This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Synthesis of Well-defined Functionalized Poly(2-(Diisopropylamino)ethyl Methacrylate) Using ATRP with Sodium Dithionite as a SARA Agent

Joana R. Góis, a Nuno Rocha, a Anatoliy V. Popov, b Tamaz Guliashvili, c Krzysztof Matyjaszewski, d Arménio C. Serra, a Jorge F. J. Coelho b,a*

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

Poly(2-(Diisopropylamino)ethyl methacrylate) (DPA) was polymerized by Atom Transfer Radical Polymerization (ATRP) using sodium dithionite (Na2S2O4) as a reducing agent and supplemental activator with Cu(I)Br2Me2TREN catalytic system at 40 °C in a mixture isopropanol-water. The effects of the solvent mixture and the initiator structure on the polymerization kinetics were studied. The eco-friendly catalytic system described is suitable for the synthesis poly(2-(diisopropylamino)ethyl methacrylate) (PDPA) with controlled molecular weight, low dispersity, and well-defined chain-end functionality. Both linear and 4-arm star polymers with various target molecular weights were synthesised. The 1H NMR and MALDI-TOF analysis confirmed the molecular structure and high chain-end functionality of the obtained polymers. The use of an alkyne functionalized initiator allowed further azide-alkyne Huisgen cycloaddition with 3-azido-7-diethylaminocoumarin, a fluorescent biocompatible molecule.

The discovery of controlled/“living” radical polymerization (CLRP) methods has brought an unprecedented interest over this technology during the last two decades.1 The possibility of synthesizing tailor made polymers with controlled composition, architecture, molecular weight (MW) and active chain-end functionalities by radical reactions opened a myriad of opportunities for macromolecular engineering. Among several CLRP methods reported in the literature, ATRP is the most often used due to several intrinsic advantages, such as simplicity, high tolerance to different monomer functionalities, and the commercial availability of most compounds. In order to reduce the catalyst levels, several variations of the initial ATRP concept have been reported in the literature, such as activators regenerated by electron transfer (ARGET) ATRP,2 initiator for continuous activator regeneration (ICAR) ATRP,3 supplemental activator and reducing agent (SARA) ATRP,4,5 and polymerization in the presence of CuO6-9. These methods require ppm amounts of the catalyst to afford fast and controlled polymerization at room temperature. Organic sulphites have recently been reported by our research group as very efficient SARA agents).10,11 Amongst the organic sulphites that were studied, sodium dithionite (Na2S2O4)12 is the most efficient reducing agent that can reduce the Cu(II) species into Cu(I).10,11 The reactions proceeded in a very controlled manner in alcohol/water solvent mixtures, with faster polymerization at higher contents of water in the system.11

Poly(2-(diisopropylamino)ethyl methacrylate) (PDPA) is a tertiary amine methacrylate with a hydrophilic/hydrophobic transition at pH around 6.2,13,14 making it a very attractive polymer for biomedical applications. Several studies have been reported using DPA-based copolymers for the preparation of smart vesicles15,16 and micelles17 for gene and drug delivery applications.14,18. The first report concerning the ATRP of DPA was carried out in methanol with a Cu(I)Br22,2'-bipyridine (Bpy) complex using an water soluble poly(2-methacyloyloxyethyl phosphorylcholine) macrominitiator.19 Thereafter, several DPA based copolymers were synthesized using the same approach with slightly variations in the solvent used and the copper based catalytic complexes: Cu(I)Br21,1,4,7,10-hexamethyltri-ethylenetetramine (HMTETA);20 Cu(I)Br/ N,N,N',N",N"'-pentamethyldiethylenetriamine (PMDETA);18 or Cu(I)Cl/PMDETA,21 and Cu(I)Cl/Bpy.22 The aforementioned systems required a considerable amount of catalyst to control the polymerization and to afford polymers of low dispersity. This fact is a serious issue if one intends to prepare well-controlled PDPA molecular structures for biomedical applications, requiring, for instance, highly demanding purification procedures.23 Concerning the potential of PDPA-based polymeric structures for biomedical applications,23,24 hereafter it is proposed the ATRP of DPA using a more biocompatible and eco-friendly catalyst system that involves the use of FDA approved additives in the presence of only trace amounts of copper. The influence of the...
The system was calibrated with narrow PS standards. The average molecular weight (M_n) and dispersity (D) were determined as 0.077 using a RUDOLPH RESEARCH J357 Automatic Refractometer (J357-ND6-670-CC), M_nGPC and D of the synthesized polymers were determined by using a multidentectors calibration (OmnisEC software version: 4.6.1.354).

1H nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance III 400 MHz spectrometer, with a 5 mm TXI triple resonance detection probe, in CDCl$_3$ with tetramethylsilane (TMS) as an internal standard. Conversion of monomers was determined by integration of monomer and polymer peaks using MestReNova software version: 6.0.2-5475.

For matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDITOF-MS) analysis, the PDPA samples were dissolved in THF at a concentration of 20 mg/mL and 2,5-dihydroxybenzoic acid (DHB) (20 mg/mL in THF) was used as a matrix. The dried-droplet sample preparation technique was used to obtain a 1:1 ratio (sample/matrix); an aliquot of 1 µL of each sample was directly spotted on the MTP AnchorChip TM 600/384 TF MALDI target, BrukerDaltonik (Bremen Germany) and, before the sample dried, 1 µL of matrix solution in THF was added and the mixture allowed to dry at room temperature, to allow matrix crystallization. External mass calibration was performed with a peptide calibration standard (PSCII) for the range 700-3000 (9 mass calibration points), 0.5 µL of the calibration solution and matrix previously mixed in an Eppendorf tube (1:2, v/v) were applied directly on the target and allowed to dry at room temperature. Mass spectra were recorded using an Autoflex III smartbeam MALDITOF-MS mass spectrometer Bruker Daltonik (Bremen, Germany) operating in the linear and reflection positive ion mode. Ions were formed upon irradiation by a smart beam laser using a frequency of 200 Hz. Each mass spectrum was produced by averaging 2500 laser shots collected across the whole sample spot surface by screening in the range m/z 500-7500. The laser irradiance was set to 35-40 % (relative scale 0-100) arbitrary units according to the corresponding threshold required for the applied matrix systems.

Procedures

Typical procedure for the SARA ATRP of DPA (DP = 50) catalyzed by [Na$_2$S$_2$O$_4$]/[CuBr$_2$]/[Mg$_3$TREN] = 1/0.1/0.1 in isopropanol/water mixture. A mixture of CuBr$_2$ (3.67 mg, 0.016 mmol), Mg$_3$TREN (4.16 mg, 0.018 mmol) and water (195 µL) was placed in a Schlenk tube reactor that was sealed by using a rubber septa. Na$_2$S$_2$O$_4$ (32.86 mg, 0.164 mmol) and a mixture of DPA (1.75 g, 8.21 mmol) and EBiB (32.02 mg, 0.164 mmol) in IPA (3.697 mL) (previously bubbled with nitrogen for about 15 minutes) was added to the reactor and frozen in liquid nitrogen. The Schlenk tube reactor containing the reaction mixture was kept in a water bath at 40 ºC. After the injection (50 µL) the samples were filtered through a pore before injection and the system was calibrated with narrow PS standards. The dn/dc of PDPA in THF at 30 °C was determined as 0.077 using a RUDOLPH RESEARCH J357 Automatic Refractometer (J357-ND6-670-CC), M_nGPC and D of the synthesized polymers were determined by using a multidentectors calibration (OmnisEC software version: 4.6.1.354).

1H nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance III 400 MHz spectrometer, with a 5 mm TXI triple resonance detection probe, in CDCl$_3$ with tetramethylsilane (TMS) as an internal standard. Conversion of monomers was determined by integration of monomer and polymer peaks using MestReNova software version: 6.0.2-5475.
deoxygenated with three freeze-vacuum-thaw cycles and purged
with nitrogen. The Schlenk tube reactor was placed in a water
bath at 40 °C with stirring (600 rpm). Aliquots of the reaction
mixture were collected periodically during the polymerization by
using an airtight syringe and purging the side arm of the Schlenk
tube reactor with nitrogen. The samples were analyzed by 1H
NMR spectroscopy in order to determine the monomer
conversion, and by SEC to determine MW and D of the PDPA.

Chain extension experiment. A mixture of CuBr₂ (4.84 mg,
0.02 mmol), Me₃TREN (5.48 mg, 0.02 mmol) and water (152
μL) was placed in a Schlenk tube reactor that was sealed by using
rubber septa. Na₂S₂O₅ (47.5 mg, 0.24 mmol) and a mixture of
DPA (1.37 g, 6.42 mmol) and EBiB (41.7 mg, 0.21 mmol) in IPA
(2.892 mL) (previously bubbled with nitrogen for about 15
minutes) was added to the reactor and frozen in liquid nitrogen.
The Schlenk tube reactor containing the reaction mixture was
deoxygenated with five freeze-vacuum thaw cycles and purged
with nitrogen. The Schlenk tube reactor was placed in a water
bath at 40 °C with stirring (600 rpm) and the reaction proceeded
for 4 hours (75% conversion, M₅₀ = 4940 g/mol¹⁻, Mₙ, GPC = 15300
g/mol¹⁻, M₅₀/Mₙ = 1.20). After that, a degased solution of DPA
(1.61 g, 7.56 mmol) in IPA/H₂O (2.76 mL/145 μL) was added and
the reaction proceeded for 24 h.

“Click” reaction between the alkyne terminated-PDPA
(AT-PDPA) and 3-azido-7-diethylamino coumarin (N₃-cum).
AT-PDPA (341.16 mg, 0.012 mmol, M₅₀, GPC = 27600 g/mol¹⁻,
Mₙ/M₅₀ = 1.11) synthesized by SARA ATRP and N₃-Cum (4.81
mg, 0.018 mmol) were dissolved in 6 mL of THF. Sodium
ascorbate (1.96 mg, 0.010 mmol dissolved in water (0.4 mL)
were added to the previous mixture, the vessel were sealed with a
rubber septum and the mixture bubbled with Nitrogen for about
10 min. A fresh solution of CuSO₄ (0.54 mL, 0.003 mmol) in
water were added under N₂ and the reaction proceed at room
temperature overnight. The reaction was observed by UV
fluorescence at 366 nm. To remove the excess of N₂-Cum and the
catalysts, the product was dialysed against THF-water mixture
(50:50) for 2 days. The product was analysed by NMR and by
fluorescence restoration (λₐₙ = 365 nm) in order to confirm the
success of the “click” reaction.

Results and discussion

The reports available in the literature concerning the ATRP of
DPA based polymers involve the use of high concentration of
copper catalysts and, in some cases toxic solvents, such as THF
or methanol. The control over the polymerization is achieved by
Cu(I)Br (or Cu(I)Cl) chelated with various nitrogen based ligands
such as Bpy¹³, 19, 22, 29 PMDETA²¹ or HMTETA²⁰ at high
concentrations. However, polymers intended to be applied in the
biomedical field requires the use of safer solvent mixtures and an
accurate removal of the catalyst from the final product.

The use of inorganic sulfites, such as Na₂S₂O₅, Na₂S₂O₄ and
NaHSO₃, as reducing agents and supplemental activators in
ATRP of methyl acrylate (MA) has recently been reported.¹⁰, ¹¹
The ability to control the polymerization with small amounts of

copper/ligand system in alcohol/water mixture makes these
systems very promising for polymer synthesis for biomedical
applications.

As the amount of water has a strong impact on the kinetics of
ATRP, initially, the experiments were conducted to determine
influence of water content in the SARA ATRP of DPA using
Na₂S₂O₅ as a reducing agent.¹² Subsequently, the method was
applied for the polymerization of DPA with various target
molecular weights and different ATRP initiators (alkyne
terminated initiator (PgBiB) and a 4Marms star initiator). All
reactions were performed using a ratio [DPA]₀/[M] vs time and plot
conversion for ATRP of DPA in the presence of Cu(II)Br₂/M₅₀/TREN
with Na₂S₂O₅ in two different IPA/water mixtures. Conditions:
[DPA]₀/solvent = 1/2 (v/v), [IPAP][H₂O] = 0.95/0.05 (v/v) or 0.90/0.10
(v/v); [DPA]₀ / [EBiB]₀ / [Na₂S₂O₅]₀ / [CuBr₂]₀ / [Me₃TREN]₀ =
50/1/0.1/0.1/0.1 (molar); T= 40 °C.

Influence of water content on the rate of polymerization and
control over molar mass of DPA in IPA/water mixtures

In SARA ATRP mediated by a mixed sulfite-Cu(II)Br₂/ligand
catalytic system the use of small amounts of water in the reaction
mixture can enhance the solubilization of the inorganic salts
leading to faster reactions.¹³ Abreu and co-authors have found
that for the system [methyl acrylate]₀/[EBiB]₀/[Na₂S₂O₅]₀/
[Cu(II)Br₂]₀/[Me₃TREN]₀ polymerization of methyl acrylate in a
mixture ethanol/water, the optimum content of water was 35%.
Up to this value, the polymerization rate increased with the water
content maintaining the control over the MW and dispersity.¹⁴
In order to find the optimal ratio of IPA/water to afford a
controlled ATRP of DPA, two different ratios IPA/water have
been studied. Fig.1 presents the kinetic plots of SARA ATRP of

![Fig. 1 Kinetic plots of DPA conversion and ln([M]₀/ [M]) vs time and plot of number average molecular weights (Mn, GPC) and dispersity (Mw/Mn) vs conversion for ATRP of DPA in the presence of Cu(II)Br₂/M₅₀/TREN with Na₂S₂O₅ in two different IPA/water mixtures. Conditions: [DPA]₀/solvent = 1/2 (v/v), [IPAP][H₂O] = 0.95/0.05 (v/v) or 0.90/0.10 (v/v); [DPA]₀ / [EBiB]₀ / [Na₂S₂O₅]₀ / [CuBr₂]₀ / [Me₃TREN]₀ = 50/1/0.1/0.1/0.1 (molar); T= 40 °C.](image-url)
DPA conducted at 40 °C in IPA/water mixtures using 5 or 10% (v/v) of water in the solvent mixture.

![Image](54x615 to 284x717)

It should be mentioned that to poor solubility of sodium dithionite in isopropanol, the polymerizations should always be carried out in the presence of small amount of water. The presence of 5% (v/v) of water in the reaction solvent mixture allows the polymerization to proceed with a first order kinetic relative to the monomer, reaching 80% conversion in 5 hours, with low dispersity values (Mn/Mw = 1.14). The SEC traces (Fig. 2(a)) of the samples that were taken at different reaction times show that, for the polymerization carried out at 5% (v/v) of water, a unimodal distribution and a gradual shift towards higher MW with time was obtained. When the ATRP was conducted with a high water content, (10%, v/v) in the solvent mixture, a lower monomer conversion and an uncontrolled polymerization was observed. This fact is supported by the deviations of the ATRP kinetics from a “living” behavior in Fig. 1 and by broad GPC traces that are shown in Fig.2(b). The high dispersity may result from the reduced solubility of PDPA in this solvent mixture (IPA/H2O = 90/10 (v/v)). In fact, it has been experimentally observed that for 10% (v/v) of water, the synthesized PDPA samples of higher MW presented significantly lower solubility in the solvent mixture when compared to those with 5% (v/v) of water. Although most of the critical characteristics of a “living” polymerization are achieved, such as the linear growth of molecular weight with conversion and low dispersity values throughout the reaction, when ATRP was carried with 5% (v/v) of water, the GPC traces present a tailing in the GPC curve. This deviation becomes less predominant for higher DPA monomer conversion, suggesting the occurrence of termination reactions at the early stages of the polymerization due to the high concentration of radicals caused by the presence of the dithionite.

Study of variable degrees of polymerization

The influence of the target DP on the SARA ATRP of DPA is presented in Fig. 3. As expected, the polymerization rate decreases for a higher targeted DP. This decrease can be attributed to a lower concentration of radicals in the polymerization mixture. Although the kinetics of polymerization at DP 100 shows a typical profile of a “living” polymerization, with a linear increase of the MW with the conversion, there is a tendency towards higher dispersities when compared to those obtained at the DP of 50. Fig.4 compares the GPC traces obtained for DP=100 and 20.

![Image](312x546 to 547x670)

![Image](324x114 to 537x288)

![Image](325x289 to 537x469)

![Image](332x315 to 546x573)

![Image](334x525 to 548x773)

![Image](336x685 to 549x937)

![Image](339x969 to 552x1221)

![Image](341x1232 to 555x1484)

![Image](344x1495 to 558x1747)

![Image](346x1758 to 560x2010)

![Image](350x2021 to 562x2273)

![Image](352x2284 to 564x2536)

![Image](355x2547 to 566x2799)

![Image](357x2800 to 568x3052)

![Image](360x3063 to 571x3315)

![Image](362x3326 to 573x3578)

![Image](365x3589 to 575x3841)

![Image](368x3852 to 577x4104)

![Image](370x4115 to 579x4367)

![Image](373x4378 to 581x4630)

![Image](375x4641 to 584x4893)

![Image](378x4904 to 586x5156)

![Image](380x5167 to 588x5419)
The GPC traces obtained for DP of 100 shows a shift towards higher MW values with time, but, in this case, the tailing for lower MW segments is not as evident as for lower DP. This observation may be attributed to a lower concentration of dead chain ends, likely due to the reduced concentration of radicals. In fact, polymerizations with a much lower DP (20) (Fig.4(b)) show GPC curves with more evident low MW tail. For the other polymerizations carried out with higher DP, the main peak remains with a narrow distribution, still suggesting a controlled PDPA chain growth. The formation of lower MW fraction which decreases with the monomer conversion, suggests that there is a loss of active chain end functionality at the beginning of the polymerization. This effect may be attributed to the high concentration of sodium dithionite and possible inefficient deactivation by the Cu(II)Br₂ complex, leading to termination reactions and becoming more pronounced when the catalyst is at a higher concentration.

To further evaluate the effect of the Cu(II)Br₂/M₆TREN complex concentration in the formation of these low MW PDPA fractions, two similar reactions were performed using different ratios of the Cu(II)Br₂/M₆TREN complex to the initiator (0.1 and 0.2). No significant changes were observed in the MW control, since both PDPA present similar low MW tailing (Fig.S3- ESI†).

Influence of different ATRP initiators on the rate of polymerization and control over molar mass of DPA in IPA/water mixtures

In order to evaluate the possibility of preparing telechelic PDPA with different chain-end functionalities, an alkylene terminated initiator (PgBiB) was used in the SARA ATRP reactions of DPA. Fig. 5 presents the kinetic plots of DPA polymerization for a DP of 40.

When PgBiB was used as ATRP initiator (Fig. 5) the kinetic plot showed similar behavior compared to EBiB. The polymerization reaches high monomer conversion (92%) in less than 4 hours with relatively low dispersity (Mₘ/Mₙ = 1.22). The kinetic data obtained under the same reaction conditions for normal ATRP revealed a much slower polymerization (Fig. S4).

Additionally, a 4-armed ATRP initiator was further evaluated with this SARA ATRP catalytic system. Star-shaped initiators can generate complex polymeric architectures, which may provide unique functionalities in biomedical applications.³³ The use of 4-arms star initiator for the Na₂S₂O₄/Cu(II)Br₂/M₆TREN catalytic system in IPA/H₂O [95/5 (v/v)] was evaluated to prepare four-armed star PDPA and compare with the linear counterpart. Two polymers with the same total target MW were synthesized using a 4-arms star as initiators and EBiB. The comparison of both GPC traces, from the linear polymer (DP 100) with the 4 arms star polymer with DP 25 (Fig. 7), shows that the trace from the star polymer is eluted at a volume greater than its linear counterpart. In fact, this observation may be explained by the lower hydrodynamic volume that a star polymer occupies when compared to its linear analogue.

For an accurate characterization of the 4-arms star PDPA, the GPC analysis was performed using a multi-detectors systems, including differential viscometer (DV) and a right-angle laser-light scattering (RALLS) detector in addition to the refractive index (RI) detector. Mark-Houwink plots of log intrinsic viscosity as a function of log MW were calculated for the 4-arms star PDPA and the linear analog in order to explore the conformation of the polymer in solution and are presented in Fig.8. The resulting plot of the 4-arms star polymer consists in a parallel line to the linear one indicating that a star polymer has a lower intrinsic viscosity at any given molecular weight when compared to the linear one. The relationship between the MW and the intrinsic viscosity is given by the equation, [η]=k M^n, being [η] the intrinsic viscosity, M the molecular weight and k, n the Mark-Houwink constants. The Mark-Houwink exponent (slope of the curves), which depends on the polymer configuration in solution, is considerably lower for the 4-
observed for star and linear polymer was 9.38x10^4 and 5.37 x 10^4, respectively.

The kinetic data obtained for the different reaction conditions used for the SARA ATRP of DPA are summarized in Table 1. The results indicate that when EBiB was used, as expected, the faster polymerizations were observed for higher contents of water (entries 2 and 4). This observation suggests that high water amount in the system allows faster reduction of Cu(II)Br2 species to Cu(I)Br, which should be related to the higher solubility of the dithionite salt. However, the dispersity obtained is also higher, limiting the content water that can be used in this system to 10% (v/v). It is also interesting to notice that for PgBiB and 4-FBiB initiators (entries 10 and 11) the PDI remains low even using 10% (v/v) of water in the polymerization mixture.

Table 1 SARA-ATRP of PDA in the Presence of CuBr2/Me3TREN and Na2S2O4 at 40 °C in isopropanol/water (monomer/solvent ratio: 1/2 (v/v))

<table>
<thead>
<tr>
<th>Entry</th>
<th>[DPA]/[initiator]/[Na2S2O4]/[CuBr2]/[Me3TREN]</th>
<th>Initiator</th>
<th>[IPA]/[H2O] (v/v)</th>
<th>k_p app (h^-1)</th>
<th>Time (h)</th>
<th>Conv. (%)</th>
<th>M_n,GPC *10^3</th>
<th>M_w,GPC *10^5</th>
<th>M_a/M_w</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50/1/0.1/0.1</td>
<td>EBiB</td>
<td>0.95/0.05</td>
<td>0.418</td>
<td>5</td>
<td>88</td>
<td>9.55</td>
<td>20.15</td>
<td>1.14</td>
</tr>
<tr>
<td>2</td>
<td>50/1/0.1/0.1</td>
<td>EBiB</td>
<td>0.90/0.10</td>
<td>0.569</td>
<td>5</td>
<td>83</td>
<td>8.81</td>
<td>20.51</td>
<td>1.66</td>
</tr>
<tr>
<td>3</td>
<td>100/1/0.1/0.1</td>
<td>EBiB</td>
<td>0.95/0.05</td>
<td>0.416</td>
<td>5</td>
<td>87</td>
<td>18.79</td>
<td>28.14</td>
<td>1.47</td>
</tr>
<tr>
<td>4</td>
<td>100/1/0.1/0.1</td>
<td>EBiB</td>
<td>0.90/0.10</td>
<td>0.678</td>
<td>5</td>
<td>62</td>
<td>13.35</td>
<td>23.85</td>
<td>1.54</td>
</tr>
<tr>
<td>5</td>
<td>20/1/0.1/0.1</td>
<td>EBiB</td>
<td>0.95/0.05</td>
<td>---</td>
<td>4</td>
<td>98</td>
<td>4.53</td>
<td>14.32</td>
<td>1.20</td>
</tr>
<tr>
<td>6</td>
<td>20/1/0.2/0.2</td>
<td>EBiB</td>
<td>0.95/0.05</td>
<td>---</td>
<td>4</td>
<td>92</td>
<td>4.10</td>
<td>15.20</td>
<td>1.20</td>
</tr>
<tr>
<td>7</td>
<td>40/1/0.1/0.1</td>
<td>PgBiB</td>
<td>0.95/0.05</td>
<td>0.730</td>
<td>5</td>
<td>96</td>
<td>8.01</td>
<td>20.28</td>
<td>1.20</td>
</tr>
<tr>
<td>8</td>
<td>100/1/0.1/0.1</td>
<td>PgBiB</td>
<td>0.95/0.05</td>
<td>---</td>
<td>14</td>
<td>95</td>
<td>28.76</td>
<td>28.76</td>
<td>1.40</td>
</tr>
<tr>
<td>9</td>
<td>90/1/0.1/0.1</td>
<td>PgBiB</td>
<td>0.90/0.10</td>
<td>---</td>
<td>2</td>
<td>64</td>
<td>12.42</td>
<td>30.62</td>
<td>1.24</td>
</tr>
<tr>
<td>10</td>
<td>100/4/0.4/0.4</td>
<td>4-arms star</td>
<td>0.95/0.05</td>
<td>---</td>
<td>5</td>
<td>99</td>
<td>21.69</td>
<td>29.68(*)</td>
<td>1.17</td>
</tr>
</tbody>
</table>

*) Values obtained from the last sample from the kinetic studies. [8] Data from THF GPC.

Fig. 7 GPC traces of linear PDPA and 4-arms star PDPA samples. Conditions: [DPA]/[IPA]/[H2O]= 1/0.95/0.05 (v/v); [DPA]/[EBiB]/[Na2S2O4]/[CuBr2]/[Me3TREN]= 100/1/1/0.1/0.11 (molar) (linear); [DPA]/["4-armed initiator"]/[Na2S2O4]/[CuBr2]/[Me3TREN]= 100/1/4/0.4/0.41 (star), T=40°C.

Fig. 8 Log-log plot of intrinsic viscosities against MW for linear and 4-
The presence of chain end functionality for the PDPA synthesized using the PgBiB as ATRP initiator could also be identified by 1H NMR spectroscopy (Fig. 10). In the NMR spectrum of the pure polymer the characteristic peaks of the CH$_3$- and -CH$_2$- groups that are adjacent to the terminal Br chains ends are overlapped with those of the methylene protons of the polymeric chain (d, e) and, thus, the degree of active bromo-chain ends could not be calculated. The methylene protons resulting originally from the PgBiB initiator (k), which can be observed at 4.62 ppm, allows estimating of the number-average MW, M_n,$\text{NMR} = 25800\text{gmol}^{-1}$.

The MALDI-TOF-MS spectrum of PDPA in the linear mode with m/z ranging from 1400 to 3000 and 1200 to 9500 is shown in Fig.11 and Fig. 12 (a). Enlargement of the latter in m/z 2000-3220 range is shown in Fig. 12 (b). One or two series of main peaks are separated by an interval corresponding to a DPA repeating unit (211 = 213 – 2 = M$_{\text{DPA}}$ – M$_2$ mass units), that can be explained by the loss of hydrogen from disopropylaminoethyl fragment. Tertiary amines are strong photoreducers. Ethyl disopropyl amine loses hydrogen under photolysis in the presence of a photosensitizer with quantum yield >90% 44. Under MALDI conditions (excited matrix molecules, laser irradiation) ethyl disisopropyl amine moieties can lose hydrogen quantitatively. It is important to notice that no MALDI-TOF results for PDPA were reported so far.

The assignment of the peaks is presented in Table 2. The general formula for peaks in Fig. 10 and for the bigger set of signals in Fig. 12 (Table 2) is $M_{\text{MALDI peak}} = M_{\text{Exp}} = M_{\text{ca}} + mH = (\text{EBIB} + (\text{DPAM}_2\text{H})n - \text{Br} + K^+ + mH)$, where n – the number of repeat units (DPA-2H), m = (-5) – 5, can depend on MW and MALDI conditions, for example the laser power. Odd values of m can indicate that hydrogen abstraction occurs through a radical mechanism that corresponds to literature data. 38, 44, 45 Values of m increase with molecular weight. The loss of Br functionality in the polymer structure has been reported in MALDI-TOF MS of acrylate-based polymers produced by ATRP. 46, 47 Thus, the loss of halides could be attributed to the polymerization reactions or a result of fragmentation in the MALDI mass spectroscopy.

The percentage of the bromo-chain-end functionality cannot be determined since the PDPA signals of the protons near the terminal bromo-chain-end are overlapped with the proton signals of the main polymeric chain (d, e).

The MALDI-TOF-MS spectrum of PDPA in the linear mode with m/z ranging from 1400 to 3000. Conditions: [DPA]$_s$/solvent = 1/2 (v/v), [IPA]/[H$_2$O] = 0.95/0.05 (v/v).
(DPA)$_0$[(EBiB)$_0$][Na$_2$S$_2$O$_4$]$_0$[CuBr$_2$]$_0$[Me$_6$TREN]$_0$ = 20/1/0.1/0.1 (molar); T=40ºC.

The minor peak set in Fig. 12 and Table 2 can be attributed to adduct of the above fragments with 4-hydroxybutanal, HO(CH$_2$)$_3$CHO, HBA MW 88.11, which in an impurity in THF solvent. Table 2 demonstrates an excellent agreement for this suggestion (m = 0; 1).

Chain extension experiment

To prove the presence of the terminal Br chain ends in the growing polymer chains and the “living” nature of the PDPA obtained by SARA ATRP, a chain extension experiment was carried out. As shown in Fig. 13, a shift towards lower retention volumes of the GPC trace of the PDPA sample was observed when new monomer was supplied. The MW of the PDPA macronitirator obtained at 75% conversion ($M_{n,th}$ = 4940 g/mol, $M_{n,GPC}$ = 15300 g/mol, M_w/M_n = 1.20) nearly doubled, while maintaining a narrow MW distribution, when new monomer was supplied ($M_{n,th}$ = 14400 g/mol, $M_{n,GPC}$ = 27300 g/mol, M_w/M_n = 1.15).

![Fig. 13 GPC traces of the PDPA before (black line) and after the chain extension (blue line) experiment.](image-url)

Table 12: MALDI-TOF MS peaks assignment.

<table>
<thead>
<tr>
<th>Fig. 10, 12 (major set)</th>
<th>Fig. 10</th>
<th>Fig. 12(major set)</th>
<th>Fig. 12(minor set)</th>
<th>Fig. 12(minor set)</th>
<th>a/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 1422.06</td>
<td>1422.42</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 1633.36</td>
<td>1633.27</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 1844.66</td>
<td>1844.29</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 2055.96</td>
<td>2054.75</td>
<td>-1</td>
<td>2060.87</td>
<td>2144.07</td>
<td>2144.96</td>
</tr>
<tr>
<td>10 2267.26</td>
<td>2265.38</td>
<td>-2</td>
<td>2271.87</td>
<td>2355.37</td>
<td>2355.97</td>
</tr>
<tr>
<td>11 2478.56</td>
<td>2475.15</td>
<td>-3</td>
<td>2482.89</td>
<td>2566.67</td>
<td>2566.86</td>
</tr>
<tr>
<td>12 2689.86</td>
<td>2685.71</td>
<td>-4</td>
<td>2693.73</td>
<td>2777.97</td>
<td>2777.84</td>
</tr>
<tr>
<td>13 2901.16</td>
<td>2896.36</td>
<td>-5</td>
<td>2904.81</td>
<td>2989.27</td>
<td>2989.01</td>
</tr>
<tr>
<td>14 3112.46</td>
<td>3115.82</td>
<td>3</td>
<td>3200.57</td>
<td>3200.16</td>
<td></td>
</tr>
</tbody>
</table>

a $M_W = M_{Wca} + mH = EBiB + (DPA – 2H) – Br + K + mH$;
b \[MW_{\text{min}} + mH = E_{\text{BiB}} + (\text{DPA} - 2H) - \text{Br} + \text{HBA} + K + mH; \]

where $E_{\text{BiB}} = 195.06$, DPA = 213.32, H = 1.01, Br = 79.9, K = 39.1, HBA = 88.11, n – the number of repeat units (DPA – 2H), m – number of additional H atoms left in PDPA.

Fig. 14 “Click” reaction between alkyne functionalized PDPA and 3-azido-7-diethylaminocoumarin.

This result indicates that the “living” character of the synthesized PDPA can be obtained through the application of the Na$_2$S$_2$O$_4$-mediated SARA ATRP catalytic system, thus, suggesting that this catalytic system can be applied in the synthesis of block copolymers, with no need of further addition of catalysts to the reaction mixture. Also, the movement toward high MW suggests that the absence of Br functionality observed in the MALDI-TOF part is due fragmentation during the analysis.

N$_3$-Coumarin reaction with alkyne terminated PDPA

In order to provide further evidence for the presence of the alkyne moiety in the polymer chain end, the AT-PDPA was reacted with an azidocoumarin compound, 3-azido-7-diethylaminocoumarin (Fig. 14). The coumarin dye molecules are biocompatible and have been used as fluorescent molecular probes. Both compounds alone are not fluorescent, but after the azide-alkyne cycloaddition, the formation of the triazole compound provides final structure with fluorescence (highly fluorescent linkage at 366 nm) (Fig. 15).

Fig. 15 Image of the reaction mixture after the “click” reaction between the alkyne functionalized PDPA and 3-azido-7-diethylaminocoumarin. The formation of the fluorescent linkage could be easily seen upon irradiation at 365 nm with a hand-held UV lamp.

Fig. 16 1H NMR spectrum, in CDCl$_3$, of the PDPA-Cu obtained by the “click” reaction between the alkyne-PDPA and the N$_3$-Cum.

Conclusions

The pH-responsive PDPA was successfully synthesized using an eco-friendly, inexpensive and less toxic SARA ATRP system at 40 °C, in the presence of inorganic sulfites (Na$_2$S$_2$O$_4$) and a Cu(II)Br$_2$/Me$_6$TREN complex in a mixture of isopropanol and water. The catalytic system was able to control the polymerization of DPA with a low amount of water, 5% (v/v), in the solvent mixture. The controlled “living” character of this system was supported by kinetic data and chain extension experiments. The controlled molecular structure of the obtained polymers was confirmed by 1H NMR and MALDI-TOF analysis. Moreover, the inclusion of an alkyne chain end functionality was shown to be able to allow post-polymerization functionalization PDPA prepare with this catalytic system through 1,3-dipolar Huisgen cycloaddition.

Acknowledgements

Joana R. Góis acknowledges FCT-MCTES for her PhD scholarship (SFRH / BD / 69635 / 2010). Nuno Rocha acknowledges FCT-MCTES for his postdoctoral scholarship (SFRH/BPD/86352/2012).
The 1H NMR data were obtained from Rede Nacional de RMN in the University of Coimbra, Portugal.

We thank Pedro Cardoso for the synthesis of the 3-azido-7-diethylamino coumarin.

Notes and references

1. Polo II, Rua Sílvio Lima, 3030-790 Coimbra, Portugal. Fax: +351 239 798 703; Tel:+351 239 798 764; E:mail: jcoelho@eq.uc.pt
2. Department of Radiology, University of Pennsylvania, Philadelphia, PA19104, United States.
3. Home Address: 1761 Foster Street, FSB, Philadelphia PA 19116, United States. E:mail: tamazguliasvili@yahoo.com
4. Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States. E:mail: km3b@andrew.cmu.edu
5. Electronic Supplementary Information (ESI) available: Characterization details. See DOI: 10.1039/b000000x/
Graphical Abstract

188x105mm (150 x 150 DPI)