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A simple reaction procedure for chemiluminescence of firefly 

luciferin (D-luc) using n-propylphosphonic anhydride (T3P) 

is reported.  A luminescence photon is produced as the result 

of one-pot reaction, only requiring mixing with substrate 

carboxylic acid and T3P in the presence of mild organic base. 

n-Propylphosphonic anhydride (T3P) is a cyclic anhydride formed 

by three n-propylphosphonic acid molecules.  T3P is an easily 

handled reagent that has long shelf-life stability and does not have 

shock sensitivity, and it is commercially available as a 50% solution 

in DMF or ethyl acetate.  This reagent also lacks toxicity and 

allergenic potential.1  Normally, T3P is condensed with carboxylic 

acids to form highly reactive mixed anhydrides (acyl-phosphonic 

acids) (Scheme 1).  These intermediates are converted to the final 

products by subsequent transformation processes. The use of T3P is 

now expanding to various fields in synthetic chemistry such as 

amide/peptide synthesis, nitrile synthesis, isonitrile synthesis, 

oxadiazole formation, 2-substituted 1,3-benzazole synthesis, 

dehydration, alcohol oxidation, alkene formation, and C–C bond 

formation reactions, among others.2  These broad applications 

demonstrate the usefulness of this reagent. 

 

 

 

 

 

 

 

 

 

 

 

In this communication, we report another application of this 

reagent in a chemiluminescence reaction.  This study was inspired 

by the firefly bioluminescence reaction in which firefly luciferin (D-

luc) is the substrate and firefly luciferase (EC 1.13.12.7) catalyzes 

ATP-dependent oxidation of D-luc.  The firefly luciferase catalyzed 

bioluminescence reaction comprises three steps (Scheme 2).3,4  

Initially, the carboxyl moiety of D-luc is activated to form a mixed 

anhydride, D-luciferyl-adenylate (D-luc-AMP), as the result of 

reaction with ATP-Mg. This intermediate is subsequently oxidized 

by O2 through several intermediates to give the electronically excited 

product oxyluciferin (oxyluc), AMP, and CO2.  Finally, the 

bioluminescence photon is produced when the excited oxyluc relaxes 

to its ground state.  Although substrate D-luc and produced oxyluc 

are identical in many firefly species and/or their mutants, the 

emission color varies from green to red (530–635 nm).5-10 

  In the absence of luciferase, the intermediate D-luc-AMP is 

oxidized in the presence of base and proceeds through the same 

reactions as the second and third steps of the bioluminescence 

sequence, resulting in luminescence; this process is called 

chemiluminescence. To date, there have been two distinct 

chemiluminescence systems reported that use derivatives of D-luc, 

one using D-luc-AMP and the other esters of D-luc 11-13 In these 

systems, however, synthetic preparations of these substances are 

required and there is no simple example from substrate carboxylic 

acid as starting material. Specifically, for quantitative analysis of D-

luc-AMP chemiluminescence, HPLC purification is essential, and 

chemiluminescence from the esters can only be obtained under 

strong basic conditions, such as with t-BuOK. Thus, it cannot be said 

that previously described systems are easily utilized all researchers. 

Herein, we hypothesize that T3P enables activation of D-luc to 

promote the chemiluminescence reaction, and because T3P is easy to 

used, it can be applied in a novel, simple, one-pot 

chemiluminescence system to overcome the drawbacks of other 

systems. The idea for a new chemiluminescence reaction was 

derived from the mechanism of amidation by T3P.  In this case, the 

carboxylate initially attacks the T3P to form activated acyl-

phosphonic acid. Then, the amine attacks this intermediate and a 

base picks up the excess proton to produce the amide. In this 

reaction pathway, the activated acyl-phosphonic acid intermediate is 

similar to D-luc-AMP (Scheme 2).  D-luc has a carboxylic acid in 

the molecule, which should allow the first acyl-phosphonic acid 

formation step to proceed.  Then, toward this D-luc-AMP like 

intermediate if an appropriate base would be present in the reaction 

mixture, the α-proton of carboxylate will be extracted easily and 

should produce light via the formation of dioxetanone intermediate 

after being reacted with O2 molecule.  Therefore, this 

chemiluminescence reaction will be completed only by mixing T3P, 

D-luc, and an organic base (e.g., triethylamine). 

Scheme 1. Structure of n-propyl phosphonic acid (T3P) and 

condensation with carboxylic acid to form an acyl-phosphonic acid 

intermediate. 
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To evaluate this hypothesis, a model reaction was performed.  

Briefly, a 1 mM D-luc solution in DMF was mixed with a 110 mM 

T3P solution in DMF in the presence of 100 mM triethylamine.  The 

luminescence signal was detected using a CLX-101 luminometer 

(Toyobo).  Figure 1 shows the time course of this 

chemiluminescence reaction.  As expected, an obvious increase in 

counts occurred after T3P was added. Furthermore, no emission 

could be detected in the absence of base, which indicates the 

importance of a base in the promotion of the chemiluminescence 

reaction in this system.  In case of a previous chemiluminescence 

system from D-luc esters, strong basic conditions are necessary for 

emission.  T3P system, however, detectable light can be obtained 

with milder base.  In addition, stable light was always recovered 

under more than 50 mM T3P concentration.  The 

chemiluminescence intensity is on the par with D-luc-AMP 

chemiluminescence in BSA solution.12   From the HPLC 

quantification, it was revealed that 60% of the starting D-luc 

substrate was consumed and some new peaks were detected after the 

reaction (supplemental data).  A photograph of the solution in a test 

tube is provided to show the luminescence color of this reaction.  D-

luc emitted a red color under these conditions.  It should be noted 

that because this system is free from the substrate chirality, the same 

result is obtained if L-luc is used in this reaction. The simplicity of 

this system will help to promote the mechanistic study of 

luminescence reactions similar to the firefly luciferase catalyzed 

bioluminescence reaction. 

Various analogues of D-luc have been also developed in recent 

years (Figure 2).14-20  Because of the substrate specificity of firefly 

luciferase, however, the enzymatic activities toward these analogues 

are sometimes very low, and it is therefore difficult to measure the 

luminescence spectrum even with a highly sensitive detector. The 

bioluminescence signal from the commercially available substrate 

D-akalumine was approximately 5% of that of D-luc.14  In the case 

of D-parablue, which is known as a blue luminescent analogue, the 

bioluminescence was only 0.01% of that of D-luc.14  In addition, D-

methoxyluc, whose phenolic hydroxyl group is replaced by a 

methoxy group, was an inert bioluminescence substrate.  To evaluate 

the luminous potential of analogues with removing the substrate 

specificity of firefly luciferase, researcher must prepare the 

corresponding acyl-AMP intermediate for each analogue.  By using 

the T3P chemiluminescence system, however, researchers the 

tedious preparation steps of acyl-AMP intermediates can be avoided, 

and therefore, various types of reaction conditions can be 

investigated quickly.  This will promote systematic analysis of the 

relationship between the luminous color and the substrate structures 

and confirmation of the mechanism of the luminescence reaction 

toward substrates that are predicted to emit via the dioxetanone 

intermediate. 

Scheme 2. Chemical conversion process of D-luc to oxyluc in the active site of firefly luciferase, and the structure of an expected D-luc-AMP-like 

intermediate formed as a result of D-luc and T3P conjugation. 
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Figure 1. Time course of luminous counts using 100 mM triethylamine as 

base with a negative control, and a photo of luminescence color using D-luc. Figure 2. Structure of D-luc analogues that were used in this study 
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To test this hypothesis, T3P was used to investigate 

chemiluminescence from D-luc analogues (Figure 2).  Briefly, a 110 

mM T3P solution in DMF was added to a 1 mM solution of D-luc or 

its analogues in DMF in the presence of 100 mM triethylamine. The 

emission spectrum was measured using an AB-1850 LumiFL-

Spectrocapture (Atto) (slit width, 1 mm; spectral resolution, 0.5 nm). 

All spectra were corrected for the spectral sensitivity of the 

equipment and normalized (Figure 3).  The peak wavelength of D-

luc chemiluminescence (627 nm) showed good agreement with 

previous reports on D-luc-AMP or D-luc ester.21-24  Other analogues 

showed various emission colors depending on their structures.  

These results indicate that the T3P chemiluminescence system is 

useful for evaluating the potential luminescence color of these 

substrates.  The λmax of D-penicilluc (630 nm) and D-pyrizylluc 

(631 nm) is the same as that of D-luc.  In the case of D-akalumine, 

the color is in the near infrared region (661 nm), and for D-aminoluc, 

it is bright orange (588 nm). These results agree with previous 

reports.14,19  Although D-methoxyluc is unacceptable substrate for 
bioluminescence, it emitted luminescence photons, and the emission 

color was orange (597 nm) in this system. For D-parablue, two peaks 

were detected in the blue color region (450 nm) and near infrared 

region (approximately 680 nm), although its λmax was at 440 nm for 

the firefly luciferase catalyzed bioluminescence reaction.  This may 

result from the solvent effect for D-parablue, although the reason is 

not explained properly why this phenomenon is observed only 

toward this substrate. 

 

entry substrate 

Total emission counts (x106 counts/sec) 

Triethylamine (mM)  DBU (mM) 

200 100 50 10 5 2  200 100 50 10 5 2 

1 D-luc 7.7 6.8 5.8 2.0 2.0 3.1  11 6.3 8.1 3.3 3.2 3.5 

2 D-aminoluc 1.7 2.6 3.7 0.48 0.24 0.24  0.5 0.47 0.52 2.3 4.0 2.6 

3 D-penicilluc 19 22 14 1.6 0.33 0.012  5.8 3.3   6.5 5.4 5.3 12 

4 D-methoxyluc 0.89 0.62 0.29 0.0023 N.D. a N.D. a  0.88 0.77 0.96 0.27 0.16 0.086 

5 D-pyridylluc 0.43 0.49 0.34 0.0054 0.00024 N.D. a  0.15 0.16 0.15 0.12 0.051 0.048 

6 D-akalumine 3.6 6.1 4.9 0.19 0.02 N.D. a  0.27 0.33 0.28 1.3 1.4 2.3 

7 D-parablue 0.26 0.14 0.062 0.00092 0.0025 N.D. a  0.60 0.60 0.52 0.28 0.18 0.19 
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Figure 4. Emission spectra of indole-3-acetic acid and 3-indoleglyoxylic 

acid using DBU as base, and a photo of luminescence color of 3-

indoleglyoxylic acid. 

Figure 5. Time course of counts of T3P chemiluminescence reaction using 

4-nitrophenylacetic acid and100 mM triethylamine (normal conditions) and 

with addition of 9,10-bis(phenylethynyl)anthracene (dye addition) 

Table 1. Total emission counts with various concentrations of triethylamine or DBU base 

aNo emission was detected. 
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Figure 3. Emission spectra of D-luc and its analogues using triethylamine 

as base. 
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All of the substrates were also reacted with the firefly luciferase 

from Luciola cruciata (Wako chemical) in the bioluminescence 

reaction.  The emission spectrum was measured from the reaction 

mixture containing 1 mg of luciferase enzyme and 100 µL of 

substrate solution containing 1 mM D-luc or its analogues, 4 mM 

ATP-2Na, 8 mM MgSO4, and 0.1 M Tris-HCl (pH 8.0). It is known 

that the bioluminescence color for D-luc and D-penicilluc is shifted 

to a shorter wavelength (approximately 550 nm) compared with that 

in the chemiluminescence reaction because of the interaction with 

enzyme.21-24  Here, we confirmed that other substrates showed 

almost the same λmax in the two luminescence systems. These 

results indicate that excited oxidized substrates from D-luc and D-

penicilluc interact with the enzyme and that other analogues do not. 

To understand the firefly reaction, it is important to know whether 

the analogues were able to interact with enzyme.  Comparison of the 

results of the chemiluminescence and bioluminescence reactions 

should help to determine the state of substrate in the enzyme active 

site. 

 To investigate the influence of base, chemiluminescence activity 

under various basic conditions was comprehensively measured. 

Briefly, a 110 mM T3P solution in DMF was added to 1 mM of D-

luc or its analogues in DMF and an appropriate amount of base 

(triethylamine or DBU).  Total counts were measured for 3 seconds 

using a luminometer. Each assay was repeated 3 times.  The left side 

of Table 1 summarizes the data from the T3P chemiluminescence 

reaction using triethylamine as base.  In the case of D-luc (entry 1), 

obvious light was observed with less than 2 mM triethylamine, 

although detectable light was not obtained in the absence of base.  

Thus, the base is very important for the induction of light emission 

and may help the α-proton extraction from the acyl-phosphonic acid 

intermediate before attack by the O2 molecule. The spectrum toward 

D-luc was unchanged by the base type and/or its concentration.  The 

other entries in Table 1 show the results with an additional 6 

luciferin analogues, which are shown in Figure 2.  The strength of 

light emission is quite different from the various substrates. With 

100 mM triethylamine, the strongest intensity was achieved from D-

penicilluc and the lowest from D-parablue.  There is a 100-fold 

difference in these values.  Although stable light emission was 

obtained with more than 50 mM triethylamine, only feeble levels 

were detected with a low base concentration.  Less than 10 mM 

triethylamine only produced very weak or no emissions with D-

methoxyluc, D-pyridylluc, and D-parablue. A higher concentration 

of this base did not affect the total emission counts with these 

substrates  At a concentration of no less than 50 mM triethylamine, it 

has utterly no effect on the activity. On the right side of Table 1, the 

results using DBU base are shown.  In this case, a strong emission 

with all substrates was detected at a concentration of 2 mM.  This 

may be due to the difference in pKa of these two bases.  The 

stronger basicity of DBU would promote the proton extraction from 

the acyl-phosphonic acid intermediate, which was not accomplished 

by triethylamine.  At a base concentration of more than 50 mM DBU, 

the total light counts were almost the same as when triethylamine 

was used, although the total intensity with D-penicilluc and D-

akalumine was reduced approximately 10% when the same 

concentrations of DBU or triethylamine were used.  Thus, the 

selection of base and/or its concentration is very important for 

obtaining sufficient light. 

 For the expansion of the application of T3P chemiluminescence, 

we tried two additional substrates, indole-3-acetic acid and 3-

indoleglyoxylic acid, which are used as detection substrates in 

commercially available ELISA kits.  In the presence of H2O2 under 

basic conditions, it was predicted that these two substrates would 

emit light via the dioxetanone intermediates, as occurs during firefly 

luciferin emission.25-27 Luminescence was detected when DBU was 

used as base, but the light emission was not adequate when 

triethylamine was used as base (Table 2).  The spectra of these two 

substrates were measured, and the λmax for both was approximately 

470 nm under the DBU base condition. The luminescence color was 

also confirmed from the photo (Fig. 4).  These results agree well 

with previous experiments and therefore indicate that this system has 

the potential to expand the general chemiluminescence reaction by 

way of dioxetanone intermediates. 

For the T3P chemiluminescence reaction, carboxylic acids have to 

contain the chromophore to emit a photon. 4-Nitrophenylacetic acid 

did not have a significant luminescence signal under triethylamine 

base conditions, although it is very likely to form the dioxetanone 

intermediate with T3P because its structure is similar to luminous 

indole-3-acetic acid (Fig. 5).  However, when a fluorescent dye, 

9,10-bis(phenylethynyl)anthracene, was added to the normal T3P 

chemiluminescence reaction mixture, a slight but obvious increase of 

luminescence signal was obtained.  Thus, even substrates that do not 

have a luminous chromophore in the molecule can emit a photon by 

transferring the excited energy to the appropriate fluorescent dyes. 

Conclusions 

We introduced a novel one-pot chemiluminescence system 

using T3P.  This system is applicable to a series of carboxylic 

acid substrates such as D-luc and indole-3-acetic acid 

derivatives that would be oxidized via the dioxetanone 

intermediate.  Handling is very easy, only requiring mixing of 

the substrate, T3P, and mild organic base to achieve the 

emission.   With appropriate base selection, sufficient light 

intensity can be obtained.  The peak wavelength also showed 

good agreement with the results of other reported methods. 

Although detail product assignments are not performed yet, this 

system might be useful to obtain the color structure relationship 

of D-luc derivatives and is free from the limitation of the 

substrate specificity of firefly luciferase catalyzed 

bioluminescence reactions.  In addition, in the presence of a 

fluorescent chromophore, even nonluminous carboxylic acid 

can produce light. Elucidation of the conditions to allow 

emission of light in other organic or aqueous solvent is now 

underway. 

 

entry substrate 

Total emission counts (x106 counts/sec) 

Triethylamine (mM)  DBU (mM) 

100 50 10  100 50 10 

1 indole-3-acetic acid  0.0076 0.0055 0.0079  0.30 0.30 0.094 

2 3-indoleglyoxylic acid 0.21 0.31 0.11  1.4 1.7 1.1 

Table 2. Total emission counts with indole-3-acetic acid and 3-indoleglyoxylic acid 
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Graphical abstract 

 

A simple one-pot chemiluminescence reaction using n-prorpylphosphonic anhydride (T3) toward 

firefly luciferin and its derivatives are developed. 
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