Photochemical & Photobiological Sciences

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/pps

1	-
	C
	U)
	D
_	
ľ	
	\mathbf{O}
	Y
	()
	~
	C
	-
	U)
	1
	¥.
	C
	ž
	1
	Y
1	
	0
è	
	"
	ũ
	ca
	Ca
	glcal
	gical
	ogical
	ogical
	logical
	ological
	lological
	Diological
	biological
	obiological
	obiological
	tobiological
	otobiological
	otobiological
	notobiological
	notobiological
	Photobiological
	Photobiological
	k Photobiological
	& Photobiological
	& Photobiological
	l & Photobiological
	al & Photobiological
	al & Photobiological
	cal & Photobiological
	ical & Photobiological
	nical & Photobiological
	nical & Photobiological
	mical & Photobiological
	emical & Photobiological
	emical & Photobiological
	nemical & Photobiological
	inemical & Photobiological
	chemical & Photobiological
	ochemical & Photobiological
	ochemical & Photobiological
	tochemical & Photobiological
	stochemical & Photobiological
	otochemical & Photobiological
	notochemical & Photobiological
	notochemical & Photobiological
	Photochemical & Photobiological

1	
2	Catechin as a new improving agent for photo-Fenton-like system at near-neutral
3	pH for the removal of inderal
4	Zongping Wang ^a , Yizhou Guo ^a , Zizheng Liu ^{*ab} , Xiaonan Feng ^a , Yiqun Chen ^a , Tao
5	Tao ^a
6	^a School of Environmental Science and Engineering, Huazhong University of Science
7	and Technology, Wuhan, 430074, China
8	^b School of Civil Engineering, Wuhan University, Wuhan, 430074, China
9	
10	
11	Abstract
12	Photodegradation of inderal in a photo-Fenton like system at near-neutral pH
13	modified with catechin, a natural catecholate siderophore, was investigated under
14	simulated sunlight. Main factors influencing the process, such as Fe(III)-catechin
15	complexes, pH, and catechin concentration were examined. Photodegradation of
16	inderal was strongly dependent on pH, following the order pH $3.0 < 5.0 < 7.0 < 6.0$.
17	Formation of the Fe(III)-catechin complex resulted in the stabilization of ferric iron
18	and generation of 'OH under irradiation at near-neutral pH values. The removal of
19	inderal was about 75% under optimal conditions (50 $\mu mol/L$ Fe(III) and 200 $\mu mol/L$
20	catechin at pH 6.0). Photodegradation products of inderal were identified by
21	LC-ESI-MS and GC-MS, and the photodegradation pathway was proposed. Iron in

^{*} Corresponding author. Tel.: +86-27-87792406; Fax: +86-27-87792101. *E-mail address*: lzz@hust.edu.cn (Z.Z. Liu).

Page 2 of 29

the Fe(III)–catechin system was reused by simple addition of catechin to the reaction mixture. Results of the present work suggest that the Fe(III)–catechin complex may

be used in the photo-Fenton like process, an advanced approach to the removal oforganic pollutants at near-neutral pH.

Keywords: Fe(III)–catechin complex; Catecholate siderophore; Photo-Fenton; Neutral
 pH; Inderal

28

22

23

29 **1. Introduction**

Processes based on hydroxyl radical (•OH) chemistry are currently used for the 30 degradation of organic contaminants. Much is known about the nature of the Fenton 31 reaction, which has been widely used as a source of •OH, since its first description in 32 a paper published in 1894¹. In recent decades, studies have been done to examine the 33 application of various types of Fenton reactions in wastewater treatment. These 34 reactions include homogeneous Fenton (and Fenton like) processes and photo-Fenton 35 (and photo-Fenton like) systems using various Fe(II) and/or Fe(III) salts and peroxide 36 37 in acidic media. One system that has been found to be most effective for removal of various organic pollutants from aqueous media, soils, and sediments is the 38 photo-Fenton reaction ²⁻⁶, which generates mainly the highly reactive radical •OH ⁷⁻⁹. 39

However, the traditional Fenton like system has several drawbacks, in particular, its
limited pH range and ferric iron precipitation during the process. To overcome these
deficiencies, different approaches have been used in related studies. In this regard, one
approach that holds promise is the use of organic and inorganic ligands for iron.

44	Ligands that have been frequently used in photo-Fenton like processes for removal of
45	organic substances in aqueous solutions are citrate ¹⁰ and oxalate ¹¹ . Compared with
46	traditional Fenton systems, photo-Fenton-like processes could improve the removal
47	efficiency of substrates by using the aforementioned organic ligands at near-neutral
48	pH. The photo-Fenton like process strongly absorbs ultraviolet-visible (UV-vis)
49	radiation and stabilizes ferric ions over a wider pH range. The high quantum yield of
50	Fe(II) in the presence of ligands increases the amount of 'OH generated, thereby
51	increasing the removal efficiency of organic pollutants ^{12, 13} . Other ligands have also
52	been used to complex iron in photo-Fenton like systems. These include EDTA ¹⁴ ,
53	humic acids ^{15, 16} , and EDDS ¹⁷ . Futhermore, Solar photo Fenton was developed to
54	reduce the process time and energy consumption. ^{18, 19}

Complexes of iron with strong organic ligands comprise >99.9% of dissolved iron 55 in natural environments ²⁰. This abundance has recently generated much interest in 56 siderophores, iron chelators in biological systems and natural waters as well. Various 57 fungi and heterotrophic bacteria cultured under conditions of limited iron levels have 58 been found to produce siderophores that form complexes with high stability constants 59 $^{21-24}$. The photoreactivity of siderophores is primarily determined by the chemical 60 61 structure of their Fe(III)-binding groups, namely, hydroxamate and catecholate moieties. Hydroxamate groups are photochemically resistant regardless of Fe(III) 62 complexation. Catecholate siderophores are susceptible to photooxidation and 63 undergo light-induced ligand oxidation and reduction of Fe(III) to $Fe(II)^{25}$. 64

Photochemical & Photobiological Sciences Accepted Manuscrip

Most of the studies on siderophores were centered on identifying structures ²⁶,

Photochemical & Photobiological Sciences

66	determining dissociation constants for Fe(III)-siderophore complexes ^{27, 28} , and
67	examining iron uptake in the ocean ²⁹ . However, few studies addressed the use of
68	photo-Fenton like systems with Fe(III)-siderophore complexes for remediation of
69	freshwater environments. In the present work, catechin (CAT), which is a natural
70	catecholate siderophores and can be easily obtained from green plants especially
71	Chinese tea, was used as a model catecholate siderophore. We examined the effect of
72	Fe(III)-siderophore complexes on photodegradation of pollutants dissolved in neutral
73	aqueous media. For this purpose, we used inderal, a popular amine drug, as a model
74	pollutant. The effects of Fe(III) complexes, pH values, and catechin concentration on
75	the degradation of inderal in the Fe(III)-catechin system were examined. Generations
76	of 'OH and Fe(II) were detected for the photochemical mechanism investigation.
77	Photoproducts of the inderal were determined by LC-ESI-MS and GC-MS,
78	respectively, and the photodegradation pathway was proposed accordingly.

79

2. Materials and methods 80

81 2.1. Materials

Inderal (CAS: 318-98-9, 99%), catechin (CAS: 225937-10-0, 98%), 82 nordihydroguaiaretic acid, pyrocatechol violet, 2,3-dihydroxybenzoic acid, and 83 2-chloro-3',4'-dihydroxyacetophenone were purchased from Sigma. Inderal was 84 85 confirmed from its UV-vis spectra; its molecular structure is shown in Figure A.1. A stock solution of inderal in deionized water was prepared. Ferric chloride (99%), 86 hydrochloric acid, sodium hydroxide, and benzene were supplied by Wuhan 87

- Chemicals Corporation. All chemicals were of analytical-reagent grade or of higher
 purity. Doubly distilled deionized water (Milli-Q) was used to prepare all solutions.
- 90

91 2.2. Photolysis experiments

Photolysis experiments were performed in a 60 mL capped cylindrical Pyrex vessel 92 93 (40 mm i.d., containing 50 mL solution) under a 150 W xenon short-arc lamp. 94 Radiation of wavelengths less than 300 nm was filtered out by using Pyrex glass to 95 simulate sunlight. To measure the quantum yields, the monochromatic irradiations at 96 300 and 365 nm were carried out with the xenon short-arc lamp equipped with a LOT 97 Oriel grating monochromator. The light and the cells were kept parallel with a fixed distance of 7.0 cm. Lamp output was monitored over time by ferrioxalate 98 actinometry³⁰ (Io $_{(300 \text{ nm})} \sim = 0.63 \times 10^{14} \text{ photon cm}^{-2} \text{ s}^{-1}$; Io $_{(365 \text{ nm})} \sim = 1.9 \times 10^{15}$ 99 photon $\text{cm}^{-2} \text{ s}^{-1}$). All solutions for the photolysis experiments were freshly prepared 100 prior to irradiation. The pH was measured by using a pHS-3C meter, and adjusted as 101 102 needed. Aliquots of samples were withdrawn at various intervals, and substrate decay 103 was measured by high-performance liquid chromatography (HPLC).

104 *2.3. Analysis*

The concentration of inderal was analyzed on a Shimadzu Essentia LC-15C HPLC system with an Agilent HC-C18 column (5 μ m, 250 mm × 4.6 mm). The mobile phase was a solution of acetonitrile and KH₂PO₄ buffer (pH 2.5, 10 mmol/L) at a ratio of 35:65 (v/v). The detector wavelength was 213 nm and the flow rate was 1.0 mL/min. Benzene was used to scavenge [•]OH in a reaction that produces phenol. The phenol 110 concentration was analyzed by using a mobile phase of 40:60 (v/v)acetonitrile–H₂O 111 solution, and the detector wavelength was set at 270 nm. The concentrations of 112 ferrous ions were determined using 1,10-phenanathroline spectrophotometry at a 113 wavelength of 510 nm. The concentration of Fe^{3+} was calculated by subtracting the 114 concentration of Fe^{2+} from the total iron concentration in solution. NO₃⁻ was 115 determined by ion chromatography. The calibration curve for the detection of 116 inderal, [•]OH, and Fe(III) is shown in Figure A.2 (Supplementary Data).

117 *2.4. Photoproduct identification*

Photoproducts of inderal were obtained after about 80% of the parent compound 118 119 had been degraded by Fe(III)-catechin complexes at pH 6.0. The reaction solution 120 was evaporated to dryness in a rotary evaporator. The residue was trimethylsilylated 121 at room temperature with 0.1 mL of hexamethyldisilazane and 0.05 mL of 122 chlorotrimethylsilane. GC-MS was carried out on an Agilent 7890A/5975C system with an HP-5 MS capillary column. The gas chromatograph was operated in 123 124 temperature-programming mode as follows: hold at initial temperature of 80 °C for 20 min, ramp at 5 °C/min to 280 °C and hold at this temperature for 3 min. The injection 125 port and MSD were held at 250 and 280 °C, respectively. 126

The LC-MS system used in the study was an Agilent LC/MSD SL ion trap mass spectrometer equipped with an ESI source in the positive ion mode. The mobile phase was (A) 98% $H_2O + 2\%$ CH₃CN + 0.2% formic acid and (B) CH₃CN + 0.2% formic acid. Gradient elution was 2% of B for 1 min followed by a linear increase to 95% B at 25 min, and then held constant for an additional 5 min. The mass spectral data were

132	obtained in the positive ion mode between m/z 100-300. The settings were: capillary
133	voltage, 3500 V; drying gas, 10 L/min; drying gas temperature, 350°C; capillary exit,
134	150 V; skimmer, 40 V; octopole RF amplitude, 160Vpp; ICC target, 100 000; trap
135	drive, 60; maximum accumulation time, 100 ms.
136	

137 **3. Results and discussion**

138 *3.1. Inderal photodegradation by five Fe(III) complexes*

Five kinds of organic ligands were used to complex with Fe(III) at near-neutral pH 139 (6.0) to modify the photo-Fenton like system. The ligands were catechin, 140 141 nordihydroguaiaretic acid, pyrocatechol violet, 2,3-dihydroxybenzoic acid, and 142 2-chloro-3',4'-dihydroxyacetophenone (molecular structures are shown in Table A.1). 143 Inderal degradation through the photo-Fenton like system with various iron complexes was observed Figure 1. The highest efficiency of inderal degradation at pH 144 6.0 was observed in the photo-Fenton like system with Fe(III)-catechin. About 75% 145 of inderal was removed after 120 min. Degradation of inderal in the presence of 146 Fe(III)-2,3-dihydroxybenzoic acid and Fe(III)-2-chloro-3',4'-dihydroxyacetophenone 147 complexes in this photo-Fenton like system was negligible (Supplementary Data for 148 149 nordihydroguaiaretic acid and pyrocatechol violet are shown in Figure A.3). This 150 result may be attributed to the stable complexes that catechin forms with Fe(III) at pH 6.0. By forming such complexes, catechin enhances the solubility and stabilizes Fe(III) 151 in aqueous solution at near-neutral pH (Figure A.4). Thus, catechin has an important 152 contribution to preventing the precipitation of Fe(III) at pH 6.0, and the 153

Fe(III)–catechin chelate broadens the pH range for iron solubility. These results suggest that catechin may be an effective ligand in the photo-Fenton like system at near-neutral pH.

157 *3.2. Role of CAT and formation of photo-Fenton process*

To understand the effect of CAT and irradiation on inderal degradation, experiments 158 using Fe(III)/light (with or without CAT) under the same conditions (50 µmol/L Fe(III) 159 160 and 200 µmol/L catechin at pH 6.0) were conducted. Results of these experiments (Figure 2) show that direct photodegradation of inderal at near-neutral pH was 161 162 negligible. When Fe(III) and catechin were used simultaneously without irradiation 163 for 120 min, inderal degradation was negligible. Degradation of inderal in the photo-Fenton like system was faster; ~75% inderal was removed after 120 min. 164 165 Therefore, irradiation markedly enhanced inderal degradation. This enhancement may be attributed to the photoreactivity of the Fe(III)-catechin complex. The formation of 166 Fe(III)–catechin complex was confirmed by UV–vis spectroscopy of Fe(III), catechin, 167 and Fe(III)-catechin mixture (Figure A.4a). The Fe(III)-catechin mixture produced an 168 obvious spectral shift relative to catechin. There was evidence of formation of a 1:1 169 ligand-metal complex at near-neutral pH. The conditional stability constant for Fe(III) 170 binding of the Fe(III)-catechin complex was found to be $(1.6 \pm 0.1) \times 10^6$ by 171 continuous variation methods (Figure A.5). Stabilization of Fe(III) at near neutral pH 172 by CAT and formation of photo-Fenton like system are illustrated in Scheme 1. The 173 photo-Fenton like process could be explained by the following reactions ^{3, 31, 32}: 174

176
$$\operatorname{FeCat} + hv \to \operatorname{Fe(II)} + \operatorname{Cat}^{-\bullet}$$
 (2)

177
$$\operatorname{Cat}^{-\bullet} + \operatorname{O}_2 \to \operatorname{O}_2^{\bullet-}$$
 (3)

178
$$H^+ + O_2^{\bullet-} \rightarrow HO_2^{\bullet}$$
 (4)

$$179 \qquad 2HO_2 \bullet \to H_2O_2 + O_2 \tag{5}$$

180
$$\operatorname{Fe}(\operatorname{II})(\operatorname{Cat}^{-}) + \operatorname{H}_2\operatorname{O}_2 \to \operatorname{Fe}(\operatorname{III})\operatorname{Cat} + {}^{\bullet}\operatorname{OH} + \operatorname{OH}^{-}$$
 (6)

Formation of Fe(III)–catechin complexes evidently increased the rate of $HO_2^{\bullet}/O_2^{\bullet-}$ 181 formation and of [•]OH formation ³³. These radicals were detected in the reaction 182 solutions (Figure A.6a). During rapid ligand-to-metal charge transfer (LMCT) of the 183 Fe(III)-catechin complex, the species Fe^{2+} and Cat^{-} are generated. In the presence of 184 oxygen, $O_2^{\bullet-}$ forms and subsequently generates H_2O_2 which, in turn, produces $^{\bullet}OH$ 185 through a reaction with Fe(II) in the Fenton process (Eqs. (3)-(6)). Under acidic 186 conditions, Fe(III) and catechin are free species (Figure A.4b), which have weaker 187 ability to produce 'OH compared with the Fe(III)-catechin complex. At near-neutral 188 pH, catechin may increase the solubility and stability of iron. Thus, the 189 190 Fe(III)-catechin complex becomes a predominant species and has considerable 191 photoreactivity at this pH. On the other hand, the amount of catechin for Fe(III) complexation was more than enough at increased catechin concentration. Thus, it 192 outcompeted hydroxide ions for Fe(III) at higher pH. Therefore, amount of [•]OH 193 formation increased in the order pH 3.0 < 5.0 < 7.0 < 6.0. 194

Photochemical & Photobiological Sciences Accepted Manuscrip

195	Inderal photodegradation is mainly attributed to the reactive oxygen species, 'OH
196	The presence of light played an important role in the production of 'OH. In the
197	absence of light, 'OH formation could almost be neglected, in accordance with the
198	comparison between Fe(III)-CAT and photo-Fenton like systems used for inderal
199	degradation. This trend is supported by rate measurements of Fe(III) reduction (Figure
200	A.6b). Results in Figure A.6b show that $\sim 20\%$ of Fe(III) was reduced to Fe(II) at
201	near-neutral pH under irradiation. This result confirms that irradiation affected indera
202	degradation by enhancing 'OH generation in the system. Furthermore, the use of
203	irradiation approximating sunlight (main wavelength at 365 nm) makes the process
204	potentially economical and practical.
205	The effect of the catechin modified photo-Fenton like process on inderal

206 degradation at pH 6.0 was examined to obtain more insight into how 'OH participates 207 in the process. For this purpose, 2-propanol was used as the scavenger for 'OH in the solution containing. 50 µmol/L Fe(III), 200 µmol/L catechin, and 10 µmol/L inderal. 208 Results in Figure 3 show that addition of 2-propanol markedly inhibited inderal 209 210 degradation. 2-Propanol and inderal reacted competitively with [•]OH. Use of 10 211 mmol/L 2-propanol resulted in removal of only 15% of inderal, demonstrating that inderal degradation was mainly due to the reactivity of [•]OH. When the 2-propanol 212 213 concentration was increased, the extent of inderal degradation deceased substantially. 214 Thus, these results also indicate that inderal degradation was mainly due to [•]OH.

215 *3.3. Effect of pH*

	rip
with catechin, experiments at pH 3.0, 5.0, 6.0, and 7.0 were carried out respectively.	ISC
Initial concentrations of Fe(III), catechin, and inderal were 50, 200, and 10 μ mol/L,	nu
respectively. The rate of inderal degradation increased in the order pH $3.0 < 5.0 < 7.0$	Z
< 6.0 (Figure 4), which is different from the trend for the traditional Fe(III)/light	eq
process. The photo-Fenton reaction with Fe(III) was ineffective at pH 3.0 because of	pte
chemical equilibrium of Eq. (1) in the solution ³¹ . Data on [•] OH formation in solutions	e S
at various pH values are consistent with this observation (Figure A.6a in	AG
Supplementary Data). Therefore, complete complexation of Fe(III) and catechin was	es
essential to the photo-Fenton like system in this work. Under acidic conditions, the	nc
chemical equilibrium shifted to the left, leading to the presence of free Fe(III) and	cie.
catechin. The efficiency of the photo-Fenton like process with Fe(III)-OH complex is	Š
quite low compared with that of the process with the Fe(III)-catechin complex.	cal
Therefore, the degradation efficiency was low at pH 3.0. The higher efficiency of	igo
inderal degradation by the Fe(III)-catechin complex could be attributed to the	00
complexation of iron by catechin, which leads to greater stabilization of iron and	ido
formation of hydroperoxyl/superoxide radicals at pH 6.0. We ³⁴ and other	ote
investigators ³⁵ also reported similar observations on the photo-Fenton like systems	P P
modified with natural or biological products, which are more complicated and not	ంర
easier to get than catechin.	g
3.4. Effect of catechin concentration	nic
Inderal photodegradation at pH 6.0 in the presence of catechin at various	Jer
concentrations was determined. Inderal degradation and catechin concentration were	oct o
	ote
11	L L

Inderal photodegradation at pH 6.0 in the presence of catechin at various concentrations was determined. Inderal degradation and catechin concentration were

-	Ì
Y	1
)
	j.
\geq	
\mathbf{O}	
	(
	í.
\mathbf{O}	
Y	
Ä	Ì
	1
1	
U.)
Ä	
Y	1
C)
ž	
	1
n)
_	i.
Ö)
Ö)
C	
Oic	2
Daic	
loaic	
ologic	
ologic	
ioloaic	
biologic	
biologic	
obiologic	
tobiologic	
otobiologic	
atobiologic:	
hotobiologic	
Photobiologic	
Photobiologic	
Photobiologic	
& Photobiologic:	
& Photobiologic:	
& Photobiologic	
I & Photobiologic	
al & Photobiologic	
cal & Photobiologic	
ical & Photobiologic	
nical & Photobiologic	
mical & Photobiologic:	
mical & Photobiologic	
emical & Photobiologic	
nemical & Photobiologic	
hemical & Photobiologic:	
chemical & Photobiologic	
chemical & Photobiologic	
ochemical & Photobiologic:	
tochemical & Photobiologic	
stochemical & Photobiologic	
otochemical & Photobiologic:	
notochemical & Photobiologic:	
hotochemical & Photobiologic	

239	highly correlated (Figure 5). Use of 50 μ mol/L catechin resulted in a degradation rate
240	of <40% over 120 min, whereas addition of 200 μ mol/L catechin increased the rate to
241	~75%. Increasing the catechin concentration from 200 to 500 $\mu mol/L$ led to a higher
242	rate of inderal removal (from 75% to 85%). This effect is attributed to the high
243	concentration of Fe(III)-catechin complex, which could enhance the formation of
244	$HO_2^{\bullet}/O_2^{\bullet-}$ and $^{\bullet}OH$ and, ultimately, inderal removal. This phenomenon was observed
245	during the degradation of alachlor photoinduced by Fe(III)–citrate complex ¹⁰ . On the
246	other hand, when the concentration of catechin is 800 $\mu mol/L,$ 'OH radicals are
247	competitively sequestered by inderal and excess free catechin in aqueous solution;
248	such competition thus decrease the efficiency of inderal degradation.
249	3.5. Photodegradation products and pathway

250 Using LC–ESI-MS and GC–MS, we identified products of inderal 251 photodegradation in the catechin modified photo-Fenton system to examine further 252 the mechanism of inderal photodegradation at near-neutral pH. HPLC chromatograms 253 and (+)-ESI-MS spectra of inderal and its photodegradation products after 120 min of 254 photodegradation are presented in Figure A.7. Two products with retention times of 255 1.4 and 5.0 min were identified. The m/z ratio of the photoproduct at 1.4 min is 134 256 and that of it fragment ion is 92. At 5.0 min, the m/z ratio of the photoproduct was 161. 257 [•]OH attack of side chains ending in their cleavage and oxidation might have led to the formation of this photoproduct. 258

The low-molecular-weight photoproducts were volatile and detectable by GC–MS.Using the NIST98 library database, we unambiguously identified the main

261	intermediates of the Fe(III)-catechin system (Table A.2). Mass spectra of standard
262	compounds and photoproducts could be compared in Figure A.8. Table A.2 also
263	indicates that most of the intermediates were hydroxylation products such as
264	3,4-dihydroxymandelic acid, pyrogallol, protocatechuic acid, p-phthalic acid, and
265	gallic acid. 'OH may further attack these hydroxylation products, producing a series
266	of low-molecular-weight carboxylic acids. These results thus confirm that inderal
267	photodegradation in the Fe(III)-catechin system mainly involved the reactive oxygen
268	species, OH. As inderal contains an amine group, tests were performed to determine
269	whether inorganic products were formed. $\mathrm{NO_3^-}$ and $\mathrm{NO_2^-}$ were determined by ion
270	chromatography. Only NO_3^- was detected in the solution. Hence, the amine group of
271	inderal was transformed to inorganic oxy-nitrogen ions. The proposed pathway for
272	inderal photodegradation according to the above results is illustrated in Figure 6. The
273	side chain and benzene ring of inderal first undergo attack by 'OH, leading to
274	1,8-dihydroxynaphalene and 1,2-dihydroxy-3-isopropylamino-propane. Subsequent
275	cleavage of one of the benzene rings produces benzene derivatives such as
276	3,4-dihydroxymandelic acid, pyrogallol, protocatechuic acid, p-phthalic acid, and
277	gallic acid. 'OH further reacts with the intermediates and generates a series of
278	low-molecular-weight carboxylic acids.

279 3.6. Reuse of Fe(III)/Fe(II) in solution

In our photo-Fenton like system, the solubility and stability of iron in aqueous solution at near-neutral pH is increased by the use of catechin to form stable complexes with Fe(III). By alternating between the +2 and +3 oxidation states, iron catalyzes the reaction in the solution. Fe(III)–catechin complexes subjected to irradiation produce Fe(II) via LMCT. As the amount of iron used contributes to the cost of processing and excess amounts discolor the water, a system for Fe(III)/Fe(II) reuse must be in place. In this regard, simple addition of catechin to solutions treated through the photo-Fenton reaction provides a convenient approach.

288 In our study, three runs were conducted to investigate inderal photodegradation. 289 Initially, the degradation was performed at pH 6.0 with 50 µmol/L Fe(III) and 200 290 µmol/L catechin. After 120 and 240 min respectively, 200 µmol/L catechin was added 291 to the solution. As shown in Figure 7, the rate constants for inderal photodegradation were 2.3×10^{-4} , 9.5×10^{-5} , and 3.3×10^{-5} s⁻¹, respectively. There was a large effect 292 on inderal removal within 120 min in all three runs. The rate of inderal removal 293 slowly decreased in subsequent runs. Accumulation of intermediates produced during 294 the earlier run may explain this observation. Such intermediates may compete 295 with [•]OH for reaction with inderal in the solutions. 296

297

298 4. Conclusions

We examined the use of the Fe(III)–catechin complex in the photo-Fenton like process by subjecting inderal-contaminated samples to treatment by the process. The degree and rate of inderal degradation at near-neutral pH was markedly increased upon use of the Fe(III)–catechin complex. By preventing Fe(III) precipitation, catechin contributed to stabilization of Fe(III) at near-neutral pH. Increased efficiency of inderal degradation with increasing pH (3.0 < 5.0 < 7.0 < 6.0) provides evidence

305	that controlling the pH of the reaction was essential to the efficiency of the process.
306	The efficiency of inderal degradation increased with catechin concentration. The
307	reactive oxygen species 'OH was mainly involved in inderal photodegradation in
308	solution. As reuse of iron in the Fe(III)-catechin solution simply involved adding
309	catechin to the reaction solution, recovery of Fe was convenient. Attack of 'OH on
310	inderal led to 1,8-dihydroxynaphalene, 1,2-dihydroxy-3-isopropylamino-propane,
311	3,4-dihydroxymandelic acid, pyrogallol, protocatechuic acid, p-phthalic acid, gallic
312	acid, and low-molecular-weight carboxylic acids.
242	
313	
313	Acknowledgments
313 314 315	Acknowledgments This work was supported by a grant from the National Natural Science Foundation
313314315316	Acknowledgments This work was supported by a grant from the National Natural Science Foundation of China (51078161, 51409108) and Huazhong University of Science and Technology
 313 314 315 316 317 	Acknowledgments This work was supported by a grant from the National Natural Science Foundation of China (51078161, 51409108) and Huazhong University of Science and Technology Independent Innovation Fund (0118261028). Thanks for Huazhong University of
 313 314 315 316 317 318 	Acknowledgments This work was supported by a grant from the National Natural Science Foundation of China (51078161, 51409108) and Huazhong University of Science and Technology Independent Innovation Fund (0118261028). Thanks for Huazhong University of Science and Technology Analytical and Testing Center. The anonymous reviewers are
 313 314 315 316 317 318 319 	Acknowledgments This work was supported by a grant from the National Natural Science Foundation of China (51078161, 51409108) and Huazhong University of Science and Technology Independent Innovation Fund (0118261028). Thanks for Huazhong University of Science and Technology Analytical and Testing Center. The anonymous reviewers are also gratefully acknowledged.
 313 314 315 316 317 318 319 320 	Acknowledgments This work was supported by a grant from the National Natural Science Foundation of China (51078161, 51409108) and Huazhong University of Science and Technology Independent Innovation Fund (0118261028). Thanks for Huazhong University of Science and Technology Analytical and Testing Center. The anonymous reviewers are also gratefully acknowledged.

321 Appendix A. Supplementary information

Supplementary information associated with this article can be found in the online
version.

- 326
- 327
- 328

329 **References**

- 1. H. J. H. Fenton, LXXIII.—Oxidation of tartaric acid in presence of iron, J. Chem.
- 331 Soc., Trans., 1894, **65**, 899-910.
- 332 2. W. Y. Huang, M. Brigante, F. Wu, C. Mousty, K. Hanna and G. Mailhot,
- Assessment of the Fe(III)-EDDS complex in Fenton-like processes: from the radical formation to the degradation of bisphenol A, *Environ. Sci. Technol.*, 2013, **47**, 1952-1959.
- 336 3. L. Chen, C. Y. Deng, F. Wu and N. S. Deng, Decolorization of the azo dye
- Orange II in a montmorillonite/H₂O₂ system, *Desalination*, 2011, **281**, 306-311.
- 4. Y. G. Zuo and J. Zhan, Effects of oxalate on Fe-catalyzed photooxidation of dissolved sulfur dioxide in atmospheric water, *Atmos. Environ.*, 2005, **39**, 27-37.
- 5. E. M. Glebov, I. P. Pozdnyakov, V. P. Grivin, V. F. Plyusnin, X. Zhang, F. Wu
- and N.S. Deng, Intermediates in photochemistry of Fe (III) complexes with carboxylic
- acids in aqueous solutions, *Photoch. Photobio. Sci.*, 2011, **10**, 425-430.
- 6. Y. Deng and J. D. Englehardt, Treatment of landfill leachate by the Fenton
 process, *Water Res.*, 2006, 40, 3683-3694.
- 345 7. S. Q. Liu, L. R. Feng, N. Xu, Z. G. Chen and X. M. Wang, Magnetic nickel
- 346 ferrite as a heterogeneous photo-Fenton catalyst for the degradation of rhodamine B in
- the presence of oxalic acid, *Chem. Eng. J.*, 2012, **203**, 432-439.
- 348 8. L. Y. Ge, H. H. Deng, F. Wu and N. S. Deng, Microalgae-promoted
- 349 photodegradation of two endocrine disrupters in aqueous solutions, J. Technol.
- 350 *Biotechnol.*, 2009, **84**, 331-336.

	0
0	0
ot	S
	2
	Z
n	Ĕ
Α,	Т
	Ð
	ō
	Ð
ν,	Ö
7	0
/,	
	S
	Ö
d	g
	a
	Ň
c	
÷	σ
ι.	0
	5
	Õ
4	
	·
	9
	ţ
e	0
2	
,	
	õ
n	Q
	.0
	З
0	Ð
a	Ĕ
J.	Ö
-	0
	6
	Ă

351	9. A. Durán, J. M. Monteagudo and E. Amores, Solar photo-Fenton degradation of
352	Reactive Blue 4 in a CPC reactor, Appl. Catal. B: Environ., 2008, 80, 42-50.
353	10. H. Katsumata, S. Kaneco, T. Suzuki, K. Ohta and Y. Yobiko, Photo-Fenton
354	degradation of alachlor in the presence of citrate solution, J. Photochem. Photobiol., A,
355	2006, 180 , 38-45.
356	11. Y. Chen, F. Wu, Y. X. Lin, N. S. Deng, N. Bazhin and E. Glebov,
357	Photodegradation of glyphosate in the ferrioxalate system, J. Hazard. Mater., 2007,
358	148 , 360-365.
359	12. Y. G. Zuo and J. Hoigné, Evidence for photochemical formation of H_2O_2 and
360	oxidation of SO ₂ in authentic fog water, <i>Science</i> , 1993, 260 , 71-73.
361	13. Y. G. Zuo and J. Hoigne, Formation of hydrogen peroxide and depletion of oxalic
362	acid in atmospheric water by photolysis of iron (III)-oxalato complexes, Environ. Sci.
363	Technol., 1992, 26 , 1014-1022.
364	14. P. Kocot, A. Karocki and Z. Stasicka, Photochemistry of the Fe(III)-EDTA
365	complexes, J. Photochem. Photobiol., A, 2006, 179, 176-183.
366	15. E. Lipczynska-Kochany and J. Kochany, Effect of humic substances on the
367	Fenton treatment of wastewater at acidic and neutral pH, Chemosphere, 2008, 73,
368	745-750.
369	16. C. Fan, L. Tsui and M. Liao, Parathion degradation and its intermediate formation
370	by Fenton process in neutral environment, Chemosphere, 2011, 82, 229-236.
371	17. W. Y. Huang, M. Brigante, F. Wu, K. Hanna and G. Mailhot, Development of a
372	new homogenous photo-Fenton process using Fe(III)-EDDS complexes, J.

- 18. J. A. Sánchez Pérez, I. M. Román Sánchez, I. Carra, A. Cabrera Reina, J. L.

Photochem. Photobiol., A, 2012, 239, 17-23.

- 375 Casas López and S. Malato, Economic evaluation of a combined photo-Fenton/MBR
- process using pesticides as model pollutant. Factors affecting costs, J. Hazard. Mater.,
- 377 2013, **244-245**, 195-203.

- 19. I. Carra, S. Malato, M. Jiménez, M. I. Maldonado and J. A. Sánchez Pérez,
- Microcontaminant removal by solar photo-Fenton at natural pH run with sequential and continuous iron additions, *Chem. Eng. J.*, 2014, **235**, 132-140.
- 381 20. J. Granger and N. M. Price, The importance of siderophores in iron nutrition of
 heterotrophic marine bacteria, *Limnol. Oceanog.*, 1999, 44, 541-555.
- 383 21. T. P. Murphy, D. R. Lean and C. Nalewajko, Blue-green algae: their excretion of
- iron-selective chelators enables them to dominate other algae, *Science*, 1976, 192,
 900-902.
- 386 22. D. A. Hutchins, A. E. Witter, A. Butler and G. W. Luther, Competition among
 387 marine phytoplankton for different chelated iron species, *Nature*, 1999, **400**, 858-861.
- 23. C. G. Trick, R. J. Andersen, A. Gillam and P. J. Harrison, Prorocentrin: an
- extracellular siderophore produced by the marine dinoflagellate Prorocentrum minimum, *Science*, 1983, **219**, 306-308.
- 24. S. A. Amin, D. H. Green, F. C. Küpper and C. J. Carrano, Vibrioferrin, an
 Unusual Marine Siderophore: Iron Binding, Photochemistry, and Biological
 Implications, *Inorg. Chem.*, 2009, 48, 11451-11458.
- 394 25. K. Barbeau, E. L. Rue, C. G. Trick, K. W. Bruland and A. Butler, Photochemical

1				
	(5	
į.	į			
1	1	ľ		
	Ì	ļ		
		Ċ	5	
	Ì	2		
			D	
	i			
	ļ			
	į			
			_	
	į			
		9	D	
2				
			5	
	1			
	(5	
	ì	2		
1			5	
	(7	
	(b	
	1	2	2	
		Ċ	J	
	j	2	K	
		Ć	J	
	j	1	1	
			_	
			n	
	Ì	2		
			D	
	j	2	K	
			D	
	į	2		
			_	
	Ĵ		1	
			D	
i.	ì			
	1	¢.		
	ļ	6		
1	l			
J				
		9	Ď	
	(3		
		3		
		3		

395	reactivity	of	siderophores	produced	by	marine	heterotrophic	bacteria	and
396	cyanobacte	eria l	based on charac	eteristic Fe ((III) ł	oinding g	roups, <i>Limnol</i> .	Oceanog.,	2003,
397	48 , 1069-1	078.							

- 26. J. D. Martin, Y. Ito, V. V. Homann, M. G. Haygood and A. Butler, Structure and
- membrane affinity of new amphiphilic siderophores produced by Ochrobactrum sp.
- 400 SP18, J. Biol. Inorg. Chem., 2006, **11**, 633-641.
- 401 27. R. T. Reid, D. H. Livet, D. J. Faulkner and A. Butler, A siderophore from a
- 402 marine bacterium with an exceptional ferric ion affinity constant, *Nature*, 1993, **366**,
- 403 455-458.
- 404 28. J. F. Wu and G. W. Luther III, Complexation of Fe (III) by natural organic
- ligands in the Northwest Atlantic Ocean by a competitive ligand equilibration methodand a kinetic approach, *Mar. Chem.*, 1995, **50**, 159-177.
- 407 29. S. Pérez-Miranda, N. Cabirol, R. George-Téllez, L. S. Zamudio-Rivera and F. J.
- 408 Fernández, O-CAS, a fast and universal method for siderophore detection, J.
- 409 *Microbiol. Meth.*, 2007, **70**, 127-131.
- 410 30. C. G. Hatchard and C. A. Parker, A new sensitive chemical actinometer. II.
- 411 Potassium ferrioxalate as a standard chemical actinometer, *Proc. R. Soc. A*, 1956, 235,
- 412 518-536.
- 31. M. E. Bodini, M. A. Del Valle, R. Tapia, F. Leighton and L. Gonzalez, Study of
 the iron catechin complexes in dimethyl sulphoxide. Redox chemistry and interaction
 with superoxide radical anion in this medium, *Bol. Soc. Chil. Quím.*, 2001, 46,
- 416 309-317.

417	32. M. J. Hynes and M. Ó Coinceanainn, The kinetics and mechanisms of the
418	reaction of iron (III) with gallic acid, gallic acid methyl ester and catechin, J. Inorg.
419	Biochem., 2001, 85 , 131-142.
420	33. A. S. Cornish and W. J. Page, The catecholate siderophores of Azotobacter
421	vinelandii: their affinity for iron and role in oxygen stress management, Microbiology,
422	1998, 144 , 1747-1754.
423	34. Z. P. Wang, Z. Z. Liu, F. Yu, J. P. Zhu, Y. Chen and T. Tao,
424	Siderophore-modified Fenton-like system for the degradation of propranolol in
425	aqueous solutions at near neutral pH values, Chem. Eng. J., 2013, 229, 177-182.
426	35. F. Baldi, D. Marchetto, D. Zanchettin, E. Sartorato, S. Paganelli and O. Piccolo,
427	A bio-generated Fe (III)-binding exopolysaccharide used as new catalyst for phenol
428	hydroxylation Green Chem 2010 12 1405-1409

431	Captions for Figures
432	Figure 1 – Inderal photodegradation by five Fe(III) complexes. Reaction conditions
433	were as follows: $[Fe(III)] = 50 \ \mu mol/L$, $[ligand] = 200 \ \mu mol/L$, $[inderal]$
434	=10 μ mol/L, pH = 6.0.
435	Figure 2 - Comparison of Fe(III)/light (with or without CAT) processes. Reaction
436	conditions were as follows: $[Fe(III)] = 50 \ \mu mol/L$, $[catechin] = 200 \ \mu mol/L$, $[inderal]$
437	= 10 μ mol/L, pH = 6.0.
438	Figure 3 – Effect of 2-propanol on inderal photodegradation. Reaction conditions
439	were as follows: [Fe(III)] = 50 μ mol/L, [catechin] = 200 μ mol/L, [inderal] = 10
440	μ mol/L, pH = 6.0.
441	Figure 4 – Effect of pH on inderal photodegradation. Reaction conditions were as
442	follows: $[Fe(III)] = 50 \ \mu mol/L$, $[catechin] = 200 \ \mu mol/L$, $[inderal] = 10 \ \mu mol/L$.
443	Figure 5 – Inderal degradation in the presence of catechins of various concentrations.
444	Reaction conditions were as follows: $[Fe(III)] = 50 \ \mu mol/L$, $[inderal] = 10 \ \mu mol/L$, pH
445	= 6.0
446	Figure 6 - The proposed pathways for indirect photodegradation of inderal in the
447	Fe(III)-catechin system.
448	Figure 7 – Photodegradation of inderal after addition of catechin (200 μ M) to the
449	Fe(III) solution (50 μ M) in the three runs at pH 6.0.
450	
451	Scheme 1 - Stabilization of Fe(III) at near neutral pH by CAT and formation of
452	photo-Fenton system.
453	
454	

1.00.8 0.6 c/c0 0.4 Catechin Nordihydroguaiaretic acid
 Pyrocatechol violet
 -2-chloro-3',4'-dihydroxyacetophenone 0.2 2,3-dihydroxybenzoic acid 0.060 80 100 120 0 20 40 Time (min)

Figure 1 – Inderal photodegradation by five Fe(III) complexes. Reaction conditions were as follows: [Fe(III)] = 50 μ mol/L, [ligand] = 200 μ mol/L, [inderal] = 10 μ mol/L, pH = 6.0.

460

461

462

463

464

465

Figure 2 – Comparison of Fe(III)/light (with or without CAT) processes. Reaction conditions were as follows: [Fe(III)] = 50 μ mol/L, [catechin] = 200 μ mol/L, [inderal] = 10 μ mol/L, pH = 6.0.

472

473

474

475

476

Photochemical & Photobiological Sciences Accepted Manuscr

Figure 3 – Effect of 2-propanol on inderal photodegradation. Reaction conditions were as follows: $[Fe(III)] = 50 \ \mu mol/L$, $[catechin] = 200 \ \mu mol/L$, [inderal] = 10

 μ mol/L, pH = 6.0.

Figure 4 – Effect of pH on inderal photodegradation. Reaction conditions were as

491	follows: $[Fe(III)] = 50 \ \mu m$	d/L, [catechin] = 200	0 μ mol/L, [inderal] =10 μ mo	ol/L.
-----	-----------------------------------	-----------------------	---------------------------------------	-------

1.0 0.8 0.6 c/C0 0.4 50 µmol/L - 200 µmol/L 0.2 500 µmol/L 800 µmol/L 0.0 100 40 60 80 120 20 0 Time(min)

Figure 5 – Inderal degradation in the presence of catechins of various concentrations.

506 Reaction conditions were as follows: $[Fe(III)] = 50 \mu mol/L$, $[inderal] = 10 \mu mol/L$, pH

- 507 = 6.0
- 508
- 509
- 510
- 511
- 512
- 513

514

515

516

517

Page 26 of 29

519 Figure 6 – The proposed pathways for indirect photodegradation of inderal in the

520 Fe(III)–catechin system.

Photochemical & Photobiological Sciences Accepted Manusc

523 Figure 7 – Photodegradation of inderal after addition of catechin (200 μ M) to the

524 Fe(III) solution (50 μ M) in the three runs at pH 6.0.

539 Scheme 1 – Stabilization of Fe(III) at near neutral pH by CAT and formation of

- 540 photo-Fenton system.
- 541
- 542
- 543