can be rationalized invoking the Beckwith-Houk rules.^{34,35} *Cis* substituted five-membered rings are expected for 5-exo-trig cyclizations (entry 3). Trisubstituted radicals proceed disposing the bulkier substituent (R₂ in Scheme 5a) in pseudoequatorial position (Scheme 5) thus yielding the ⁴⁵ observed cyclopentanes **10** and **25** (entries 2 and 9).

Scheme 5. (a) Ring-closure of 5-hexenyl radicals. (b) Selected examples from Table 1.

Although cyclizations of 6-heptenyl radicals are less studied a $_{50}$ similar reasoning explains the experimental results. In the chairlike transitions state all the bulkier substituent (R₁ and R₃ in Scheme 6) are disposed in the equatorial positions. Additional template effects cannot be ruled out in cyclization of compound **28** (entry 11).^{20–23}

In the case of entries 4 and 10, the structures of compounds **13** ⁶⁰ and **26** do not follow these stereochemical trends and mixtures of

This journal is © The Royal Society of Chemistry [year]

Journal Name, [year], [vol], 00–00 | 3

diastereoisomers are obtained. The intrinsic reactivity of a 1,2disubstituted epoxide in compound **13** (entry 4) precludes a clear analysis of its stereoselectivity. In compound **26** (entry 10), the transition state may be affected by bulky phenyl sulphonyl groups s avoiding a clear chair-like transition state and leading to formation of both isomers.

Conclusions

A useful method for the diastereoselective synthesis of vinyl substituted carbo- and heterocycles is presented. The protocol is 10 based on the radical opening of an epoxide and subsequent intramolecular addition to an allyl carbonate. Formally, the reaction yields similar products as the allylation of epoxides by the adequate nucleophile but with several significant advantages. Firstly, the polyfunctionalized substrates required are very easily 15 obtained and handled. Secondly, the cyclization reaction occurs at room temperature and under very smooth conditions highly compatible with diverse functional groups. And lastly, the diastereoselectivity observed is quite remarkable giving rise in most of the cases to a single diastereomer even when three 20 stereogenic centres are generated in the final product. Highly functionalized structures difficult to achieve by other methodologies are obtained in one single step by this procedure. Thus, this method is an interesting tool in the context of organic synthesis.

25 Acknowledgements

This research was funded by the Ministerio de Ciencia e Innovación (Spain) (project CTQ-2011.22455). I.R.M. thanks the MEC (Spain) for a predoctoral *FPU fellowship*. A. M. thanks the University of Granada for a postdoctoral contract (*'Contrato* ³⁰ *Puente'*). A.G.C. thanks the MICINN (Spain) for a postdoctoral *'Juan de la Cierva'* contract and University of Granada.

Experimental section

General Remarks. Unless otherwise stated, all reagents and solvents (CH₂Cl₂, Et₂O, MeCN, EtOAc, hexane, DMF, MeOH) 35 were purchased from commercial sources and used without further purification. Dry THF was freshly distilled over Na/benzophenone. Flash column chromatography was carried out using Silica gel 60 (230-400 mesh, Scharlab, Spain) as the stationary phase. Analytical TLC was performed on aluminium 40 sheets coated with silica gel with fluorescent indicator UV₂₅₄ (Alugram SIL G/UV254, Mackerey-Nagel, Germany) and observed under UV light (254 nm) and/or staining with Ce/Mo reagent or phosphomolybdic acid solution and subsequent heating. All ¹H and ¹³C NMR spectra were recorded on Varian 45 300, 400 or 500 MHz spectrometers, at a constant temperature of 298 K. Chemical shifts are reported in ppm and referenced to residual solvent. Coupling constants (J) are reported in Hertz (Hz). Standard abbreviations indicating multiplicity were used as follows: m = multiplet, quint. = quintet, q = quartet, t = triplet, d $_{50}$ = doublet, s = singlet, b = broad. Assignment of the 13 C NMR multiplicities was accomplished by DEPT techniques.

Characterization data of substrates *Z*-1a, 1b-d, *E*-1a, 3, 6, 9, 11, 13, 16, 18, 20, 22, 24, 26, 28 and 30.

- ⁵⁵ **Compound Z-1a.** ¹H-NMR (300 MHz, CDCl₃) δ (ppm): 5.75 5.59 (m, 1H), 5.59 5.43 (m, 1H), 4.64 (d, *J* = 6.7 Hz, 2H), 4.15 (q, *J* = 7.0 Hz, 3H), 3.71 (s, 3H), 3.70 (s, 3H), 2.80 (d, *J* = 7.5 Hz, 2H), 2.70 (dd, *J* = 7.3, 4.2 Hz, 1H), 2.21 (dd, *J* = 14.8, 4.2 Hz, 1H), 1.95 (dd, *J* = 14.8, 7.3 Hz, 1H), 1.27 (t, *J* = 7.0 Hz, 3H), 1.24
- ⁶⁰ (s, 3H), 1.20 (s, 3H).¹³C-NMR (75 MHz, CDCl₃) δ(ppm): 171.1 (C), 171.0 (C), 155.1 (C), 128.3 (CH), 127.2 (CH), 64.1 (CH₂), 63.2 (CH₂), 59.8 (C), 57.9 (C), 56.4 (C), 52.8 (CH₃), 52.7 (CH₃), 32.5 (CH₂), 31.6 (CH₂), 24.7 (CH₃), 18.8 (CH₃), 14.3 (CH₃). HRMS (TOF MS ES+) *m/z* calcd. for $C_{17}H_{26}O_8$ [M+Na]⁺: 65 381.1519, found: 381.1525.
- **Compound 1b.** ¹H-NMR (300 MHz, CDCl₃) δ (ppm): 5.70 5.55 (m, 1H), 5.55 5.40 (m, 1H), 4.57 (d, J = 6.6 Hz, 1H), 3.70 (s, 3H), 3.68 (s, 3H), 2.78 (d, J = 7.5 Hz, 2H), 2.68 (dd, J = 7.3, 4.3 Hz, 1H), 2.19 (dd, J = 14.9, 4.3 Hz, 1H), 1.99 (s, 3H), 2.00 1.89
- ⁷⁰ (m, 1H), 1.23 (s, 3H), 1.19 (s, 3H).¹³C-NMR (75 MHz, CDCl₃) δ (ppm): 171.1 (C), 170.8 (C), 127.7 (CH), 60.1 (CH₂), 59.8 (CH), 57.9 (C), 56.3 (C), 52.8 (CH₃), 52.6 (CH₃), 32.3 (CH₂), 31.4 (CH₂), 24.6 (CH₃), 20.9 (CH₃), 18.7 (CH₃). HRMS (TOF MS ES+) *m/z* calcd. for C₁₆H₂₄O₇Na [M+Na]⁺: 351.1414, found: ⁷⁵ 351.1415.
- **Compound 1c.** ¹H-NMR (300 MHz, CDCl₃) δ (ppm): 8.00 (d, J = 7.4 Hz, 2H), 7.52 (t, J = 7.4 Hz, 1H), 7.40 (t, J = 7.4 Hz, 2H), 5.87 5.71 (m, 1H), 5.64 5.50 (m, 1H), 4.86 (d, J = 6.7 Hz, 2H), 3.73 (s, 3H), 3.71 (s, 3H), 2.89 (d, J = 7.5 Hz, 2H), 2.74 (dd,
- ⁸⁰ J = 7.4, 4.1 Hz, 1H), 2.25 (dd, J = 14.8, 4.1 Hz, 1H), 2.08 1.94 (m, 1H), 1.24 (s, 3H), 1.21 (s, 3H).¹³C-NMR (75 MHz, CDCl₃) δ(ppm): 171.2 (C), 171.1 (C), 166.4 (C), 133.0 (CH), 130.2 (C), 129.6 (CH), 128.4 (CH), 128.0 (CH), 127.8 (CH), 60.6 (CH₂), 59.9 (CH), 58.0 (C), 56.4 (C), 52.8 (CH₃), 52.7 (CH₃), 32.4 (CH), 21.6 (CH₂), 22.4 (CH), 22.6 (CH₃), 22.4 (CH), 23.4 (CH), 23.4 (CH), 23.4 (CH), 23.4 (CH), 23.4 (CH), 24.5 (CH), 24.5
- $_{85}$ (CH₂), 31.6 (CH₂), 24.7 (CH₃), 18.8 (CH₃). HRMS (TOF MS ES+) m/z calcd. for C₂₁H₂₆O₇Na $[M+Na]^+$: 413.1570, found: 413.1569.

Compound 1d. ¹H-NMR (300 MHz, C_6D_6) δ (ppm): 5.85 – 5.68 (m, 1H), 5.60 – 5.43 (m, 1H), 3.86 (d, J = 6.3 Hz, 2H), 3.39 (s,

- ⁹⁰ 3H), 3.36 (s, 3H), 3.06 (s, 3H), 3.09 3.02 (m, 2H), 2.87 (dd, J = 8.0, 3.8 Hz, 1H), 2.45 (dd, J = 14.8, 3.8 Hz, 1H), 2.20 (dd, J = 14.8, 8.0 Hz, 1H), 1.05 (s, 3H), 1.03 (s, 3H).¹³C-NMR (75 MHz, CDCl₃) δ (ppm): 171.2 (C), 171.1 (C), 130.4 (CH), 125.9 (CH), 67.9 (CH₂), 59.8 (CH), 58.0 (CH₃), 57.9 (C), 56.3 (C), 52.7
- ⁹⁵ (CH₃), 52.6 (CH₃), 32.2 (CH₂), 31.5 (CH₂), 24.6 (CH₃), 18.7 (CH₃). HRMS (TOF MS ES+) m/z calcd. for $C_{15}H_{24}O_6Na$ $[M+Na]^+$: 323.1465, found: 323.1474.

Compound 3. ¹H-NMR (300 MHz, C_6D_6) δ (ppm): 5.84 – 5.68 (m, 1H), 5.51 – 5.34 (m, 1H), 4.21 – 4.06 (m, 1H), 4.06 – 3.91

- ¹⁰⁰ (m, 1H), 3.36 (s, 3H), 3.34 (s, 3H), 3.12 (dd, J = 14.8, 8.5 Hz, 1H), 2.98 (dd, J = 14.8, 6.8 Hz, 1H), 2.80 (dd, J = 8.3, 3.2 Hz, 1H), 2.48 (dd, J = 14.9, 3.2 Hz, 1H), 2.12 (dd, J = 14.9, 8.3 Hz, 1H), 1.00 (s, 3H), 0.99 (s, 3H).¹³C-NMR (75 MHz, C₆D₆) δ (ppm): 171.5 (C), 171.3 (C), 134.0 (CH), 125.0 (CH), 60.1
- 105 (CH), 58.1 (CH₂), 57.7 (C), 57.1 (C), 52.4 (CH₃), 52.3 (CH₃), 32.8 (CH₂), 31.6 (CH₂), 24.5 (CH₃), 18.6 (CH₃). HRMS (TOF MS ES+) m/z calcd. for $C_{14}H_{22}O_6Na\ [M+Na]^+:$ 309.1308, found: 309.1307.
- **Compound 6.** ¹H-NMR (300 MHz, CDCl₃) δ(ppm): 5.62 5.45 ¹¹⁰ (m, 1H), 5.18 – 5.01 (m, 1H), 3.74 (s, 3H), 3.73 (s, 3H), 2.80 – 2.72 (m, 1H), 2.71 (d, *J* = 7.0 Hz, 2H), 2.20 (dd, *J* = 14.8, 4.6 Hz, 1H), 2.00 (dd, *J* = 14.8, 7.3 Hz, 1H), 1.42 (d, *J* = 8.0 Hz, 2H),

4 | Journal Name, [year], **[vol]**, 00–00

This journal is © The Royal Society of Chemistry [year]

60

1.28 (s, 3H), 1.24 (s, 3H), -0.02 (s, 9H). ¹³C-NMR (75 MHz, CDCl₃) δ (ppm): 171.6 (C), 132.0 (CH), 121.3 (CH), 60.1 (CH), 58.0 (C), 56.8 (C), 52.6 (CH₃), 52.5 (CH₃), 36.9 (CH₂), 32.0 (CH₂), 24.8 (CH₃), 23.1 (CH₃), 18.8 (CH₃), -1.9 (CH₃). HRMS 5 (TOF MS ES+) *m/z* calcd. for C₁₇H₃₁O₅Si [M+H]⁺: 343.1941, found: 343.1951. **Compound E-1a.** ¹H-NMR (300 MHz, acetone) δ (ppm): 5.75 – 5.65 (m, 2H), 4.69 (d, J = 6.4 Hz, 2H, Z-isomer), 4.54 (d, J = 6.4Hz, 2H, E-isomer), 4.19 (q, J = 7.1 Hz, 2H), 3.75 (s, 3H), 3.73 (s, ¹⁰ 3H), 2.84 (d, J = 7.2 Hz, 2H, Z-isomer), 2.81 – 2.69 (m, 3H), 2.22 (dd, J = 14.9, 4.2 Hz, 1H), 1.99 (dd, J = 14.9, 7.6 Hz, 1H), 1.30 (t, J = 7.1 Hz, 3H), 1.28 (s, 3H), 1.25 (s, 3H).¹³C-NMR (75 MHz, CDCl₃) δ (ppm): 171.0 (C), 170.9 (C), 154.8 (C), 129.7 (CH), 128.4 (CH), 67.5 (CH₂), 63.9 (CH₂), 59.7 (CH), 57.8 (C), 56.5 15 (CH), 52.6 (CH₃), 52.5 (CH₃), 36.2 (CH₂), 32.2 (CH₂), 24.6 (CH₃), 18.7 (CH₃), 14.2 (CH₃). HRMS (TOF MS ES+) *m/z* calcd. for C₁₇H₂₆O₈Na [M+Na]⁺: 381.1519, found: 381.1516. **Compound 9.** ¹H-NMR (300 MHz, C_6D_6) δ (ppm): 5.74 – 5.46 (m, 2H), 4.63 (d, J = 5.7 Hz, 2H), 3.91 (q, J = 7.1 Hz, 2H), 3.35 $_{20}$ (s, 6H), 3.00 - 2.89 (m, 2H), 2.31 (d, J = 3.9 Hz, 2H), 2.26 (d, J =5.1 Hz, 1H), 2.11 (d, J = 5.1 Hz, 1H), 1.10 (s, 3H), 0.93 (t, J = 7.1 Hz, 3H). ¹³C-NMR (75 MHz, C₆D₆) δ(ppm): 171.2 (C), 171.0 (C), 155.5 (C), 128.9 (CH), 127.4 (CH), 63.7 (CH₂), 63.1 (CH₂), 56.7 (C), 54.0 (CH₂), 53.9 (C), 52.2 (CH₃), 52.2 (CH₃), 39.9 25 (CH₂), 32.1 (CH₂), 21.6 (CH₃), 14.2 (CH₃). HRMS (TOF MS ES+) m/z calcd. for C₁₆H₂₄O₈Na [M+Na]⁺: 367.1363, found: 367.1372. **Compound 11.** ¹H-NMR (300 MHz, C₆D₆) δ(ppm): 5.69 – 5.54 (m, 1H), 5.56 - 5.38 (m, 1H), 4.61 (d, J = 6.7 Hz, 2H), 3.90 (q, J $_{30} = 7.1$ Hz, 2H), 3.35 (s, 3H), 3.33 (s, 3H), 2.93 (d, J = 7.8 Hz, 2H), 2.87 - 2.76 (m, 1H), 2.33 - 2.20 (m, 2H), 1.98 (dd, J = 5.2, 2.4 Hz, 1H), 1.88 (dd, J = 14.7, 7.8 Hz, 1H), 0.90 (t, J = 7.1 Hz, 3H). ¹³C-NMR (75 MHz, C₆D₆) δ(ppm): 171.0 (C), 170.9 (C), 155.5 (C), 128.5 (CH), 127.8 (CH), 63.8 (CH₂), 63.1 (CH₂), 56.7 (CH₂), 35 52.3 (CH₃), 48.2 (CH), 46.0 (CH₂), 36.8 (CH₂), 31.9 (CH₂), 14.2 (CH₃). HRMS (TOF MS ES+) m/z calcd. for C₁₅H₂₂O₈Na [M+Na]⁺: 353.1206, found: 353.1197. Compound 13. 5.69 - 5.56 (m, 1H), 5.56 - 5.41 (m, 1H), 4.61 (d, J = 6.9 Hz, 2H), 3.89 (q, J = 7.1 Hz, 2H), 3.36 (s, 3H), 3.34 (s, 40 3H), 2.94 (d, J = 7.8 Hz, 2H), 2.76 - 2.68 (m, 1H), 2.44 - 2.34 (m, 1H), 2.28 (dd, J = 14.6, 4.2 Hz, 1H), 2.02 (dd, J = 14.6, 7.4 Hz, 1H), 0.96 (d, J = 5.2 Hz, 3H), 0.90 (t, J = 7.1 Hz, 3H).¹³C-NMR (75 MHz, C₆D₆) δ(ppm): 170.9 (C), 155.0 (C), 128.2 (CH), 127.2 (CH), 64.0 (CH₂), 63.1 (CH₂), 56.2 (C), 55.4 (CH), 54.3 45 (CH), 52.8 (CH₃), 52.7 (CH₃), 35.9 (CH₂), 31.6 (CH₂), 17.3 (CH₃), 14.3 (CH₃). HRMS (TOF MS ES+) m/z calcd. for $C_{16}H_{24}O_8[M+Na]^+$: 367.1363, found: 367.1377. **Compound 16.** ¹H-NMR (300 MHz, CDCl₃) δ (ppm): 5.56 (t, J = 7.0 Hz, 1H), 4.40 (s, 2H), 3.93 (q, J = 7.1 Hz, 2H), 3.38 (s, 3H), $_{50}$ 3.36 (s, 3H), 3.00 (t, J = 7.0 Hz, 2H), 2.86 (dd, J = 7.9, 4.1 Hz, 1H), 2.43 (dd, J = 14.8, 4.1 Hz, 1H), 2.20 (dd, J = 14.8, 7.9 Hz, 1H), 1.51 (s, 3H), 1.05 (s, 3H), 1.04 (s, 3H), 0.93 (t, *J* = 7.1 Hz, 3H).¹³C-NMR (75 MHz, CDCl₃) δ(ppm): 171.4 (C), 171.2, (C) 155.4 (C), 134.4 (C), 122.9 (CH), 72.6 (CH₂), 63.7 (CH₂), 59.7 55 (CH), 57.3 (C), 56.8 (C), 52.3 (CH₃), 52.2 (CH₃), 32.9 (CH₂), 32.1 (CH₂), 24.6 (CH₃), 18.7 (CH₃), 14.2 (CH₃), 13.9 (CH₃). HRMS (TOF MS ES+) m/z calcd. for $C_{18}H_{28}O_8Na$ [M+Na]⁺: 395.1676, found: 395.1667.

Compound 18. ¹H-NMR (300 MHz, CDCl₃) δ (ppm): 7.36 – 7.25 ⁶⁰ (m, 3H), 7.26 – 7.16 (m, 2H), 5.78 – 5.61 (m, 2H), 4.52 (d, J =4.5 Hz, 2H), 4.16 (q, J = 7.1 Hz, 2H), 3.73 (s, 3H), 3.69 (s, 3H), 3.56 (d, J = 1.8 Hz, 1H), 2.96 (ddd, J = 6.7. 5.0. 1.8 Hz, 1H), 2.77 (d, J = 5.7 Hz, 2H), 2.27 (dd, J = 14.7, 5.0 Hz, 1H), 2.14 (dd, J =14.7, 6.7 Hz, 1H), 1.27 (t, J = 7.1 Hz, 3H).¹³C-NMR (75 MHz,

⁶⁵ CDCl₃) δ(ppm): 170.9 (C), 154.9 (C), 136.9 (C), 129.6 (CH), 128.6 (CH), 128.5 (CH), 128.3 (CH), 125.6 (CH), 67.5 (CH₂), 64.0 (CH₂), 58.8 (CH), 58.5 (CH), 56.4 (C), 52.8 (CH₃), 36.7 (CH₂), 36.2 (CH₂), 14.3 (CH₃). HRMS (TOF MS ES+) *m/z* calcd. for C₂₁H₂₆O₈Na [M+Na]⁺: 429.1519, found: 429.1529.

⁷⁰ **Compound 20.** ¹H-NMR (300 MHz, CDCl₃) δ (ppm): 5.76 – 5.59 (m, 2H), 4.54 (d, *J* = 4.5 Hz, 2H), 4.19 (q, *J* = 7.1 Hz, 2H), 3.72 (s, 6H), 2.95 – 2.85 (m, 1H), 2.79 – 2.70 (m, 1H), 2.65 (d, *J* = 5.5 Hz, 2H), 2.51 – 2.42 (m, 1H), 2.11 – 1.91 (m, 2H), 1.54 – 1.38 (m, 2H), 1.30 (t, *J* = 7.1 Hz, 3H).¹³C-NMR (75 MHz, CDCl₃) are δ (mm): 171 1 (C) 154 9 (C) 129 7 (CH) 128 1 (CH) 67 5

⁷⁵ δ(ppm): 171.1 (C), 154.9 (C), 129.7 (CH), 128.1 (CH), 67.5 (CH₂), 63.9 (CH₂), 57.1 (C), 52.5 (CH₃), 51.7 (CH), 46.9 (CH₂), 35.9 (CH₂), 28.9 (CH₂), 27.3 (CH₂), 14.2 (CH₃). HRMS (TOF MS ES+) m/z calcd. for C₁₆H₂₄O₈Na [M+Na]⁺: 367.1363, found: 367.1362.

⁸⁰ **Compound 22.** ¹H-NMR (300 MHz, CDCl₃) δ (ppm): 7.71 (d, J = 8.3 Hz, 2H), 7.31 (d, J = 8.3 Hz, 2H), 5.79 – 5.64 (m, 1H), 5.64 – 5.51 (m, 1H), 4.68 (d, J = 6.7 Hz, 2H), 4.18 (q, J = 7.1 Hz, 2H), 4.09 – 3.90 (m, 2H), 3.65 (dd, J = 14.8, 3.7 Hz, 1H), 2.95 (dd, J = 14.8, 5.7 Hz, 1H), 2.87 (dd, J = 5.7, 3.7 Hz, 1H), 2.43 (s, 3H),

⁸⁵ 1.29 (t, J = 7.1 Hz, 3H), 1.28 (s, 3H), 1.24 (s, 3H).¹³C-NMR (75 MHz, CDCl₃) δ(ppm): 154.9 (C), 143.6 (C), 136.6 (C), 129.8 (CH), 129.6 (CH), 127.2 (CH), 127.1 (CH), 64.1 (CH₂), 62.7 (CH₂), 61.9 (CH), 57.8 (C), 47.1 (CH₂), 45.3 (CH₂), 24.4 (CH₃), 21.5 (CH₃), 18.8 (CH₃), 14.2 (CH₃). HRMS (TOF MS ES+) *m/z* ⁹⁰ calcd. for C₁₉H₂₈NO₆S [M+H]⁺: 398.1637, found: 398.1627.

Compound 24. ¹H-NMR (300 MHz, C₆D₆) δ (ppm): 7.65 (d, J = 8.2 Hz, 2H), 6.78 (d, J = 8.2 Hz, 2H), 5.75 – 5.34 (m, 2H), 4.63 (d, J = 6.2 Hz, 2H), 3.91 (d, J = 6.1 Hz, 2H), 3.88 (q, J = 7.1 Hz, 2H), 3.35 (d, J = 14.5 Hz, 1H), 2.79 (d, J = 14.5 Hz, 1H), 2.25 (d,

⁹⁵ J = 4.8 Hz, 1H), 2.10 (d, J = 4.8 Hz, 1H), 1.90 (s, 3H), 1.20 (s, 3H), 0.90 (t, J = 7.1 Hz, 3H).¹³C-NMR (75 MHz, acetone) δ(ppm): 155.7 (C), 144.4 (C), 138.2 (C), 130.7 (CH), 130.1 (CH), 128.1 (CH), 127.9 (CH), 64.4 (CH₂), 63.5 (CH₂), 56.2 (CH₂), 53.6 (CH), 51.9 (CH₂), 46.3 (CH₂), 21.5 (CH₃), 19.2 (CH₃), 14.6
¹⁰⁰ (CH₃). HRMS (TOF MS ES+) *m/z* calcd. for C₁₈H₂₆NO₆S

 $[M+H]^+$: 384.1481, found: 384.1476. **Compound 26.** ¹H-NMR (300 MHz, C₆D₆) δ (ppm): 8.22 – 8.11 (m, 4H), 7.09 – 6.93 (m, 6H), 6.08 (dt, *J* = 11.0, 6.5 Hz, 1H), 5.55 (dt, *J* = 11.0, 6.6 Hz, 1H), 4.43 (d, *J* = 6.8 Hz, 2H), 3.88 (q, *J* =

¹⁰⁵ 7.1 Hz, 2H), 3.49 (t, J = 4.9 Hz, 1H), 3.36 (d, J = 6.5 Hz, 2H), 2.81 (dd, J = 16.1, 4.9 Hz, 1H), 2.50 (dd, J = 16.1, 4.9 Hz, 1H), 1.16 (s, 3H), 1.02 (s, 3H), 0.91 (t, J = 7.1 Hz, 3H).¹³C-NMR (75 MHz, C₆D₆) δ (ppm): 155.4 (C), 137.4 (C), 137.2 (C), 134.6 (CH), 134.5 (CH), 132.0 (CH), 131.9 (CH), 128.8 (CH), 128.7 (CH),

¹¹⁰ 127.6 (CH), 126.8 (CH), 89.8 (C), 63.9 (CH₂), 62.8 (CH₂), 58.7 (CH), 58.5 (C), 30.6 (CH₂), 28.9 (CH₂), 24.5 (CH₃), 18.8 (CH₃), 14.2 (CH₃). HRMS (TOF MS ES+) m/z calcd. for C₂₅H₃₀O₈S₂Na [M+Na]⁺: 545.1274, found: 545.1260.

Compound 28. ¹H-NMR (300 MHz, CDCl₃) δ (ppm): 5.31 (t, *J* = 115 7.3 Hz, 1H), 4.42 (s, 2H), 4.13 (q, *J* = 7.1 Hz, 2H), 3.69 (s, 3H), 3.68 (s, 3H), 3.57 (s, 2H), 2.80 (dd, *J* = 6.9, 5.2 Hz, 1H), 2.71 (d,

This journal is © The Royal Society of Chemistry [year]

Journal Name, [year], [vol], 00-00 | 5

J = 7.3 Hz, 2H), 2.19 (dd, J = 14.9, 5.2 Hz, 1H), 2.03 (dd, J = 2 14.9, 6.9 Hz, 1H), 1.63 (s, 3H), 1.30 (s, 3H), 1.24 (t, J = 7.1 Hz, 3 3H).¹³C-NMR (75 MHz, CDCl₃) δ(ppm): 171.3 (C), 171.2 (C), 4 155.0 (C), 134.1 (C), 122.6 (CH), 72.7 (CH₂), 64.0 (CH₂), 63.5 5 5 (CH₂), 60.6 (CH), 60.4 (C), 56.3 (C), 52.8 (CH₃), 52.7 (CH₃), 6 32.0 (CH₂), 31.6 (CH₂), 19.9 (CH₃), 14.2 (CH₃), 14.0 (CH₃). 7 HRMS (TOF MS ES+) m/z calcd. for $C_{18}H_{28}O_9Na$ [M+Na]⁺: 8 411.1625, found: 411.1624. 9 **Compound 30.** ¹H-NMR (300 MHz, CDCl₃) δ(ppm): 5.72 – 5.59 10 10 (m, 1H), 5.53 - 5.40 (m, 1H), 4.61 (d, J = 6.8 Hz, 2H), 4.14 (q, J)11 = 7.1 Hz, 2H), 3.67 (s, 6H), 2.65 (d, J = 7.6 Hz, 2H), 2.53 (dd, J 12 = 11.9, 4.7 Hz, 2H), 1.92 (t, J = 8.3 Hz, 2H), 1.51 – 1.31 (m, 2H), 13 1.26 (t, J = 7.1Hz, 3H), 1.25 (s, 3H).¹³C-NMR (75 MHz, CDCl₃) 14 δ(ppm): 171.2 (C), 155.0 (C), 128.3 (CH), 127.0 (CH), 64.0 15 15 (CH₂), 63.0 (CH₂), 57.0 (C), 56.4 (C), 53.5 (CH₂), 52.6 (CH₃), 16 31.3 (CH₂), 30.8 (CH₂), 28.2 (CH₂), 20.8 (CH₃), 14.3 (CH₃). 17 HRMS (TOF MS ES+) m/z calcd. for $C_{17}H_{27}O_8$ [M+H]⁺: 18 359.1706, found: 359.1719. 19 General procedure for the intramolecular epoxide allylation. 20 20 Rigorously deoxygenated dry THF (10 mL) was added to a 21 previously deoxygenated mixture of Cp2TiCl2 (0.2 mmol), Mn 22 (8.0 mmol) under Ar atmosphere, and the suspension was stirred 23 at room temperature until it turned green (about 10 min). A 24 solution of the previously synthesized polyfunctionalized 25 25 substrate (1.0 mmol) in THF (2 mL), Me₃SiCl (4.0 mmol) and 26 2,4,6-collidine (6.0 mmol) were then added. The reaction mixture 27 was stirred at room temperature for 16 h and then diluted with 28 EtOAc, washed with HCl (10%), dried over anhydrous Na₂SO₄ 29 and the solvent removed. The residue was submitted to flash 30 30 column chromatography (SiO₂, EtOAc:Hexane mixtures) to give 31 the corresponding cyclic products. 32 Characterization data of cyclic products 2, 4, 5, 7, 8, 10, 12, 33 14, 15, 17, 19, 21, 23, 25, 27, 29, and 31. (See SI for numbering 34 and copies of ¹H-NMR and ¹³C-NMR spectra). 35 35 Compound 2. Colorless oil; 65 - 85% yield.¹H-NMR (500 MHz, 36 CDCl₃) δ (ppm): 5.69 (ddd, J = 17.2, 10.4, 8.1 Hz, 1H), 5.06 (dd, 37 J = 10.4, 1.8 Hz, 1H), 5.03 (d, J = 17.2 Hz, 1H), 3.74 (s, 3H), 38 3.69 (s, 3H), 3.40 (dd, J = 12.1, 4.2 Hz, 1H), 2.37 (ddd, J = 12.1, 39 4.2, 2.4 Hz, 1H), 2.10 (dt, J = 13.6, 2.7 Hz, 1H), 1.90 (ddd, J = 40 ⁴⁰ 12.7, 8.1, 2.7 Hz, 1H), 1.82 (t, *J* = 12.7 Hz, 1H), 1,80 (t, *J* = 13.2 41 Hz, 1H), 0.95 (s, 3H), 0.77 (s, 3H); NOE-diff. experiment: proton irradiated, (NOEs observed): H-7, (H2-8, H-5); H-3, (H-2b H-42 5).¹³C-NMR (75 MHz, CDCl₃) δ(ppm): 171.9 (C), 171.5 (C), 43 137.7 (CH), 116.6 (CH₂), 74.4 (CH), 54.9 (C), 52.9 (CH₃), 52.8 44 45 (CH3), 47.0 (CH), 38.0 (C), 34.7 (CH2), 31.9 (CH2), 25.6 (CH3), 45 12.3 (CH₃). HRMS (TOF MS ES+) m/z calcd. for C₁₄H₂₂O₅Na 46 [M+Na]⁺: 293.1359, found: 293.1351. 47 **Compound 4.** Colorless oil; 40% yield.¹H-NMR (500 MHz, 48 CDCl₃) δ (ppm): 9.74 (s, 1H), 3.77 (s, 3H), 3.69 (s, 3H), 3.46 (dd, 49 $_{50} J = 11.9, 3.8 \text{ Hz}, 1\text{H}$, 2.57 (dd, J = 16.8, 2.4 Hz, 1H), 2.39 (ddd, 50 J = 13.2, 4.0, 2.3 Hz, 1H), 2.17 (dd, J = 10.0, 2.9 Hz, 1H), 2.12 51 (dt, J = 13.2, 3.5 Hz, 1H), 1.97 – 1.86 (m, 1H), 1.80 (t, J = 12.6 52 Hz, 1H), 1.61 (t, J = 13.4 Hz, 1H), 0.99 (s, 3H), 0.77 (s, 3H); 53 NOE-diff. experiment: proton irradiated, (NOEs observed): H-7a, 54 55 (H-7b, H-5); H-3 (H-2a, H-5), H-2a (H-2b, H-3).¹³C-NMR (125 55 MHz, CDCl₃) δ(ppm): 201.8 (C), 171.5 (C), 171.2 (C), 73.9 56 (CH), 54.7 (C), 53.0 (CH₂), 52.9 (CH₂), 44.6 (CH₂), 38.0 (C), 57 36.5 (CH), 34.7 (CH₂), 32.5 (CH₂), 25.1 (CH₃), 12.4 (CH₃). 58 59 60

1

HRMS (TOF MS ES+) m/z calcd. for $C_{14}H_{22}O_6Na [M+Na]^+$: 60 309.1308, found: 309.1308.

- **Compound 5.** Colorless oil; 23% yield.¹H-NMR (400 MHz, CDCl₃) (ppm): 3.75 (s, 3H), 3.71 (s, 3H), 3.71 - 3.57 (m, 2H), 3.34 (dd, J = 11.8, 4.0 Hz, 1H), 2.39 (ddd, J = 13.2, 3.9, 2.3 Hz, 1H), 2.25 (dt, J = 13.8, 2.7 Hz, 1H), 1.86 (t, J = 12.0 Hz, 1H),
- 65 1.85 1.77 (m, 1H), 1.63 1.57 (bs, 2H), 1.51 (t, J = 13.0 Hz, 1H), 1.38 – 1.17 (m, 2H), 1.00 (s, 3H), 0.77 (s, 3H).¹³C-NMR (100 MHz, CDCl₃) (ppm): 171.9 (C), 171.5 (C), 74.6 (CH), 61.5 (CH₂), 54.9 (C), 53.0 (CH₂), 52.9 (CH₂), 38.6 (CH), 38.3 (C), 34.7 (CH₂), 32.2 (CH₂), 31.7 (CH₂), 24.9 (CH₃), 12.2 (CH₃).
- 70 HRMS (TOF MS ES+) m/z calcd. for C14H24O6Na [M+Na]+: 311.1465, found: 311.1468.
- Compound 7 and 8. Compounds 7 and 8 were isolated as a mixture in a 7/8 ratio of 1.6/1. Colorless oil; 53% yield. (Compounds 7 (33% yield) and 8 (20% yield) were not
- 75 separated).¹H-NMR (400 MHz, CDCl₃) δ (ppm): 5.89 (dd, J = 18.7, 7.0 Hz, 1H, 7), 5.67 (d, *J* = 18.7 Hz, 1H, 7), 3.75 (s, 3H, 7), 3.74 (s, 3H, 8), 3.71 (s, 3H), 3.40 (dd, J = 12.0, 4.1 Hz, 1H, 7), 3.34 (dd, J = 12.0, 4.0 Hz, 1H, 8), 2.37 (ddd, J = 12.6, 4.0, 2.2 Hz, 1H), 2.11 (dt, J = 12.8, 2.0 Hz, 1H), 1.96 \Box 1.74 (m, 3H),
- ⁸⁰ 1.60 \Box 1.50 (m, 1H, 8), 1.40 (t, J = 13.0 Hz, 1H, 8), 0.99 (s, 3H, 8), 0.95 (s, 3H, 7), 0.94 – 0.80 (m, 2H, 8) 0.77 (s, 3H, 7), 0.73 (s, 3H, 8), 0.72 - 0.61 (m, 1H, 8), 0.35 - 0.20 (m, 1H, 8), 0.04 (s, 9H, 7), 0.03 (s, 9H, 8).¹³C-NMR (100 MHz, CDCl₃) δ(ppm): 172.2 (C), 171.9 (C), 171.6 (C), 171.5 (C), 145.2 (CH, 7), 132.6
- 85 (CH, 7), 74.6 (CH), 74.4 (CH), 54.9 (C), 54.8 (C), 53.0 (CH₃), 52.9 (CH₃), 52.8 (CH₃), 52.7 (CH₃), 49.1 (CH), 45.7 (CH), 38.7 (C), 38.1 (C), 34.8 (CH₂), 34.6 (CH₂), 31.7 (CH₂), 31.2 (CH₂), 25.6 (CH₃), 25.0 (CH₃), 23.2 (CH₂, 8), 15.1 (CH₂, 8), 12.4 (CH₃), 12.1 (CH₃), -1.6 (CH₃), -1.1 (CH₃). HRMS (TOF MS ES+) m/z
- 90 calcd. for C17H30O5Si [M]+: 342.1863, found: 342.1867. HRMS for compound 8 was not found. Compound 10. Colorless oil; 53% yield.¹H-NMR (500 MHz, CDCl₃) δ (ppm): 5.74 – 5.62 (m, 1H), 5.06 (d, J = 16.1 Hz, 1H), 5.05 (d, J = 11.3 Hz, 1H), 3.71 (s, 6H), 3.41 (d, J = 10.9 Hz, 1H),
- 95 3.36 (d, J = 10.9 Hz, 1H), 2.59 2.49 (m, 1H), 2.43 (d, J = 14.2Hz, 1H), 2.42 \Box 2.37 (m, 1H), 2.28 (t, J = 12.8 Hz, 1H), 2.06 (d, J = 14.2 Hz, 1H), 0.82 (s, 3H); NOE-diff. experiment: proton irradiated, (NOEs observed): H₃-8, (H-2b, H₂-9, H-6), H-6, (H₂-5, H-4, H₃-8), H-4, (H-6, H₂-7, H₂-5, H₂-9). ¹³C-NMR (125 MHz,
- 100 CDCl₃) δ(ppm): 173.5 (C), 172.9 (C), 137.3 (CH), 116.7 (CH₂), 69.3 (CH₂), 57.9 (C), 53.1 (CH₃), 52.9 (CH₃), 48.1 (CH), 46.9 (C), 43.5 (CH₂), 38.5 (CH₂), 19.3 (CH₃). HRMS (TOF MS ES+) m/z calcd. for C₁₃H₂₀O₅Na [M+Na]⁺: 279.1202, found: 279.1200. Compound 12. Compound 12 was obtained as a 7/3 mixture of
- 105 cis/trans diastereoisomers. Colorless oil; 60% yield.¹H-NMR $(300 \text{ MHz}, \text{CDCl}_3) \delta(\text{ppm})$: 5.85 (ddd, J = 17.3, 10.2, 8.5 Hz,1H, cis-12), 5.70 (ddd, J = 17.4, 10.1, 8.1 Hz, 1H, trans-12), 5.09 (d, J = 16.6 Hz, 1H, cis-12), 5.05 (d, J = 8.6 Hz, 1H, cis-12), 5.07□ 4.95 (m, 2H, *trans*-12), 3.72 (bs, 6H), 3.68 □ 3.52 (m, 2H,
- 110 trans-12), 3.61 (dd, J = 11.1, 6.4 Hz, 1H, cis-12), 3.48 (dd, J =11.1, 6.3 Hz, 1H, *cis*-12), 2.88
 2.74 (m, 1H), 2.54
 2.23 (m, 3H), 2.19-1.98 (m, 2H).¹³C-NMR (75 MHz, CDCl₃) δ(ppm): 173.1 (C), 173.0 (C), 172.9 (C), 172.0 (C), 140.3 (CH), 137.8 (CH), 116.1 (CH₂), 115.9 (CH₂), 64.4 (CH₂), 63.2 (CH₂), 59.2 115 (C), 58.8 (C), 53.0 (CH₃), 52.9 (CH₃), 47.3 (CH), 46.5 (CH),
- 45.1 (C), 44.9 (CH), 40.9 (CH₂), 39.1 (CH₂), 37.1 (CH₂), 36.5

6 | Journal Name, [year], [vol], 00-00

60

1 2 3	(CH ₂). HRMS (TOF MS ES+) m/z calcd. for C ₁₂ H ₁₈ O ₅ Na [M+Na] ⁺ : 265.1046, found: 265.1054. Compound 12 was	
4 5 6	oxidized to simplify the ¹ H-NMR spectrum and confirm the ratio of diastereomers obtained. See SI for further details. 5 Compound 14 and 15. Compounds 14 and 15 were both	60
7	obtained as a mixture of diastereoisomers. Yellowish oil; 55% viold Compounds 14 and 15 were not compared ¹ U NMB (400	
8	MH_{z} CDCl ₂) δ (npm): 5.90 - 5.73 (m 1H 14 or 15) 5.63 - 5.48	65
9	(m, 1H, 14 or 15), 5.10 - 4.96 (m, 2H), 3.82 - 3.72 (m, 1H, 14 or 16), 5.10 - 4.96 (m, 2H), 3.82 - 3.72 (m, 1H, 14 or 16), 5.10 - 4.96 (m, 2H), 5.10 - 5.	0.
10	10 15), 3.73 (bs, 3H, 14 or 15), 3.71 (bs, 3H), 3.69 (bs, 3H, 14 or	
11	15), 3.37 - 3.26 (m, 1H, 14 or 15), 2.61 - 2.39 (m, 2H), 2.35 -	
12	2.14 (m, 2H), 2.08 - 1.96 (m, 1H), 1.93 - 1.72 (m, 1H), 1.69 -	
13	1.54 (m, 1H), 1.15 (d, J = 4.3 Hz, 3H, 15), 0.96 (d, J = 6.0 Hz,	70
15	3H, 14). HRMS (TOF MS ES+) m/z calcd. for C ₁₃ H ₂₀ O ₅ Na	
16	15 [M+Na]: 279.1202, found: 279.1210. The mixture of compounds	
17	14 and 15 was oxidized to simplify the H-INMR spectrum and	
18	details	75
19	Compound 17. Colorless oil: 50% vield ¹ H-NMR (400 MHz	/3
20	$_{20}$ CDCl ₃) δ (ppm): 5.29 (s, 1H), 5.02 (s, 1H), 4.54 (s, 2H), 4.20 (g, J	
21	= 7.1 Hz, 2H), 3.75 (s, 3H), 3.70 (s, 3H), 3.42 (dd, $J = 12.0, 4.0$	
22	Hz, 1H), 2.39 (ddd, J = 13.2, 4.0, 2.3 Hz, 1H), 2.14 (dt, J = 13.7,	
23	2.6 Hz, 1H), 2.00 (t, J = 14.2 Hz, 1H), 1.91 – 1.85 (m, 1H), 1.84	80
24	(t, J = 14.2 Hz, 1H), 1.31 (t, J = 7.1 Hz, 3H), 0.95 (s, 3H), 0.87 (s,	
25	25 3H); NOE-diff. experiment: proton irradiated, (NOEs observed):	
20 27	H-3, (H-2a, H-5). ¹³ C-NMR (100 MHz, CDCl ₃) δ(ppm): 171.7	
21	(C), 171.3 (C), 155.1 (C), 143.5 (C), 115.3 (CH ₂), 74.7 (CH),	
20	$(1.1 (CH_2), 64.2 (CH_2), 54.9 (C), 53.0 (CH_3), 52.8 (CH_3), 44.6 (CH) 20.1 (C) 24.6 (CH) 22.5 (CH) 25.7 (CH) 14.4 (CH)$	85
30	(CH), 39.1 (C), 34.6 (CH ₂), 32.5 (CH ₂), 25.7 (CH ₃), 14.4 (CH ₃), ≈ 12.7 (CH) HPMS (TOF MS ES+) m/z called for C H O Na	
31	$[M+Na]^+$: 395 1676 found: 395 1668	
32	Compound 19. Colorless oil: 54% vield. ¹ H-NMR (500 MHz.	
33	CDCl ₃) δ (ppm): 7.31 (t, $J = 7.3$ Hz, 2H), 7.25 – 7.20 (m, 1H),	90
34	7.14 (dd, <i>J</i> = 8.3, 1.4 Hz, 2H), 5.43 (ddd, <i>J</i> = 17.5, 10.4, 7.1 Hz,	
35	$_{35}$ 1H), 4.83 (d, $J = 16.1$ Hz, 1H), 4.81 (d, $J = 9.4$ Hz, 1H), 3.86 (td,	
36	<i>J</i> = 11.2, 4.7 Hz, 1H), 3.82 (s, 3H), 3.75 (s, 3H), 2.74 (ddd, <i>J</i> =	
37	13.1, 4.7, 2.2 Hz, 1H), $2.55 - 2.44$ (m, 2H), 2.27 (dd, $J = 11.2$,	
38	10.6 Hz, 1H), 1.82 (dd, $J = 13.1$, 11.2 Hz, 1H), 1.74 (dd, $J = 13.4$,	95
39	12.2 Hz, 1H). NOE-diff. experiment: proton irradiated, (NOEs	
40	⁴⁰ observed): H-7, (H ₂ -8, H-4, H-6b), H-4, (H-2b, H-6b), H-3, (H ₂ - 2, H 5) 13 C NMP (125 MHz, CDC1) S(arm), 171.8, (C) 171.4	
41 42	2, H-5). C-NMR (125 MHZ, CDCl ₃) 0 (ppm): 1/1.8 (C), 1/1.4 (C) 140.1 (C) 139.6 (CH) 128.8 (CH) 127.3 (CH) 115.5	
42	(CH ₂) 71.2 (CH) 57.4 (CH) 54.8 (C) 53.1 (CH ₂) 52.9 (CH ₂)	100
43	42.3 (CH), 38.1 (CH ₂), 36.6 (CH ₂), HRMS (TOF MS ES+) m/z	100
45	45 calcd. for $C_{18}H_{22}O_5Na[M+Na]^+$: 341.1359, found: 341.1359.	
46	Compound 21. Colorless oil; 58% yield. ¹ H-NMR (500 MHz,	
47	CDCl ₃) δ (ppm): 5.64 (ddd, $J = 17.2$, 10.1, 9.0 Hz, 1H), 5.10 (dd,	
48	J = 17.2, 1.5 Hz, 1H), 5.03 (dd, J = 10.1, 1.5 Hz, 1H), 3.75 (s,	105
49	3H), 3.69 (s, 3H), 3.62 (dd, <i>J</i> = 11.0, 4.4 Hz, 1H), 3.40 (dd, <i>J</i> =	
50	⁵⁰ 11.0, 6.1 Hz, 1H), 2.41 (ddd, <i>J</i> = 13.5, 6.0, 3.2 Hz, 1H), 2.35 –	
51	2.27 (m, 1H), 2.10 - 1.96 (m, 1H), 1.84 (ddd, J = 13.6, 7.1, 3.9	
52	Hz, IH), $1./1$ (td, $J = 13.6$, 3.9 Hz, IH), $1.63 - 1.53$ (m, IH), 1.20 - 1.14 (m, 2H) 2D NOESY grader characteristic H 5 (H 0)	
53	1.59 - 1.14 (m, 2n). 2D- NOESY spectra observed: H-5 (H-9); H-5 (H-6): H-5 (H-3a): H-4 (H - 11): H 4 (H 2b) 13 C NMD (125)	110
54 55	55 MHz (DCl ₂) δ (nnm): 172 69 (C) 171 52 (C) 141 76 (CH)	
00 56	115.87 (CH ₂), 66.33 (CH ₂), 54.90 (C), 52.85 (CH ₂), 52.67 (CH ₂)	
50	43.34 (CH), 41.80 (CH), 37.44 (CH ₂), 30.73 (CH ₂), 25.59 (CH ₃).	
58		115
59		

HRMS (TOF MS ES+) m/z calcd. for $C_{13}H_{20}O_5Na$ [M+Na]⁺: 279.1201, found: 279.1215.

- **Compound 23.** White solid; M. p. 121 \square 123 °C. 76% yield. ¹H-NMR (500 MHz, CDCl₃) δ(ppm): 7.65 (d, *J* = 8.3 Hz, 2H), 7.33 (d, J = 8.3 Hz, 2H), 5.58 (ddd, J = 17.1, 10.4, 8.6 Hz, 1H), 5.12 (d, J = 10.4 Hz, 1H), 5.09 (d, J = 17.1 Hz, 1H), 3.65 (ddd, J =11.2, 4.8, 1.7 Hz, 1H), 3.54 (dd, J = 10.5, 4.8 Hz, 1H), 3.46 (ddd,
- J = 11.8, 4.2, 1.7 Hz, 1H), 2.44 (s, 3H), 2.35 (dd, J = 23.9, 11.4Hz, 2H), 2.21 – 2.14 (m, 1H), 0.97 (s, 3H), 0.65 (s, 3H). NOEdiff. experiment: proton irradiated, (NOEs observed): H-5, (H-6, H-3), H-3, (H-2, H-5).¹³C-NMR (125 MHz, CDCl₃) δ (ppm): 143.7 (C), 134.3 (CH), 129.8 (CH), 127.7 (CH), 118.7 (CH₂),
- 74.2 (CH), 49.2 (CH), 47.4 (CH₂), 46.0 (CH₂), 37.1 (C), 25.2 (CH₃), 21.7 (CH₃), 12.3 (CH₃). HRMS (TOF MS ES+) *m/z* calcd. for $C_{16}H_{24}NO_3S[M+H]^+$: 310.1471, found: 310.1481. **Compound 25.** Colorless oil; 74% yield.¹H-NMR (400 MHz,
- CDCl₃) δ (ppm): 7.70 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 8.2 Hz, 2H), 5.51 (ddd, J = 17.1, 10.3, 8.5 Hz, 1H), 5.06 (d, J = 10.3 Hz,
- 1H), 5.00 (d, J = 17.1 Hz, 1H), 3.49 (dd, J = 9.9, 8.0 Hz, 1H), 3.34 (dd, J = 17.9, 10.9 Hz, 2H), 3.29 (d, J = 9.8 Hz, 1H), 3.13 (t, J = 9.9 Hz, 1H), 3.06 (d, J = 9.8 Hz, 1H), 2.57 (dd, J = 17.1, 8.0
- Hz, 1H), 2.42 (s, 3H), 0.71 (s, 3H). NOE-diff. experiment: proton irradiated, (NOEs observed): H-6, (H-5, H₂-9, H₃-8), H-4, (H-6, H₂-7, H-5, H₂-9), H₃-8, (H-2, H₂-9, H-6).¹³C-NMR (100 MHz, CDCl₃) δ (ppm): 143.6 (C), 134.3 (CH), 129.7 (CH), 127.5 (CH), 118.4 (CH₂), 67.0 (CH₂), 56.6 (CH₂), 51.0 (CH₂), 47.1 (CH), 46.4 (C), 21.6 (CH₃), 16.9 (CH₃). HRMS (TOF MS ES+) m/z calcd. for C₁₅H₂₂NO₃S [M+H]⁺: 296.1314, found: 296.1326.
- Compound trans-27. Vitreous solid; 39% yield. ¹H-NMR (500 MHz, CDCl₃) δ(ppm): 8.14 (dd, *J* = 8.5, 1.2 Hz, 2H), 8.02 (dd, *J* = 8.5, 1.2 Hz, 2H), 7.74 (dd, J = 15.3, 7.2 Hz, 2H), 7.63 (dd, J = 15.3, 7.2 Hz, 4H), 5.70 (ddd, J = 17.2, 10.9, 8.3 Hz, 1H), 5.14 (d,
- J = 10.9 Hz, 1H), 5.13 (d, J = 17.2 Hz, 1H), 4.27 (d, J = 11.4 Hz, OH), 3.60 (ddd, J = 11.4, 4.9, 2.0 Hz, 1H), 2.92 (dd, J = 16.5, 4.9 Hz, 1H), 2.81 (ddd, J = 12.4, 8.3, 3.8 Hz, 1H), 2.52 (d, J = 18.6 Hz, 1H), 2.49 (t, J = 13.0 Hz, 1H), 2.18 (ddd, J = 15.7, 3.8, 1.7 Hz, 1H), 1.04 (s, 3H), 0.82 (s, 3H). NOE-diff. experiment: proton
- irradiated, (NOEs observed): H-5, (H-7, H-6), H-3, (H-2, H-6). ¹³C-NMR (125 MHz, CDCl₃) δ(ppm): 137.47 (CH), 135.78 (C), 135.04 (CH), 134.94 (C), 134.84 (CH), 132.04 (CH), 131.75 (CH), 128.83 (CH), 128.79 (CH), 117.67 (CH₂), 89.02 (C), 74.24 (CH), 40.32 (CH), 36.98 (C), 28.59 (CH₂), 27.34 (CH₂), 25.57
- (CH₃), 19.34 (CH₃). HRMS (TOF MS ES+) m/z calcd. for C₂₂H₂₆O₅S₂Na [M+Na]⁺: 457.1113, found: 457.1100 Compound cis-27. White solid; M. p. 153 - 156 °C. 32% yield.¹H-NMR (400 MHz, CDCl₃) δ (ppm): 8.07 (d, J = 7.6 Hz, 2H), 8.02 (d, J = 7.6 Hz, 2H), 7.76 – 7.67 (m, 2H), 7.65 – 7.56 (m, 4H), 5.64 (ddd, J = 17.3, 10.8, 8.8 Hz, 1H), 5.11 (d, J = 10.8Hz, 1H), 5.10 (d, J = 17.3 Hz, 1H), 4.24 – 4.09 (m, 1H), 2.68 (ddd, J = 12.5, 8.8, 3.8 Hz, 1H), 2.52 - 2.24 (m, 3H), 2.06 - 1.95(m, 1H), 1.02 (s, 3H), 0.71 (s, 3H). NOE-diff. experiment: proton irradiated, (NOEs observed): H-5, (H-7, H-3, H-6), H-3, (H-5, H-2).¹³C-NMR (100 MHz, CDCl₃) δ(ppm): 137.0 (CH), 135.9 (C), 134.8 (CH), 134.6 (CH), 131.7 (CH), 131.3 (CH), 128.7 (CH),
- 117.7 (CH₂), 88.6 (C), 73.0 (CH), 45.8 (CH), 37.6 (C), 30.4 (CH₂), 27.0 (CH₂), 25.3 (CH₃), 11.7 (CH₃). HRMS (TOF MS ES+) m/z calcd. for C₂₂H₂₆O₅S₂Na [M+Na]⁺: 457.1113, found: 457.1092.

This journal is © The Royal Society of Chemistry [year]

Journal Name, [year], [vol], 00-00 | 7

Compound 29. Colorless oil; 62% yield.¹H-NMR (400 MHz, CDCl₃) δ (ppm): 5.30 (s, 1H), 5.07 (s, 1H), 4.54 (s, 2H), 4.22 (q, *J* = 7.1 Hz, 2H), 3.87 (dd, *J* = 12.2, 4.2 Hz, 1H), 3.77 (s, 3H), 3.71 (s, 3H), 3.60 (d, *J* = 10.8 Hz, 1H), 3.38 (d, *J* = 10.8 Hz, 1H), 2.42 (ddd, *J* = 13.2, 4.1, 2.2 Hz, 1H), 2.19 (dt, *J* = 13.5, 2.7 Hz, 1H), 2.16 - 2.12 (m, 1H), 2.01 (t, *J* = 13.1 Hz, 1H), 1.95 (t, *J* = 12.5 Hz, 1H), 1.32 (t, *J* = 7.1 Hz, 3H), 0.92 (s, 3H). 2D- NOESY spectra observed: H-3 (H-2a); H-3 (H-5); H-3 (H-11); H-5 (H-11).¹³C-NMR (100 MHz, CDCl₃) δ (ppm): 171.6 (C), 171.2 (C), 10 155.2 (C), 143.3 (C), 116.1 (CH₂), 71.2 (CH), 71.1 (CH₂), 68.3 (CH₂) 64.4 (CH₂) 54.7 (C) 53.1 (CH₂) 52.9 (CH₂) 43.1 (C)

- (CH₂), 64.4 (CH₂), 54.7 (C), 53.1 (CH₃), 52.9 (CH₃), 43.1 (C), 39.0 (CH), 34.2 (CH₂), 32.4 (CH₂), 14.4 (CH₃), 9.3 (CH₃). HRMS (TOF MS ES+) m/z calcd. for C₁₈H₂₈O₉Na [M+Na]⁺: 411.1625, found: 411.1627.
- ¹⁵ Compound 31. Yellowish oil; 73% yield. ¹H-NMR (400 MHz, CDCl₃) δ(ppm): 5.69 (ddd, *J* = 17.2, 10.2, 8.8 Hz, 1H), 5.09 (d, *J* = 17.2 Hz, 1H), 5.05 (d, *J* = 10.2 Hz, 1H), 3.75 (s, 3H), 3.70 (s, 3H), 3.34 (d, *J* = 11.0 Hz, 1H), 3.29 (d, *J* = 11.0 Hz, 1H), 2.30 2.20 (m, 2H), 2.15 (ddd, *J* = 11.0, 3.5, 2.4 Hz, 1H), 1.89 (td, *J* = 20 13.7, 3.5 Hz, 1H), 1.82 (t, *J* = 13.0 Hz, 1H), 1.50 (td, *J* = 13.9, 3.7 Hz, 1H), 1.35 (dt, *J* = 13.9, 3.6 Hz, 1H), 0.84 (s, 3H). NOE-diff.
 - experiment: proton irradiated, (NOEs observed): H-7, (H-8, H₃-9), H₂-10, (H-5, H₃-9), H₃-9, (H-7, H₂-10).¹³C-NMR (100 MHz, CDCl₃) δ(ppm): 172.7 (C), 171.5 (C), 139.3 (CH), 116.4 (CH₂), ²⁵ 71.8 (CH₂), 55.0 (C), 52.8 (CH₃), 52.6 (CH₃), 42.8 (CH), 37.3 (C) 22.4 (CH) 21.5 (CH) 26.4 (CH) 14.9 (CH) UBMS
- (C), 32.4 (CH₂), 31.5 (CH₂), 26.4 (CH₂), 14.9 (CH₃). HRMS (TOF MS ES+) m/z calcd. for $C_{14}H_{22}O_5Na [M+Na]^+$: 293.1365, found: 293.1359.

Notes and references

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

53

54

55

56

57

58

59 60

- ³⁰ ^aOrganic Chemistry Department, University of Granada. C/ Severo Ochoa, S/N, 18071 Granada, Spain. Fax:+31 958 243320; Tel: +31 958 243319; E-mail: <u>jmcuerva@ugr.es</u>, <u>araceligc@ugr.es</u>
- † Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See 35 DOI: 10.1039/b000000x/
- 1. B. M. Trost and I. Fleming, *Comprehensive Organic Synthesis*, Pergamon Press plc, Oxford, 1991, vol. 4.
- 2. R. G. Larock, *Comprehensive Organic Transformations*, 40 VCH Publishers, 1989.
- 3. S. H. Krake and S. C. Bergmeier, *Tetrahedron*, 2010, **66**, 7337–7360.
- 4. I. Fleming, A. Barbero, and D. Walter, *Chem. Rev.*, 1997, **97**, 2063–2192.
- ⁴⁵ 5. D. Miguel, A. G. Campaña, J. Justicia, and J. M. Cuerva, *e-EROS. Encycl. Reagents Org. Synth.*, 2013. For more recent applications of Cp₂TiCl, see for example: (a) J. Streuff, M. Feurer, P. Bichovski, G. Frey and U. Gellrich, *Angew. Chem. Int. Ed.* 2012, **51**, 8661–8664. (b) G. Frey, H.-T. Luu, P.
- Bichovski, M. Feurer and J. Streuff, Angew. Chem. Int. Ed. 2013, 52. 7131–7134. (c) J. Muñoz-Bascón, C. Hernández-Cervantez, N. M. Padial, M. Álvarez-Corral, A. Rosales, I. Rodríguez-García and J. E. Oltra, Chem. Eur. J., 2014, 20, 801–810. (d) Y. Zhao and D. J. Weix, J. Am. Chem. Soc., 2014, 136, 48–51.
 - 6. W. A. Nugent and T. V. RajanBabu, J. Am. Chem. Soc., 1988, 110, 8561-8562.
 - 7. T. V. RajanBabu and W. A. Nugent, J. Am. Chem. Soc., 1989, 111, 4525–4527.
 - ⁶⁰ 8. T. V. RajanBabu, W. A. Nugent, and M. S. Beattie, *J. Am. Chem. Soc.*, 1990, **112**, 6408–6409.
 - T. V. Rajanbabu and W. A. Nugent, J. Am. Chem. Soc., 1994, 116, 986–997.

- 10. A. Gansäuer, H. Bluhm, and M. Pierobon, J. Am. Chem. Soc., 1998, **120**, 12849–12859.
 - 11. A. Gansäuer, T. Lauterbach, H. Bluhm, and M. Noltemeyer, Angew. Chem. Int. Ed., 1999, **38**, 2909–2910.
 - 12. A. Gansäuer, H. Bluhm, B. Rinker, S. Narayan, M. Schick, T. Lauterbach, and M. Pierobon, *Chem. Eur. J.*, 2003, **9**, 531–542.
 - A. Cangönül, M. Behlendorf, A. Gansäuer, and M. van Gastel, *Inorg. Chem.*, 2013, **52**, 11859–11866.
 - 14. A. Fernández-Mateos, P. Herrero Teijón, and R. Rubio González, *Tetrahedron*, 2013, **69**, 1611–1616.
 - ⁷⁵ 15. A. Fernández-Mateos, S. E. Madrazo, P. H. Teijón, R. R. Clemente, R. R. González, and F. S. González, *J. Org. Chem.*, 2013, **78**, 9571–9578.
 - A. F. Barrero, J. F. Quílez del Moral, E. M. Sánchez, and J. F. Arteaga, *Eur. J. Org. Chem.*, 2006, 1627–1641.
 - 80 17. J. M. Cuerva, J. Justicia, J. L. Oller-López, and J. E. Oltra, *Top. Curr. Chem.*, 2006, **264**, 63–91.
 - A. Gansäuer, J. Justicia, C.-A. Fan, D. Worgull, and F. Piestert, *Top. Curr. Chem.*, 2007, 279, 25–52.
- S. P. Morcillo, A. Martínez-Peragón, V. Jakoby, A. J. Mota, C. Kube, J. Justicia, J. M. Cuerva, and A. Gansauer, *Chem. Commun.*, 2014, **50**, 2211–2213.
- J. Justicia, A. Rosales, E. Buñuel, J. L. Oller-López, M. Valdivia, A. Haïdour, J. E. Oltra, A. F. Barrero, D. J. Cárdenas, and J. M. Cuerva, *Chem. Eur. J.*, 2004, **10**, 1778–1788.
- 21. J. Justicia, J. L. Oller-López, A. G. Campaña, J. E. Oltra, J. M. Cuerva, E. Buñuel, and D. J. Cárdenas, *J. Am. Chem. Soc.*, 2005, **127**, 14911–14921.
- 22. T. Jiménez, S. P. Morcillo, A. Martín-Lasanta, D. Colladosanz, D. J. Cárdenas, A. Gansäuer, J. Justicia, and J. M. Cuerva, *Chem. – Eur. J.*, 2012, **18**, 12825–12833.
- J. Justicia, T. Jiménez, D. Miguel, R. Contreras-Montoya, R. Chahboun, E. Álvarez-Manzaneda, D. Collado-Sanz, D. J. Cárdenas, and J. M. Cuerva, *Chem. Eur. J.*, 2013, 19, 14484–14495.
- 24. (a) J. Justicia, L. Á. de Cienfuegos, A. G. Campaña, D. Miguel, V. Jakoby, A. Gansäuer, and J. M. Cuerva, *Chem. Soc. Rev.*, 2011, 40, 3525–3537. (b) S. P. Morcillo, D. Miguel, A. G. Campaña, L. Álvarez de Cienfuegos, J. Justicia and J. M. Cuerva, *Org. Chem. Front.*, 2014, DOI:10.1039/C3QO00024A.
 - V. Domingo, J. F. Arteaga, J. L. López Pérez, R. Peláez, J. F. Quílez del Moral, and A. F. Barrero, J. Org. Chem., 2012, 77, 341–350.
- ¹¹⁰ 26. M. C. Pérez Morales, J. V. Catalán, V. Domingo, M. Jaraíz, M. M. Herrador, J. F. Quílez del Moral, J. López-Pérez, and A. F. Barrero, *Chem. - Eur. J.*, 2013, 19, 6598–6612.
 - M. Paradas, A. G. Campaña, R. E. Estévez, L. Alvarez de Cienfuegos, T. Jiménez, R. Robles, J. M. Cuerva, and J. E.
 Oltra, J. Org. Chem., 2009, 74, 3616–3619.
 - 28. M. Paradas, A. G. Campaña, M. L. Marcos, J. Justicia, A. Haidour, R. Robles, D. J. Cárdenas, J. E. Oltra, and J. M. Cuerva, *Dalton. Trans.*, 2010, **39**, 8796.
- 29. A. F. Barrero, J. M. Cuerva, M. M. Herrador, and M. V. Valdivia, *J. Org. Chem.*, 2001, **66**, 4074–4078.
 - 30. A. F. Barrero, A. Rosales, J. M. Cuerva, and J. E. Oltra, *Org. Lett.*, 2003, **5**, 1935–1938.
 - K. V. Bhaskar and L. N. Mander, *Tetrahedron Lett.*, 1996, 37, 719–722.
- 125 32. It is known that in the presence of a better H-atom source the reduction process yielding alcohols is favored: (a) J. Justicia, J. E. Oltra, A. F. Barrero, A. Guadaño, A. González-Coloma, and J. M. Cuerva, *Eur. J. Org. Chem.*, 2005, 712–718. (b) T. Jiménez, A. G. Campaña, B. Bazdi, M. Paradas, D. Arráez-Román, A. Segura-Carretero, A. Fernández-Gutiérrez, J. E. Oltra, R. Robles, J. Justicia, J. M. Cuerva, *Eur. J. Org. Chem.*, 2010, 4288–4295. Nevertheless, in this case the reduction process can take place on intermediate radicals type-V (Scheme 1), thus competing with the desired

8 | *Journal Name*, [year], **[vol]**, 00–00

This journal is © The Royal Society of Chemistry [year]

- cyclization reaction.
 33. K. Daasbjerg, H. Svith, S. Grimme, M. Gerenkamp, C. Mück-Lichtenfeld, A. Gansäuer, A. Barchuk, and F. Keller, *Angew. Chem. Int. Ed.*, 2006, 45, 2041–2044.
 5 34. A. L. J. Beckwith and C. H. Schiesser, *Tetrahedron*, 1985, 41, 3925–3941.
- - 35. D. C. Spellmeyer and K. N. Houk, J. Org. Chem., 1987, 52, 959–974.

 Diastereoselective synthesis of vinyl substituted carbo- and heterocyclic products is achieved by intramolecular radical cyclization of epoxy allyl carbonates

- Selective depending on n and R₁₋₃

- 5- and 6- membered carbo- and heterocycles
- Highly diasterecselective

- Selective depending on n and R1-3
- 5- and 6- membered carbo- and heterocycles
- Highly diastereoselective