This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Diindenocarbazole-based large bandgap copolymers for high-performance organic solar cells with large open-circuit voltages

Lixin Wang, Dongdong Cai, Zhigang Yin, Changquan Tang, Shan-Ci Chen and Qingdong Zheng,*

Diindenocarbazole-based large bandgap copolymers exhibit a power conversion efficiency of 7.26% with a high open-circuit voltage of 0.93 V.
Diindenocarbazole-based large bandgap copolymers for high-performance organic solar cells with large open circuit voltages

Lixin Wang, Dongdong Cai, Zhigang Yin, Changquan Tang, Shan-Ci Chen and Qingdong Zheng

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

Three donor-acceptor alternating copolymers abbreviated as PC1, PC2, and PC3, respectively, have been designed and synthesized by using diindenocarbazole (DIC) and dithienylbenzothiadiazole (DTBT) units. Through backbone manipulation, copolymers with large bandgaps (~2.0 eV) and deep-lying HOMO energy levels (below -5.41 eV) are obtained. The side chains have also been investigated to tune the intermolecular interactions and morphology of the copolymers blended with PC71BM. Polymer solar cells (PSCs) based on PC2:PC71BM exhibit an outstanding power conversion efficiency (PCE) of 7.26%, which represents one of the highest PCEs ever reported for PSCs while combining an open-circuit voltage (V_{oc}) of 0.93 V and a large optical bandgap of 2.01 eV. Under the similar device fabrication conditions, regular PSCs based on PC1 and PC3 achieve PCEs of 2.45% and 6.68%, respectively. Moreover, inverted PSCs derived from PC2 also exhibit an attractive PCE of 6.17% with a high V_{oc} of 0.92 V. In view of its similar optical profiles to P3HT, but a deeper-lying HOMO energy level, PC2 should be a promising candidate as a short wavelength absorbing material for tandem solar cells.

Introduction

Solution-processed bulk-heterojunction (BHJ) polymer solar cells (PSCs) have been under extensive investigation in the past decade. So far, PSCs with power conversion efficiencies (PCEs) well over 9% for single-junction devices and as high as 10.6% for tandem modules have been achieved. To explore novel p-type conjugated polymer materials to further improve the PCE, the donor-acceptor (D-A) approach is one of the most successful and universal strategies, because it enables tunable absorption spectra and tailored frontier molecular orbital energy levels of the resulting polymers. To efficiently capture photons from the solar irradiation to maximize the short-circuit current density (J_{sc}), many studies have been focused on the development of low-bandgap (LBG) conjugated copolymers. However, there is usually a trade-off between the J_{sc} and the open-circuit voltage (V_{oc}) of a photovoltaic device. Another effective way to increase the total absorption of solar light is to adopt a tandem device architecture which stacks two or more subcells with complementary absorption spectra, i.e., active layer materials with different bandgaps. In this regard, it is desirable to develop new high-performance large bandgap copolymers with a high V_{oc} to serve as potential candidates for the efficient tandem PSC application.

Poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT) is an excellent example of poly[N-alkyl-2,7-carbazole] derivatives, which possesses a deep-lying HOMO level to guarantee an attainable high V_{oc}, high hole mobility for a large J_{sc}, and remarkable thermal stability. Since its inception in 2007, the PCE has progressed from 3.6% to 7.9% for classical PCDTBT-based BHJ PSCs. Although there is no doubt that carbazole-based derivatives are deserved to be explored, the number of high-performance carbazole-based polymer donors for PSCs is still limited. Previously, we reported a carbazole-based ladder-type heteroheptacene (HHA), where the central carbazole core is connected with two outer thienyl rings through two embedded cyclopentadienyl rings (in Scheme 1). Subsequently, Cheng et al. explored the photovoltaic characteristics when its analogue was copolymerized with various electron-deficient units, and a moderate PCE of 4.6% was demonstrated. Back to our original intention to design the carbazole-based heteroheptacene as a donor unit, considering its extended and rigid planarization that is favorable for intermolecular π-π stacking, we expect that based on some carbazole derived multi-fused polycyclic aromatic system, a comparable photovoltaic performance relative to the best results of PCDTBT would be achieved through stepwise molecular engineering.

Herein, we adopt two benzene fragments to replace the outer thiophenes in our previously reported carbazole-cored heteroheptacene to form another ladder-type heptacyclic arene, namely, diindenocarbazole (Scheme 1). As for the acceptor unit, 2,1,3-benzothiadiazole (BT) is chosen. At the same time, two thiophenes are used to connect the donor and the acceptor similar...
from Alfa Aesar. The synthesis of PIFB has been described by us previously.13. Dibromo-N-(ethyl)carbazole (4.85 g, 13.74 mmol) and AlCl₃ were synthesized and tested for PSCs. These three copolymers possess larger bandgaps than P3HT, but show a significantly improved Voc of up to 0.99 V (0.60 V for P3HT:PC₇₁BM) for the PSCs based on them. An optimal PCE of 7.26% was obtained when using PC1:PC₇₁BM as a donor/acceptor material. The inorganic precipitate was dissolved with 2 M HCl, and the aqueous phase was extracted with dichloromethane until completion (ca. 40 min). The solution was purged with nitrogen for 30 min, and then added to the reaction mixture. After being flushed with nitrogen for another 20 min, the reaction was carried out at reflux under nitrogen for 8 h. When cooling to room temperature, the reaction was quenched upon slowly pouring the mixture into some crushed ice. The inorganic precipitate was dissolved with 2 M HCl, and the aqueous phase was extracted with dichloromethane (3 × 50 ml). The combined organic fractions were washed with water, saturated aq. NaHCO₃ and brine, dried over anhydrous MgSO₄, and concentrated under reduced pressure. The obtained residue was purified by silica gel chromatography using 5% ethyl acetate in petroleum ether as the eluent to afford the title compound as a pale yellow solid (4.3 g, 54%). ¹H NMR (400 MHz, CDCl₃, δ): 8.17 (s, 2H), 7.65 (s, 2H), 4.31 (q, J = 7.2 Hz, 2H), 3.04 (t, J = 7.6 Hz, 4H), 1.76 (quintet, J = 7.6 Hz, 4H), 1.46-1.33 (m, 15H), 0.89 (m, 6H). ¹³C NMR (400 MHz, CDCl₃, δ): 203.60, 141.90, 133.18, 121.48, 121.29, 117.45, 114.30, 42.68, 38.24, 31.64, 28.95, 24.64, 22.51, 14.12, 13.79. HRMS (MALDI-TOF) m/z: [M+H]+ calcd for C₂₈H₃₆Br₂NO₂ 576.1107; found 576.1107. Elemental analysis (%), calcd. for C₂₈H₃₆Br₂NO₂: C, 58.13; H, 6.04; N, 2.39.

Experimental section

Materials

All commercially available chemicals were used as received unless otherwise specified. THF was distilled over sodium/benzophenone, and other dry solvents were dried over molecular sieves. DTBT (5a) and 5,6-bis(butoxy)-4,7-di(thiophen-2-yl)benzo-[c][1,2,5]-thiadiazole (5b) were prepared according to the literature procedures. PC₁₇₁BM (99%) was purchased from Alfa Aesar, and MoO₃ (99.9%) was purchased from American Dye Source Inc., and MoO₃ (99.9%) was purchased from American Dye Source Inc. The synthesis of PIFB has been described by us previously.¹³

Synthesis

Compound 2a. To a precooled suspension (ca. 5 °C) of 2,7-dibromo-N-(ethyl)carbazole (4.85 g, 13.74 mmol) and AlCl₃ (7.33 g, 4.0 equiv.) in dry CH₂Cl₂ (80 ml) was added dropwise heptanoyl chloride (6.10 g, 3.0 equiv.) over 25 min. After the addition was completed, the stirring mixture was warmed to reflux for 8 h. When cooling to room temperature, the reaction was quenched upon slowly pouring the mixture into some crushed ice. The inorganic precipitate was dissolved with 2 M HCl, and the aqueous phase was extracted with dichloromethane (3 × 50 ml). The combined organic fractions were washed with water, saturated aq. NaHCO₃ and brine, dried over anhydrous MgSO₄, and concentrated under reduced pressure. The obtained residue was purified by silica gel chromatography using 5% ethyl acetate in petroleum ether as the eluent to afford the title compound as a pale yellow solid (4.3 g, 54%). ¹H NMR (400 MHz, CDCl₃, δ): 8.17 (s, 2H), 7.65 (s, 2H), 4.31 (q, J = 7.2 Hz, 2H), 3.04 (t, J = 7.6 Hz, 4H), 1.76 (quintet, J = 7.6 Hz, 4H), 1.46-1.33 (m, 15H), 0.89 (m, 6H). ¹³C NMR (400 MHz, CDCl₃, δ): 203.60, 141.90, 133.18, 121.48, 121.29, 117.45, 114.30, 42.68, 38.24, 31.64, 28.95, 24.64, 22.51, 14.12, 13.79. HRMS (MALDI-TOF) m/z: [M+H]+ calcd for C₂₈H₃₆Br₂NO₂ 576.1107; found 576.1107. Elemental analysis (%), calcd. for C₂₈H₃₆Br₂NO₂: C, 58.13; H, 6.04; N, 2.39.

Compound 3a. In a 250 ml round-bottom flask, equipped with a stirrer and a condenser with a nitrogen inlet needle, compound 2a (4.3 g, 7.45 mmol), phenylboronic acid (3.47 g, 30 ml H₂O) were dissolved in THF (65 ml). The solution was purged with nitrogen for 30 min, and then Pd(PPh₃)₄ was added. After being flushed with nitrogen for another 20 min, the reaction was carried out at reflux under nitrogen for 8 h. When cooling to room temperature, the reaction was quenched upon slowly pouring the mixture into some crushed ice. The inorganic precipitate was dissolved with 2 M HCl, and the aqueous phase was extracted with dichloromethane (3 × 50 ml). The combined organic fractions were washed with water, saturated aq. NaHCO₃ and brine, dried over anhydrous MgSO₄, and concentrated under reduced pressure. The obtained residue was purified by silica gel chromatography using 5% ethyl acetate in petroleum ether as the eluent to afford the title compound as a pale yellow solid (4.3 g, 54%). ¹H NMR (400 MHz, CDCl₃, δ): 8.17 (s, 2H), 7.65 (s, 2H), 4.31 (q, J = 7.2 Hz, 2H), 3.04 (t, J = 7.6 Hz, 4H), 1.76 (quintet, J = 7.6 Hz, 4H), 1.46-1.33 (m, 15H), 0.89 (m, 6H). ¹³C NMR (400 MHz, CDCl₃, δ): 203.60, 141.90, 133.18, 121.48, 121.29, 117.45, 114.30, 42.68, 38.24, 31.64, 28.95, 24.64, 22.51, 14.12, 13.79. HRMS (MALDI-TOF) m/z: [M+H]+ calcd for C₂₈H₃₆Br₂NO₂ 576.1107; found 576.1107. Elemental analysis (%), calcd. for C₂₈H₃₆Br₂NO₂: C, 58.13; H, 6.04; N, 2.39.
Compound 4a. To a dry THF solution (30 ml) in a 100 ml Schlenk flask at -78 °C and under nitrogen protection was added 24.5 ml of n-hexyllithium (1.6 M in n-hexane, 6.0 equiv.).

After being kept at the same temperature for several minutes, a solution of compound 3a (3.7 g, 6.47 mmol) in THF (20 ml) was dropped into the mixture over 40 min under -60 °C. When the addition was completed and another 10 min continued, the resulting mixture was slowly warmed to room temperature and stirred overnight, followed by quenching with a saturated NH4Cl solution (15 ml). The organic layer was separated, and the aqueous phase was extracted with EtOAc for three times. The combined organic layer was washed with brine, dried over MgSO4, filtered, and concentrated via rotary evaporator to obtain the product of a crude diol as a viscous oil which could be used directly for next step without chromatography purification.

To a solution of the crude diol obtained above in dichloromethane (80 ml) under nitrogen atmosphere was added a BF3/etherate solution (5 ml) at ambient temperature. A color change was observed somewhat upon the addition. After being stirred for 45 min, 100 ml of dry MeOH was added into the mixture to quench the reaction. The mixture was further stirred overnight, and concentrated to give a viscous oil which was loaded onto a silica gel column and eluted with n-hexane to yield compound 4a as a white solid (1.52 g, 33 % for two steps).

1H NMR (400 MHz, CDCl3, δ): 8.03 (s, 2H), 7.84 (d, J = 7.2 Hz, 2H), 7.69 (s, 2H), 7.40-7.31 (m, 6H), 4.52 (q, J = 7.2 Hz, 2H), 2.10 (m, 8H), 1.60 (t, J = 7.2 Hz, 3H), 1.16-1.03 (m, 24H), 0.78-0.66 (m, 20H). 13C NMR (400 MHz, CDCl3, δ): 151.59, 142.05, 141.77, 140.57, 139.42, 126.78, 126.67, 122.98, 119.38, 114.00, 30.85, 28.74, 28.48, 27.89, 27.61, 27.28, 26.94, 26.66, 14.06, 14.01. HRMS (MALDI-TOF) m/z: [M-CH3] for C52H69N2O2S3Sn2 707.5430; found 707.5425. Elemental analysis (%), calcd. for C52H69N2O2S3Sn2: C, 52.30; H, 7.32; S, 23.40; Sn, 17.08; N, 1.85.

DICBr-Et. A suspension of compound 4a (1.0 g, 1.41 mmol), copper (II) bromide on aluminum oxide (4.8 g, 5 equiv., CaBr2/Al2O3 = 1:2 w/w) in CCl4 (50 ml) was refluxed for about 5 h. The cooled mixture was filtered, and concentrated via a rotary evaporator to get a solid residue, which was purified by column chromatography on silica gel using petroleum ether as the eluent to yield compound 4b as a light yellow solid (0.23 g, 19%).

1H NMR (400 MHz, CDCl3, δ): 7.98 (s, 2H), 7.67 (d, J = 8.8 Hz, 2H), 7.62 (s, 2H), 7.49-7.47 (m, 6H), 4.47 (q, J = 7.2 Hz, 2H), 2.12-1.98 (m, 6H), 1.15-0.98 (m, 27H), 0.76-0.64 (m, 20H). GPC (THF): Mn = 23.3 kDa, Mw = 44.8 kDa, PDI = 1.9.

DICBr-EH. The same procedures as described above for monomer DICBr-Et synthesis were employed for DICBr-EH starting from 2,7-dibromo-N-(2-ethylhexy)carbazole (28% yield).

1H NMR (400 MHz, CDCl3, δ): 7.98 (s, 2H), 7.65 (d, J = 8.8 Hz, 2H), 7.59 (s, 2H), 7.49-7.46 (m, 4H), 4.26-4.22 (m, 2H), 2.17-2.13 (m, 1H), 2.11-1.96 (m, 8H), 1.52-1.37 (m, 6H), 1.32-1.26 (m, 2H), 1.11-0.99 (m, 27H), 0.88 (t, J = 7.2 Hz, 3H), 0.77-0.63 (m, 20H). Elemental analysis (%), calcd. for C32H48NBr2: C, 73.32; H, 8.38; N, 1.47; found: C, 73.82; H, 8.40; N, 1.32.

RDTBT-Sn. Compound 5b (0.43 g, 0.97 mmol) was dissolved in dry THF (15 ml) in a 50 ml flame-dried flask, and the solution was cooled to -78 °C under a nitrogen atmosphere. Lithium disopropylamide (1.95 ml, 4.0 equiv. 2.0 M in heptanes) was added dropwise into the solution, upon which a purple color would develop. The resulting mixture was stirred at -78 °C for an hour, followed by the addition of trimethylamine chloride (0.70 g, dissolved in 3 ml of THF, 3.5 equiv.) at -78 °C. After the addition is completed, the solution was recovered to room temperature with stirring overnight. When the reaction was quenched by slowly adding of water, the mixture was poured into plenty of water, and the aqueous layer was extracted with EtOAc. After evaporation of the solvent, the residue was recrystallized from methanol to afford the monomer as an orange crystal (0.55 g, 74%). 1H NMR (400MHz, CDCl3, δ): 8.52 (d, J = 3.6 Hz, 2H), 7.34 (d, J = 3.6 Hz, 2H), 4.14 (t, J = 7.2 Hz, 4H), 1.92 (m, 4H), 1.52 (m, 4H), 0.99 (t, J = 7.2 Hz, 6H), 0.45 (s, 18H). MS (MALDI-TOF) m/z: [M+H]+ for C32H40N2Br2Sn2 672.7032; found 672.7045. Elemental analysis (%), calcd. for C32H40N2Br2Sn2: C, 43.66; H, 5.23; N, 3.64; found: C, 43.43; H, 5.26; N, 3.58.

Polymer PC2. Into a 50 ml round-bottom flask were charged monomer DICBr-Et (0.22 g, 0.25 mmol), monomer RDTBT-Sn (0.21 g, 0.27 mmol), and dry toluene (15 ml). The solution was flushed with N2 for 30 min, then Pd2(dba)3 (10 mg) and P(o-tol)3 (25 mg) were added quickly. After bubbling the mixture with N2 for another 30 min, it was heated to 100 °C for 2 days. After cooling to room temperature, the mixture was precipitated into methanol and filtered. The crude polymer was dissolved in chloroform, filtered through a short filter column, concentrated and precipitated again. The recovered polymer was purified by Soxhlet extraction successively with methanol, acetone, hexane and chloroform. The chloroform extract was concentrated and precipitated in methanol. The polymer was collected by filtration and dried under vacuum to yield a red solid (100 mg, 35%).

1H NMR (400MHz, CDCl3, δ): 8.62 (d, J = 3.6 Hz, 2H), 8.09 (s, 2H), 7.89 (d, J = 8.0 Hz, 2H), 7.82-7.78 (m, 4H), 7.42 (s, 2H), 7.59 (d, J = 3.6 Hz, 2H), 4.53 (br, 4H), 4.30 (br, 4H), 2.20 (s, 3H), 2.10-2.07 (m, 4H), 1.69-1.62 (m, 7H), 1.17-1.08 (m, 32H), 0.81-0.77 (m, 18H). GPC (THF): Mn = 23.3 kDa, Mw = 44.8 kDa, PDI = 1.9.

Polymer PC1. Using a procedure similar to that described above for PC2, monomer DICBr-EH (0.7 g, 0.73 mmol) and monomer DTTBT-Sn (0.49 g, 1.05 equiv.) were copolymerized in dry toluene (15 ml) for 3 days to yield PC1 as a purple black solid (0.45% g, 57%). 1H NMR (400MHz, CDCl3, δ): 8.19-8.09 (m, 4H), 7.78-7.57-7.35 (m, 6H), 7.30-7.22 (m, 2H), 2.18 (br, 8H), 1.56 (br, 8H). 1H NMR (32H, 0.93-0.81 (m, 21H). GPC (THF): Mn = 13.8 kDa, Mw = 16.8 kDa, PDI = 1.2.
Polymer Chemistry

Polymer PC3. Following the same procedure as that used for the synthesis of PC2, PC3 was obtained as a deep red solid (0.18 g, 0.21 mmol) and monomer RODTBT-Sn (171 mg, 1.06 equiv.) in dry toluene (12 ml) for 60 h. 1H NMR (400 MHz, CDCl3, 0°C) in dry toluene (12 ml) for 60 h. 1H NMR (400 MHz, 10 Hz, 2H), 7.82-7.77 (m, 4H), 7.69 (s, 2H), 7.60 (d, 4H), 1.56-1.49 (m, 4H), 1.39 (m, 2H), 1.17-1.06 (m, 32H), 0.97 (m, 32H), 8.08 (s, 2H), 7.88 (d, J = 3.6 Hz, 2H), 4.30 (br, 6H), 2.20 (s, 8H), 2.12-2.05 (m, 5H), 1.71-1.62 (m, 5H), 1.56-1.49 (m, 4H), 1.39 (m, 2H), 1.17-1.06 (m, 32H), 0.97 (m, 4H), 0.85-0.77 (m, 21H). GPC (THF): Mn = 14.7 kDa, Mw = 23.1 kDa, PDI = 1.6.

Instruments and measurements

1H NMR and 13C NMR spectra were acquired from a Bruker AVANCE-400 spectrometer with tetramethylsilane (TMS) as the internal reference, and the peaks are given in ppm relative to TMS. Molecular weights of the polymers were measured using the GPC method with polystyrene standards. UV-vis absorption spectra were recorded on a Perkin-Elmer Lamada 35 UV-vis spectrophotometer. For the measurements of thin films, polymers were spin-coated on pre-cleaned glass slides from 5 mg/ml chloroform solution and dried under ambient circumstance prior to the measurements. The onset oxidation potential (Eox) of the ferrocene was -0.02 V vs Ag/Ag+ electrode under the same conditions. With an assumption that the redox potential of Fe/Fe+ has an absolute energy level of -4.80 eV relative to vacuum, the HOMO and LUMO energy levels were calculated consulting the following equations, where Eox and Ered are the onset oxidation and onset reduction potentials vs Ag/Ag+, respectively.

\[E_{HOMO} = - (E_{ox} + 4.82) \text{ (eV)} \] (1)
\[E_{LUMO} = - (E_{red} + 4.82) \text{ (eV)} \] (2)

Hole mobility measurement

Hole-only devices with a configuration of ITO/PEDOT-PSS/polymer:PC71BM/Au were fabricated to evaluate the hole mobilities of the resulting polymers using the space charge limited current (SCLC) model. Unipolar devices were prepared by following the same procedure as described for PSC fabrication except that the PIFB/Al cathode was replaced by the gold electrode. The dark current was measured by an Agilent 4155C source measurement unit, and the J0.5 versus voltage curves were fitted according to the following equation:

\[J = \frac{9 \mu e_0}{8 \epsilon_0} \left(\frac{V^2}{L^3} \right) \] (3)

where \(\epsilon_0 \) is the permittivity of free space (8.85 × 10⁻¹² F/m), \(e_0 \) is the dielectric constant of the polymer (assumed to be 3), \(\mu \) is the hole mobility, \(V \) is the voltage drop across the device, and \(L \) is the average active layer thickness (92 nm for PC1, 106 nm for PC2, and 73 nm for PC3). \(V = V_{app} - V_th \), where \(V_{app} \) is the applied voltage to the device, \(V_th \) is the voltage drop due to contact resistance and series resistance across the electrodes, and \(V_{th} \) is the built-in voltage due to the difference in work function of the two electrodes (0.3 V). The resistance of the device was measured using a blank configuration of ITO/PEDOT-PSS/Au and turned out to be 90.5 Ω.
The PIFB layer was spin-coated at 1500 rpm for 30 s from a methanol solution (0.3 mg/mL, containing 30 eq. of acetic acid). The PIFB layer was pre-treated by UV-O3 treatment for 15 min prior to use. Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS, Baytron PVPAI-4083) was introduced as an interlayer to facilitate efficient electron injection. Subsequently, a nucleophilic attack reaction at the keto site of 50O undergoes cyclization with boron trifluoride/etherate to give the compound (DICBr-alkyl) synthesis. In parallel, lithiation of DTBT or its dibutoxy-substituted derivative (5) at low temperature followed by quenching with trimethyltin chloride afforded the corresponding stannylated DTBT or its derivative. Three copolymers were prepared by the Stille coupling polycondensation between brominated carbazole-based heptacene (DICBr-alkyl) and corresponding stannylated DTBT or its derivative. Two thiophenes were flanked on both sides of the BT unit to isolate the donors and acceptors for reducing if any the steric hindrance, which is beneficial to improve the planarity and π-π stacking of the polymer chains. All polymers were purified by Soxhlet extraction with methanol, acetone, and hexane to remove oligomers and residual catalyst. Polymers PC2 and PC3 exhibit excellent solubility in common solvents such as chloroform, chlorobenzene, and o-dichlorobenzene. Polymer PC1 has relatively poor but sufficient solubility in these solvents at the ambient temperature. As determined by gel permeation chromatography (GPC), using monodispersed polystyrene as standard and THF as eluent, the number-average molecular weights (Mn) and polydispersity indices (PDI) of PC1, PC2, and PC3 are 13.8 kDa (PDI = 1.2), 23.3 kDa (PDI = 1.9), and 14.7 kDa (PDI = 1.6), respectively (Table 1). The comparably low molecular weight observed for PC1 can be attributed the fact that there are no alkyl chains on the

<table>
<thead>
<tr>
<th>Polymer</th>
<th>M_n (kDa)</th>
<th>PDI</th>
<th>(\lambda_{\text{max}}) (nm) solution</th>
<th>(\lambda_{\text{max}}) (nm) film</th>
<th>(E_g) (eV)b</th>
<th>HOMO (eV)c</th>
<th>LUMO (eV)c</th>
<th>(E_g^{\text{opt}}) (eV)b</th>
<th>(\mu_{\text{hole}}) (cm^2 V^{-1} s^{-1})^d</th>
<th>(\mu_{\text{electron}}) (cm^2 V^{-1} s^{-1})^d</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC1</td>
<td>13.8</td>
<td>1.2</td>
<td>539</td>
<td>549</td>
<td>1.90</td>
<td>-5.41</td>
<td>-3.67</td>
<td>1.74</td>
<td>((6.7 \pm 0.3) \times 10^{-6})</td>
<td>((8.8 \pm 0.4) \times 10^{-6})</td>
</tr>
<tr>
<td>PC2</td>
<td>23.3</td>
<td>1.9</td>
<td>515</td>
<td>520</td>
<td>2.01</td>
<td>-5.43</td>
<td>-3.56</td>
<td>1.87</td>
<td>((5.4 \pm 0.6) \times 10^{-5})</td>
<td>((4.1 \pm 0.3) \times 10^{-5})</td>
</tr>
<tr>
<td>PC3</td>
<td>14.7</td>
<td>1.6</td>
<td>517</td>
<td>537</td>
<td>1.97</td>
<td>-5.44</td>
<td>-3.65</td>
<td>1.79</td>
<td>((4.3 \pm 0.2) \times 10^{-5})</td>
<td>((4.0 \pm 0.2) \times 10^{-5})</td>
</tr>
</tbody>
</table>

a The number-average molecular weight and polydispersity index measured by GPC. b The optical bandgap estimated from the onset of the film absorption spectrum. c Determined by onset of the CV curve from thin film. d Calculated by the SCLC model, the data have been averaged over 8 devices.

Results and discussion

Synthesis of monomers and polymers

The synthetic routes toward the monomers and polymers are depicted in Scheme 2. Starting from 2,7-dibromo-9-alkyl-9H-carbazole (1), the 3,6-diketo-2,7-dibromo-9-alkyl-9H-carbazole (2) was prepared via Friedel-Crafts acylation with heptanoyl chloride. Compound 2 was coupled with phenylboronic acid by the Suzuki reaction to afford the intermediate 3 in 80% yield. Subsequently, a nucleophilic attack reaction at the keto site of compound 3 by n-hexyllithium produced a crude diol, which underwent cyclization with boron trifluoride/etherate to give the key heptacyclic arene (4) in 33% overall yield. Finally, selective bromination at the linear end positions by copper (II) bromide on an aluminia matrix in carbon tetrachloride accomplished the monomer (DICBr-alkyl) synthesis. In parallel, lithiation of DTBT or its dibutoxy-substituted derivative (5) at low temperature followed by quenching with trimethyltin chloride afforded the corresponding stannylated DTBT or its derivative. Three copolymers were prepared by the Stille coupling polycondensation between brominated carbazole-based heptacene (DICBr-Et and DICBr-EH) and corresponding stannylated DTBT or its derivative, using toluene as solvent and Pd(dba)_3/P(o-tol)_3 as the catalytic system. Two thiophenes were flanked on both sides of the BT unit to isolate the donors and acceptors for reducing if any the steric hindrance, which is beneficial to improve the planarity and π-π stacking of the polymer chains. All polymers were purified by Soxhlet extraction with methanol, acetone, and hexane to remove oligomers and residual catalyst. Polymers PC2 and PC3 exhibit excellent solubility in common solvents such as chloroform, chlorobenzene, and o-dichlorobenzene. Polymer PC1 has relatively poor but sufficient solubility in these solvents at the ambient temperature. As determined by gel permeation chromatography (GPC), using monodispersed polystyrene as standard and THF as eluent, the number-average molecular weights (Mn) and polydispersity indices (PDI) of PC1, PC2, and PC3 are 13.8 kDa (PDI = 1.2), 23.3 kDa (PDI = 1.9), and 14.7 kDa (PDI = 1.6), respectively (Table 1). The comparably low molecular weight observed for PC1 can be attributed the fact that there are no alkyl chains on the
Thermo gravimetric analysis (TGA) under nitrogen suggests all polymers are favorably stable with the 5% weight-loss temperature (T_d) values of 420, 340 and 338 °C for PC1, PC2 and PC3, respectively (Fig. S1†).

Optical and electrochemical properties

![Fig. 1](image)

Fig. 1 Normalized UV-vis absorption spectra of the copolymers (a) in dilute chlorobenzene solution (1×10^{-5} M) and (b) as pristine films.

The UV-vis absorption spectra of the three copolymers in chlorobenzene (CB) solution and in thin film are shown in Fig. 1, and the relevant data are collected in Table 1. Both in solution and in solid state, two main absorption bands are observed which is typical for D-A copolymers. The lower energy absorbance comes from the intramolecular charge transfer (ICT) between the donor and acceptor units, while the shorter wavelength band is attributed to $\pi-\pi^*$ transition of the heteroheptacene. Originating from the same donor skeleton of the carbazole-based heptacyclic arenes, all copolymers possess nearly identical spectroscopic profiles in the shorter wavelength regions. As for the longer wavelength bands, polymers PC2 and PC3 exhibit blue-shifted absorption maxima compared to PC1, which can be attributed to the weakened electron-withdrawing ability of the BT moiety induced by the introduction of two alkoxy groups. In solution, absorption peaks in long wavelength regions are located at 539 nm, 515 nm, and 517 nm for PC1, PC2, and PC3, respectively, which correspondingly red-shift to 549 nm, 520 nm, and 537 nm for the spectra in thin film. These bathochromic shifts in going from solution to the solid state suggest a stronger interchain $\pi-\pi$ stacking and a higher degree of ordered arrangement in thin film. It is worth noting that only a minimal red-shift occurs for the absorption maximum of PC2 in going from solution to thin film. It may be attributed to the fact that the polymer chains aggregate somewhat in solution for PC2 because the bulky alkyl substituents are only present on one side of the backbone, imposing less barrier to the chains interacting compared to PC3 with bulkier chains on both sides. To verify this speculation, the same solution was heated to 80 °C, as shown in Fig. S2(ESI†), a blue-shift of 12 nm appears for the absorption maximum as compared to that measured at 20 °C, indicating partial disaggregation of the polymer chains at higher temperature. All three polymers exhibit strong absorption ability in the wavelength range from 375 nm to 600 nm, for example, with a maximum extinction coefficient of 6.2×10^{4} $M^{-1} \text{cm}^{-1}$ for PC2 and 7.2×10^{4} $M^{-1} \text{cm}^{-1}$ for PC3 at 418 nm in solution, which is beneficial to harvest more sunlight and thus may lead to enhanced J_{sc} in PSCs. In comparison with its thiophene-substituted backbone analogue, i.e., PCDCTDTBT-C8†, PC1 exhibits noticeable blue-shifts of the absorption maxima (low energy absorption band) with 50 nm for thin film and 46 nm for solution, which is due to the weaker electron donating ability of the benzene unit compared to the thiophene ring, resulting in decreased electron delocalization along the PC1 backbone. The optical bandgaps (E_g) deduced from onsets of the film spectra were determined to be 1.90 eV for PC1, 2.01 eV for PC2, and 1.97 eV for PC3, respectively. With similar or larger optical bandgaps relative to P3HT ($E_g = 1.90$ eV) which is the state-of-the-art large bandgap (short-wavelength absorbing) polymer for tandem PSCs, these polymers can be promising candidates as the front cell ingredient for multi-junction devices with high efficiencies and large open circuit voltages.

![Fig. 2](image)

Fig. 2 Cyclic voltammograms of the polymer thin films on Pt electrode, performed in 0.1 M Bu4NPF6 acetonitrile solution at 100 mV min$^{-1}$.

Cyclic voltammetry (CV) was employed to investigate the electrochemical behaviors of these copolymers in thin film. The cyclic voltammograms are shown in Fig. 2, and the relevant results are summarized in Table 1. On the basis of onset oxidation potentials in the CV curves, the estimated HOMO levels are -5.41 eV, -5.43 eV, and -5.44 eV for PC1, PC2, and PC3, respectively. These HOMO levels are similar to those of the 2,7-carbazole-based analogues and are significantly deeper-lying than those of their thiophene-substituted backbone counterpart, which is helpful for achieving a high V_{oc} in PSCs. As expected, through donor structural modification, i.e., changing the more electron-donating thiophene moieties as shown in PHHA-BT into benzenes, lower-lying HOMO levels are acquired. It is common that the HOMO levels of D-A copolymers are mainly governed
by the electron donors18, and therefore similarly located HOMO energies are found in view of their same donor skeleton. Meanwhile, it is found that side chains can exert an influence on HOMO energy levels through the effect on molecular conformation/molecular interactions, i.e., more twisted polymer backbones have been shown to achieve lower-lying HOMO levels19, so it is reasonable for a slightly descending HOMO levels from PC1 to PC3, accompanied by the strengthened backbone torsion with more or bulkier side chains attached. On the other hand, deduced from the onset reduction potentials of the film CV curves, the LUMO levels were calculated to be -3.67 eV, -3.56 eV, and -3.65 eV for PC1, PC2, and PC3, respectively. These LUMO values are located within a suitable range and are sufficiently higher (>0.3 eV) than the LUMO level of [6,6]-phenyl-C\textsubscript{71}-butyric acid methyl ester (PC\textsubscript{71}BM, ca. -4.3 eV)20 to overcome exciton binding energy and thus guarantee efficient exciton splitting and electron transfer.

Photovoltaic performance and film morphology

Photovoltaic properties of the copolymers were investigated in conventional single-junction PSCs with a configuration of ITO/PEDOT:PSS/polymer:PC\textsubscript{71}BM/PIFB/Al. All the active layers were spin-coated from a mixed solvent of ortho-dichlorobenzene/chlorobenzene (o-DCB:CB=1:4, v/v) with or without processing additives. The current density-voltage (J-V) curves of the optimized PSCs measured under the AM 1.5G 100 mW cm-2 illumination are shown in Fig. 3a, and the corresponding device parameters are summarized in Table 2. Parameters including the blend ratio and the additive amount were screened toward device optimization (Table 3). Through systematic optimization, PSCs based on PC2:PC\textsubscript{71}BM (1:4, w/w) using 0.5\% (v/v) 1,8-diiodooctane (DIO) as the additive exhibit the best performance with a high \(V_{oc}\) of 0.93 V, a \(J_{sc}\) of 14.22 mA cm-2, an \(FF\) of 54.7\%, and an intriguing PCE of 7.26\%. From Table 3, one may find that the devices with the 1:3 blend ratio also exhibit a high averaged PCE of 6.95\%. However, the devices with 1:3 blend ratio have a slightly larger averaged \(J_{sc}\) value with a decreased \(FF\). It can be explained when one considers the relatively better light-harvesting ability and lower carrier mobility of PC2 in comparison with those of PC\textsubscript{71}BM. To the best of our knowledge, this \(V_{oc}\) is a record high value ever reported for carbazole-based single-junction PSCs with a PCE over 7\%, and this PCE value is also among the highest of ladder-type or large bandgap donor materials for PSCs. In comparison with its thiophene-substituted backbone counterpart \((V_{oc} = 0.74 \text{ V})10\) or PCDTBT (maximum \(V_{oc} = 0.92 \text{ V})9, PC2 based devices exhibit a higher \(V_{oc}\) benefiting from its deep-lying HOMO level. It is worth noting that a high \(V_{oc}\) of 0.99 V (PCE = 6.02\%) was obtained when no additive of DIO was applied (Table 3). Compared to the devices fabricated without DIO, the reduction of \(V_{oc}\) in DIO processed devices may come from the lowering of the charge transfer states upon using the additive21. It is well recognized that the molecular weight of a polymer has a large impact on the BHJ solar cell performance22. Therefore, we also prepared a batch of PC2 with relatively low molecular weight (\(M_n = 17.0 \text{ kDa}, \text{PDI} = 2.0\)), and the corresponding devices exhibit an optimal PCE of 6.54\% with \(V_{oc} = 0.95 \text{ V}, J_{sc} = 12.04 \text{ mA cm}^{-2}\), and \(FF = 57.2\%\) (Fig. S3, ESIT). While these results demonstrate the importance of molecular weight consideration, they also suggest the possibility that even better performance based on PC2 could be obtained by a systematic optimization on the molecular weight. When the best device based on PC3:PC\textsubscript{71}BM was prepared under the same conditions, it also exhibits an impressive PCE of 6.68\% with \(V_{oc} = 0.93 \text{ V}, J_{sc} = 11.45 \text{ mA cm}^{-2}\), and \(FF = 62.7\%\). Whereas, the best cell based on PC1 only has a low PCE of 2.45\% with \(V_{oc} = 0.88 \text{ V}, J_{sc} = 6.25 \text{ mA cm}^{-2}\), and \(FF = 44.7\%\), using 0.5\% (v/v) DIO as an additive. The inferior maximum performance of PC1 and PC3 as compared to that of PC2 may be ascribed to the their lower hole mobilities (see Table 1) and the unfavorable morphology induced by their lower molecular weights (vide infra). As expected, all devices based on these three polymers exhibit high \(V_{oc}\) values which is in accordance with their low-lying HOMO levels. Nevertheless, PC1 based devices afford the smallest \(J_{sc}\) and consequently the lowest PCE, which may be ascribed to its decreased solubility that would result in decreased miscibility upon blending with PC\textsubscript{71}BM, and accordingly deteriorated film quality which in turn unfavorably contributing to exciton dissociation and charge transport. External quantum efficiencies (EQE) of the devices prepared with DIO were measured and the EQE spectra are shown in Fig. S4a (ESI†). All devices show a broad photon response range from 300 to 700 nm, which is consistent with the absorption spectra of the blend films (Fig. S5, ESIT). Obviously, the EQE values of PC2 based device are higher than those of PC1 or PC3 across the whole photon response range, and high values above 80\% in the wavelength region from 360 to 570 nm have been demonstrated, which agrees with the higher \(J_{sc}\) observed for the PC2 based device. Besides, the \(J_{sc}\) values calculated by integrating the EQE curves with the AM 1.5G spectrum agree with those obtained from the J-V measurements.
Fig. 4 Tapping-mode AFM height (top), phase (middle), and 3D images of the blend films: (a) PC1:PC71BM with 0.5% (v/v) DIO, (b) PC2:PC71BM with 0.5% DIO, (c) PC3:PC71BM with 0.5% DIO, (d) PC2:PC71BM without DIO. The scan size is 0.5 μm × 0.5 μm. All samples were prepared following the same procedure as the fabrication of the optimized PSCs.

Table 2 Photovoltaic results of the optimized classical PSCs, under the AM 1.5G, 100 mW/cm² condition

<table>
<thead>
<tr>
<th>Polymer</th>
<th>D:A a</th>
<th>V_{oc} [V]</th>
<th>J_{sc} [mA cm⁻²]</th>
<th>FF [%]</th>
<th>PCEc [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC1</td>
<td>1:4 b</td>
<td>0.88 ± 0.02</td>
<td>5.77 ± 0.48</td>
<td>44.1 ± 0.6</td>
<td>2.30 ± 0.22 (2.45)</td>
</tr>
<tr>
<td>PC2</td>
<td>1:4 b</td>
<td>0.94 ± 0.01</td>
<td>12.84 ± 1.38</td>
<td>58.7 ± 3.9</td>
<td>7.10 ± 0.16 (7.26)</td>
</tr>
<tr>
<td>PC3</td>
<td>1:4 b</td>
<td>0.93 ± 0.01</td>
<td>11.18 ± 0.49</td>
<td>63.3 ± 2.6</td>
<td>6.60 ± 0.10 (6.68)</td>
</tr>
</tbody>
</table>

a Blend ratio of polymer:PC71BM. b A mixed solvent of o-DCB:CB (1:4, v/v) is used, 0.5% (v/v) DIO as an additive. c The data have been averaged over 8 devices of different batches. The performance of the best device is given in parentheses.

Table 3 Photovoltaic properties of the regular PSCs based on PC2:PC71BM with different D/A ratios and volume fractions of DIOa

<table>
<thead>
<tr>
<th>Blend ratio b</th>
<th>DIO (v/v) [%]</th>
<th>V_{oc} [V]</th>
<th>J_{sc} [mA cm⁻²]</th>
<th>FF [%]</th>
<th>PCEc [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:4 w/o</td>
<td>0.98 ± 0.01</td>
<td>10.86 ± 0.35</td>
<td>53.9 ± 1.0</td>
<td>5.75 ± 0.27 (6.02)</td>
<td></td>
</tr>
<tr>
<td>1:4</td>
<td>1.0</td>
<td>0.95 ± 0.01</td>
<td>11.21 ± 0.42</td>
<td>57.1 ± 1.5</td>
<td>6.07 ± 0.21 (6.21)</td>
</tr>
<tr>
<td>1:3</td>
<td>0.5</td>
<td>0.95 ± 0.01</td>
<td>13.40 ± 0.98</td>
<td>54.7 ± 2.5</td>
<td>6.95 ± 0.29 (7.24)</td>
</tr>
</tbody>
</table>

a A mixed solvent of o-DCB:CB (1:4, v/v) is used. b Blend ratio of polymer: PC71BM. c The data have been averaged over 8 devices of different batches. The performance of the best device is given in parentheses.

We also investigated the photovoltaic properties of these three copolymers with an inverted device structure of ITO/ZnO/polymer:PC71BM/MoO₃/Ag. The J-V characteristics of the optimized inverted PSCs are depicted in Fig. 3b, and the corresponding performance data are listed in Table S1. The best performance was obtained based on PC2 with a PCE of 6.17% and a V_{oc} of 0.92V. The integrated J_{sc} values from the EQE curves (Fig. S4b, ESI†) are consistent with respective values from the J-V measurements (within 3% error).

To disclose the relationship between optimized performance and microstructures, the surface morphology of the polymer:PC71BM blends were screened by tapping mode atomic
force microscopy (AFM). As can be seen in Fig. 4a, due to the poor solubility of PC1 and the resulting bad miscibility with PC71BM, the PC2:PC71BM film features discrete dark and bright regions with a root mean square (RMS) roughness value of 2.78 nm, which also corresponds to the inferior phase separation as indicated by the clear and large scale fibrils in the phase image (also see Fig. S6, ESI†). Under such condition, photo-induced excitons can not realize effective dissociation, and interfacial defects between the active layer and the buffer layer modified electrode may induce more traps. Therefore, the PC1 based device exhibits the smallest Jsc, FF and thus the lowest PCE among all the three polymers. In contrast, the PC2:PC71BM blend film with 0.5% DIO exhibits well-defined nanoscale phase separation with an RMS of 0.64 nm (Fig. 4b), indicating good demixing of the polymer and PC71BM. However, in the case of PC2:PC71BM processed without DIO, rather smooth (RMS = 0.23 nm) and uniform film with obscure domains (shown in Fig. 4d) accounts for the corresponding decreased Jsc compared with that of the film with DIO. As for the PC3:PC71BM blend film (Fig. 4c), the relatively rough surface (RMS = 1.13 nm) and large scale phase separation with randomly distributed polymer or PC71BM aggregates may be correlated to its suboptimal Jsc and PCE compared to PC2.

Conclusions

We have developed three D-A copolymers using DBTT derivatives as acceptor units and new carbazole-based heteroheptacenes, i.e., diindenocarbazoles, as donor units. Through polymer backbone manipulation and side chain tuning, eventually, a champion device based on PC2:PC71BM (1:4, w/w) with 0.5 vol% DIO exhibited an impressive PCE of 7.26% with a 30 V oc and thus the lowest PCE among the all three polymers. In contrast, the PC2:PC71BM blend film with 0.5% DIO exhibited an impressive PCE of 7.26% with a high V oc of 0.93 V. To the best of our knowledge, this represents the highest PCE ever reported for carbazole-based single-junction PSCs while maintaining a V oc of up to 0.93 V. In addition, inverted PSCs also showed a PCE of 6.17% with a large Jsc, FF and thus the lowest PCE among all the three polymers. In contrast, the PC2:PC71BM processed without DIO, rather smooth (RMS = 0.23 nm) and uniform film with obscure domains (shown in Fig. 4d) accounts for the corresponding decreased Jsc compared with that of the film with DIO. As for the PC3:PC71BM blend film (Fig. 4c), the relatively rough surface (RMS = 1.13 nm) and large scale phase separation with randomly distributed polymer or PC71BM aggregates may be correlated to its suboptimal Jsc and PCE compared to PC2.

Acknowledgements

This work was supported by National Science Foundation of China (Nos 51173186, 61325026), the Natural Science Foundation of Fujian Province of China (No. 2012H0044), and the 100 Talents Programme of the Chinese Academy of Sciences (CAS).

Notes and references

State Key Laboratory of Structural Chemistry, Fujian Academy of Sciences,155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China. Fax: (+86) 86-591-87321625. E-mail: yingdongzheng@fjirsm.ac.cn
Graduate University of Chinese Academy of Sciences, Beijing 100049, P. R. China
†Electronic Supplementary Information (ESI) available: Experimental details including figures showing the absorption spectra of PC2 at different temperatures, the absorption spectra of blend films, the J-V characteristics for PSCs based on PC2 (low molecular weight), EQE spectra of the devices and other relevant data. See DOI: 10.1039/b000000x/

